首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
B-deficient bean (Phaseolus vulgaris L.) nodules examined by light microscopy showed dramatic anatomical changes, mainly in the parenchyma region. Western analysis of total nodule extracts examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that one 116-kD polypeptide was recognized by antibodies raised against hydroxyproline-rich glycoproteins (HRGPs) from the soybean (Glycine max) seed coat. A protein with a comparable molecular mass of 116 kD was purified from the cell walls of soybean root nodules. The amino acid composition of this protein is similar to the early nodulin (ENOD2) gene. Immunoprecipitation of the soybean ENOD2 in vitro translation product showed that the soybean seed coat anti-HRGP antibodies recognized this early nodulin. Furthermore, we used these antibodies to localize the ENOD2 homolog in bean nodules. Immunocytochemistry revealed that in B-deficient nodules ENOD2 was absent in the walls of the nodule parenchyma. The absence of ENOD2 in B-deficient nodules was corroborated by performing hydroxyproline assays. Northern analysis showed that ENOD2 mRNA is present in B-deficient nodules; therefore, the accumulation of ENOD2 is not affected by B deficiency, but its assembly into the cell wall is. B-deficient nodules fix much less N2 than control nodules, probably because the nodule parenchyma is no longer an effective O2 barrier.  相似文献   

4.
A cDNA library prepared from pea nodule poly(A)+ RNA was screened by differential hybridization with cDNA probes synthesized from root and nodule RNA respectively. From the cDNA clones that hybridized exclusively with the nodule probe five clones, designated pPsNod 6, 10, 11, 13 and 14 and each containing unique sequences, were further characterized together with one leghemoglobin and one root-specific cDNA clone. In vitro translation of RNA selected by the pPsNod clones showed that the corresponding genes encode nodulins with molecular weights ranging from 5 800 to 19 000. During pea root nodule development expression of the five PsNod genes starts more or less concomitantly with the onset of nitrogen fixing activity in the nodules and the time course of appearance and accumulation of the nodulin mRNAs is similar to that of leghemoglobin mRNA. In ineffective pea root nodules expression of the PsNod genes is induced but the final accumulation levels of the mRNAs are markedly reduced to various degrees. The expression of another nodulin gene, designated ENOD2, was followed using a heterologous soybean cDNA clone as probe. In pea root nodules the ENOD2 gene is expressed at least five days before the PsNod and leghemoglobin genes, and in contrast to the PsNod mRNAs the concentration of the ENOD2 mRNA is the same in wild type and fix - nodules. The results described suggest that in root nodules several regulatory mechanisms exist which determine the final nodulin mRNA amounts accumulating in the root nodule.  相似文献   

5.
A pea cDNA clone representing the homologue of the soybean pGmENOD40-1 was isolated and characterized. At the nucleotide level both clones share 55% homology. Strikingly, the homology between the polypeptides derived from the pea and soybean ENOD40 cDNA sequences is only 14%. Despite this low homology Southern analyses revealed that the isolated pea cDNA clone represents the single pea ENOD40. In situ hybridizations showed that at early stages of nodule development and in mature nodules the expression pattern of pea ENOD40 is comparable to that of soybean ENOD40. Although ENOD40 show similar expression patterns in these two nodules, it is questionable whether the putative polypeptides have a similar function, since the homology is very low.  相似文献   

6.
We have used in situ hybridization to examine the spatial organization of cells expressing the early nodulin gene (ENOD2) during the development of alfalfa root nodules. ENOD2 gene expression was found in the nodule parenchyma, uninfected cells surrounding the symbiotic region of both effective and ineffective nodules. However, in empty nodules, ENOD2 gene expression was found in a mass of parenchyma cells at the base of the nodule. Similar results were also observed in 11-day-old nodules that contained infected cells but that had not yet begun to express leghemoglobin. Although early events of nodulation result in the induction of ENOD2 expression in cells at the nodule base, the pattern of cells expressing ENOD2 during nodule growth appears to be correlated with the development of other peripheral tissues.  相似文献   

7.
8.
Summary. Nodulins encoding repetitive proline-rich cell wall proteins (PRPs) are induced during early interactions with rhizobia, suggesting a massive restructuring of the plant extracellular matrix during infection and nodulation. However, the proteins corresponding to these gene products have not been isolated or characterized, nor have cell wall localizations been confirmed. Posttranslational modifications, conformation, and interactions with other wall polymers are difficult to predict on the basis of only the deduced amino acid sequence of PRPs. PsENOD2 is expressed in nodule parenchyma tissue during nodule organogenesis and encodes a protein with distinctive PRP motifs that are rich in glutamate and basic amino acids. A database search for the ENOD2 signature motifs indicates that similar proteins may have a limited phylogenetic distribution, as they are presently only known from legumes. To determine the ultrastructural location of the proteins, antibodies were raised against unique motifs from the predicted ENOD2 sequence. The antibodies recognized nodule-specific proteins in pea (Pisum sativum), with a major band detected at 110 kDa, representing a subset of PRPs from nodules. The protein was detected specifically in organelles of the secretory pathway and intercellular spaces in the nodule parenchyma, but it was not abundant in primary walls. Similar proteins with an analogous distribution were detected in soybean (Glycine max). The use of polyclonal antibodies raised against signature motifs of extracellular matrix proteins thus appears to be an effective strategy to identify and isolate specific structural proteins for functional analysis. Correspondence and reprints: Delaware Biotechnology Institute, Newark, DE 19711, U.S.A.  相似文献   

