首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strongylocentrotus purpuratus embryos were fractionated into two cell populations of defined lineages at times corresponding to two critical developmental events: determination (16-cell stage) and early differentiation (mesenchyme blastula). The 16-cell stage blastomeres, labeled with [35S]methionine, exhibited identical protein synthesis patterns by fluorography, and this pattern was not significantly altered by cell separation. In comparing the proteins of the mesenchyme blastula to the 16-cell stage, differences (increases and decreases) were seen by fluorography of newly synthesized proteins. The synthesis of 2.9% of the mesenchyme blastula proteins is specific to or enriched in primary mesenchyme cells and 8.2% is specific to or enriched in endoderm/ectoderm cells. Additionally, in contrast to the earlier stage, the pattern of protein synthesis in the mesenchyme blastula embryos is substantially altered by cell separation. The ability to alter protein synthesis in response to environmental factors may be a further demonstration of the differentiation of these cells.  相似文献   

2.
Based on the fact that the development of sea urchin embryos is arrested at the blastula stage in sulfate-free sea water (SFSW), we attempted in the present study to elucidate the nature of sulfated polysaccharides (PSs) which appear at the time of gastrulation in embryos of the sea urchin Clypeaster japonicus. Electrophoretic analysis of PSs prepared from embryos at different developmental stages revealed that three kinds of PSs (3A, 3B, 3C) appear de novo at the gastrula stage, and that these PSs are not found in embryos at the hatching blastula stage, nor are they found in permanent blastula reared in SFSW. These, three PSs were mostly of extracellular matrix origin. Among them, 3C was identified as dermatan sulfate on the basis of its electrophoretic mobility and sensitivity to enzymatic digestion. 3A and 3B remained to be identified. Further, a plausible precursor of 3C, which was sulfated under normal conditions, was detected as 6D in the embryos reared in SFSW. Autoradiographic analysis using [35S]sulfate revealed that these three PSs, accounted for more than 90% of [35S]sulfate incorporated into the acid PS fraction during gastrulation.  相似文献   

3.
The migration of sea urchin primary mesenchyme cells (PMC) is inhibited in embryos cultured in sulfate-free seawater and in seawater containing exogenous xylosides. In the present study, primary mesenchyme cells and extra-cellular matrix have been isolated from normal and treated Lytechinus pictus and Strongylocentrotus purpuratus embryos and recombined in an in vitro migration assay to determine whether the cells or the matrix are migration defective. Normal cells were found to migrate on either normal or treated matrix, whereas sulfate-deprived and xyloside-treated PMC failed to migrate in vitro on normal and treated substrata. Migratory ability can be restored to defective cells by returning the PMC to normal seawater, or by exposing the defective cells to materials removed from the surface of normal cells with 1 M urea. The similarity of the results obtained with sulfate-deprived and xyloside-treated PMC suggested that a common molecule may be affected by the two treatments. As a first test of this possibility, xyloside-treated S. purpuratus PMC were given the urea extract prepared from sulfate-deprived S. purpuratus PMC, and this extract did not restore migratory ability. These findings indicate that PMC normally synthesize a surface-associated molecule that is involved in cell migration, and the sensitivity to exogenous xylosides and sulfate deprivation suggests that a sulfated proteoglycan may be involved in primary mesenchyme cell migration.  相似文献   

4.
Elongated Microvilli on Vegetal Pole Cells in Sea Urchin Embryos   总被引:1,自引:1,他引:0  
The ultrastructure of cells in the vegetal pole region of sea urchin embryos during early development to the mesenchyme blastula stage was examined by scanning electron microscopy. Vegetal pole cells in the ectoderm with longer microvilli than those of neighboring cells were first detectable at the early blastula stage just before hatching. These cells with elongated microvilli remained in the central region of the vegetal plate when most vegetal plate cells ingressed into the blastocoel to form primary mesenchyme. When first detectable in the sea urchin, Anthocidaris crassispina , four vegetal pole cells had elongated microvilli, but at the time of primary mesenchyme cell ingression, the number of cells with elongated microvilli had increased to eight, apparently by cell division. These vegetal pole cells were wedge-shaped with a broad surface adhering to the hyaline layer at the time of primary mesenchyme cell ingression. SEM observation of the outer surface of embryos showed that the microvilli extended into the hyaline layer. The reinforced attachment of vegetal pole cells to the hyaline layer through their elongated microvilli may explain why these cells could remain at the vegetal pole when the surrounding cells ingressed into the blastocoel as primary mesenchyme cells.  相似文献   