9.
10.
11.
12.
13.
14.
15.
We examined the timing and location of several early root responses to Rhizobium leguminosarum bv. trifolii infection, compared with a localized addition of cytokinin in white clover, to study the role of cytokinin in early signaling during nodule initiation. Induction of ENOD40 expression by either rhizobia or cytokinin was similar in timing and location and occurred in nodule progenitor cells in the inner cortex. Inoculation of rhizobia in the mature root failed to induce ENOD40 expression and cortical cell divisions (ccd). Nitrate addition at levels repressing nodule formation inhibited ENOD40 induction by rhizobia but not by cytokinin. ENOD40 expression was not induced by auxin, an auxin transport inhibitor, or an ethylene precursor. In contrast to rhizobia, cytokinin addition was not sufficient to induce a modulation of the auxin flow, the induction of specific chalcone synthase genes, and the accumulation of fluorescent compounds associated with nodule initiation. However, cytokinin addition was sufficient for the localized induction of auxin-induced GH3 gene expression and the initiation of ccd. Our results suggest that rhizobia induce cytokinin-mediated events in parallel to changes in auxin-related responses during nodule initiation and support a role of ENOD40 in regulating ccd. We propose a model for the interactions of cytokinin with auxin, ENOD40, flavonoids, and nitrate during nodulation.  相似文献   

16.
In pea (Pisum sativum) up to 50 nodulation mutants are known, several of which are affected in the early steps of the symbiotic interaction with Rhizobium sp. bacteria. Here we describe the role of the sym2 gene in nodulation (Nod) factor perception. Our experiments show that the sym2A allele from the wild pea variety Afghanistan confers an arrest in infection-thread growth if the Rhizobium leguminosarum bv viciae strain does not produce Nod factors with a NodX-mediated acetylation at their reducing end. Since the induction of the early nodulin gene ENOD12 in the epidermis and the formation of a nodule primordium in the inner cortex were not affected, we conclude that more than one Nod factor-perception mechanism is active. Furthermore, we show that sym2A-mediated control of infection-thread growth was affected by the bacterial nodulation gene nodO.  相似文献   

17.
18.
The role of phytohormones in plant-microbe symbioses   总被引:9,自引:2,他引:7  
Hirsch  A.M.  Fang  Y.  Asad  S.  Kapulnik  Y. 《Plant and Soil》1997,194(1-2):171-184
  相似文献   

19.
The lipo-chitin (LCO) nodulation signal (nod signal) purified from Bradyrhizobium japonicum induced nodule primordia on soybean (i.e. Glycine soja) roots. These primordia were characterized by a bifurcated vascular connection, cortical cell division, and the accumulation of mRNA of the early nodulin gene, ENOD40. A chemically synthesized LCO identical in structure to the Nod signal purified from B. japonicum cultures showed the same activity when inoculated on to soybean roots. Surprisingly, synthetic LCO or chitin pentamer, inactive in inducing root hair curling (HAD) or cortical cell division (NOI) in G. soja, induced the transient accumulation of ENOD40 mRNA. In roots inoculated with such LCO, ENOD40 mRNA was abundant at 40 h after inoculation but decreased to the background levels 6 days after inoculation. In contrast, nod signals active in inducing HAD and NOI induced high levels of ENOD40 accumulation at 40 h and 6 days after inoculation. In situ hybridization analysis showed that ENOD40 mRNA accumulated in the pericycle of the vascular bundle at 24 h after root inoculation with nod signal. At 6 days post-inoculation with nod signal, ENOD40 expression was seen in dividing subepidermal cortical cells. These results provide morphological and molecular evidence that nodule induction in soybean in response to purified or synthetic nod signal is similar, if not identical, to nodule formation induced by bacterial inoculation. Surprisingly, ENOD40 mRNA accumulation occurs in response to non-specific chitin signals. This suggests that, in the case of ENOD40, nodulation specificity is not determined at the level of initial gene expression.  相似文献   

20.
The gene ENOD40 is expressed at an early stage of root nodule organogenesis and has been postulated to play a central regulatory role in the Rhizobium-legume interaction. In vitro translation of soybean ENOD40 mRNA showed that the gene encodes two peptides of 12 and 24aa residues (peptides A and B) that bind to sucrose synthase. Here we show that the small Cys-containing peptide A binds to sucrose synthase by disulfide bond formation, which may represent a novel form of posttranslational modification of this important metabolic enzyme. Assays using nanomolar concentrations of peptide A revealed that the monomeric reduced form of this peptide binds to purified sucrose synthase. Using a cysteinyl capture strategy combined with MALDI-TOF MS analysis we identified the Cys residue C264 of soybean sucrose synthase as the binding site of peptide A. Modification of sucrose synthase with ENOD40 peptide A activates sucrose cleavage activity whereas the synthesis activity of the enzyme is unaffected. The results are discussed in relation to the role of sucrose synthase in the control of sucrose utilization in nitrogen-fixing nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号