5.
As gastrulation proceeds during sea urchin embryogenesis, primary mesenchyme cells (PMCs) fuse to form syncytial cables, within which calcium is deposited as CaCO3, and a pair of spicules is formed. Earlier studies suggested that calcium, previously sequestered by primary mesenchyme cells, is secreted and incorporated into growing spicules. We examined the effects of gadolinium ion (Gd3+), a Ca2+ channel blocker, on spicule formation. Gd3+ did not lead to a retardation of embryogenesis prior to the initiation of gastrulation and did not inhibit the ingression of PMCs from the blastula wall or their migration along the inner blastocoel surface. However, when embryos were raised in seawater containing submicromolar to a few micromolar Gd3+, of which levels are considered to be insufficient to block Ca2+ channels, a pair of triradiate spicules was formed asymmetrically. At 1–3 μmol/L Gd3+, many embryos formed only one spicule on either the left or right side, or embryos formed a very small second spicule. Induction of the spicule abnormality required the presence of Gd3+ specifically during late blastula stage prior to spicule formation. An accumulation or adsorption of Gd3+ was not detected anywhere in the embryos by X‐ray microanalysis, which suggests that Ca2+ channels were not inhibited. These results suggest that Gd3+ exerts an inhibitory effect on spicule formation through a mechanism that does not involve inhibition of Ca2+ channels.  相似文献   

6.
When material extracted by 1 M acetic acid from the dissociation medium of sea urchin embryos is added at low concentrations to isolated primary mesenchyme cells, it induces skeletogenesis. The same material added to dissociated blastula cells, or to embryos at the blastula stage, stimulates skeleton formation and pigment cell differentiation. On dissociated cells, it also increases cell reaggregation, thymidine incorporation and survival. On embryos, it induces exogastrulation and appearance of extraembryonic pigment cells. The activity of the extract is resistant to raised temperatures and partially to tryptic digestion but is abolished by trypsin treatment followed by heating. The active fraction does not readily filter through Amicon XM-50 and is retarded by column chromatography on Bio-Gel P-60.  相似文献   

7.
Mitochondrial profile densities in electronmicrographs were counted in the swimming blastula, mesenchyme blastula, gastrula and prism stages of the sea urchin embryos Sphaerechinus granularis. No numerical changes were statistically apparent. When profile areas were investigated, the mean values of the swimming blastula, the gastrula and the prism stage showed no statistical differences. However, increased areas were measured in the mesenchyme blastula stage. This increase might be related to an increase of the embryonic volumina in the mesenchyme blastula stage. In contrast to earlier reported data, the results indicate that the mitochondrial density in S. granularis embryos does not alter during development in these stages.  相似文献   

8.
Changes in the negative surface charge were observed by cell electrophoresis during the differentiation of micromeres and mesomeres isolated from 16-cell-stage sea urchin embryos. Micromeres and mesomeres were separated by a sucrose density gradient column and were cultured in normal seawater. An isolated micromere developed to a cell aggregate, and, at the mesenchyme-blastula stage of control, the aggregate began to scatter into single cells. These processes are quite similar to those of the primary mesenchyme cells in situ. An isolated mesomere, on the other hand, developed into an ectodermal vesicle. At desired stages of development, the cell aggregates which derived from single blastomeres were dissociated into single cells, and their electrophoretic mobilities were measured. It was found that the electrophoretic mobility of the micromere- and mesomere-derived cells concomitantly increased from the early blastula stage up to the early mesenchyme stage. In contrast with the mesomere-derived cells, however, the micromere-derived cells showed another increase in electrophoretic mobility when the cells began to migrate as primary mesenchyme cells. These results show that a correlation exists between the increase in cell surface negative charge and the migration of the primary mesenchyme cells.  相似文献   

9.
The distribution of fibronectin in situ in the sea urchin embryo was examined by using indirect immunofluorescence with an antibody raised against human plasma fibronectin. Fibronectin was detected on the surfaces of primary mesenchyme cells in the mid-mesenchyme blastula stage, when these cells are migratory. However, it was not detected on these cells at the early mesenchyme blastula or early gastrula stages. Also, it was not detected in the blastocoel nor on the basal surface of the blastular wall. The migration of the primary mesenchyme cells is therefore correlated with a stage-dependent occurrence of cell surface-associated fibronectin.  相似文献   

10.
The adhesive specificity of embryonic sea urchin cells from two species, and the two hybrid crosses between these species was examined by a cell-aggregate collection assay. Cells of normal Lytechinus or Tripneustes embryos were found to adhere to homospecific cell aggregates at a much higher rate than they would adhere to heterospecific aggregates. Hybrid cells adhered to collecting aggregates at an intermediate rate. The observed pattern of hybrid cell adhesion suggested that paternal gene products are capable of modifying cell surface adhesive sites as early as the mesenchyme blastula stage.  相似文献   

11.
《Developmental biology》1986,114(2):336-346
Fluorescein isothiocyanate-conjugated wheat germ agglutinin (WGA-FITC) binds exclusively to the primary mesenchyme cells when the lectin is microinjected into the blastocoels of living Lytechinus pictus and Strongylocentrotus droebachiensis embryos. WGA-FITC binding increases throughout the period of primary mesenchyme cell migration and aggregation. Similar binding is observed in embryos cultured in sulfate-free seawater (SFSW) but not in seawater (ASW) containing tunicamycin. The temporal expression of WGA-FITC binding sites in vivo is also correlated with the pattern of binding observed in vitro. Sixteen-cell stage Arbacia punctulata embryos were dissociated in Ca2+ and Mg2+-free seawater (CMFSW) and the micromeres isolated using sucrose gradients. Arbacia micromeres, cultured in ASW containing calf serum, first bind WGA-FITC during the period when primary mesenchyme cell ingression occurs in control embryos. Micromeres cultured in the presence of tunicamycin do not develop WGA binding sites. The temporal expression of WGA-FITC binding in micromere cultures is unaffected by the absence of sulfate, but the size and morphology of aggregates cultured in SFSW differ from that of the controls.  相似文献   

12.
Arylsulfatases (Arses) have been regarded as lysosomal enzymes because of their hydrolytic activities on synthetic aromatic substrates and their lysosomal localization of their enzymatic activities. Using sea urchin embryos, we previously demonstrated that the bulk of Hemicentrotus Ars (HpArs) does not exhibit enzyme activity and is located on the apical surface of the epithelial cells co-localizing with sulfated polysaccharides. Here we show that HpArs strongly binds to sulfated polysaccharides and that repression of the synthesis by HpArs-morpholino results in retardation of gastrulation in the sea urchin embryo. Accumulation of HpArs protein and sulfated polysaccharides on the apical surface of the epithelial cells in sea urchin larvae is repressed by treatment with β-aminopropionitrile (BAPN), suggesting that deposition of HpArs and sulfated polysaccharides is dependent on the crosslinking of proteins such as collagen-like molecules. We suggest that HpArs functions by binding to components of the extracellular matrix.  相似文献   

13.
Three major glycan fractions of 580 kDa (g580), 150 kDa (g150), and 2 kDa (g2) were isolated and purified from Lytechinus pictus sea urchin embryos at the mesenchyme blastula stage by gel filtration and high pressure liquid chromatography. Chemical analysis, by gas chromatography, revealed that g580 is highly sulfated and rich in N-acetylglucosamine, N-acetylgalactosamine, glucuronic acid, and fucose. The g150 fraction is less acidic than g580 and contains high amounts of amino sugars, xylose, and mannose. The g2 fraction is neutral, rich in N-acetylglucosamine, mannose, and galactose. The g580 and g150 fractions are resistant to glycosaminoglycan-degrading enzymes, indicating that they are distinct from the glycosaminoglycans. The g580 fraction resembles, with respect to chemical composition, a previously characterized 200 kDa sponge adhesion glycan (g200). The binding of the monoclonal antibody Block 2, which recognizes a repetitive epitope on g200, as well as of the anti-g580 polyclonal antibodies to both g580 and g200 indicated that these two glycans share similar antigenic determinants. The Fab fragments of the Block 2 antibody, which previously have been shown to inhibit cell adhesion in sponges, also blocked the reaggregation of dissociated sea urchin mesenchyme blastula cells. These results indicate that g580 carries a carbohydrate epitope, similar to the sponge adhesion epitope of g200, which is involved in sea urchin embryonal cell adhesion.  相似文献   

14.
The transparent sea urchin embryo provides a laboratory for study of morphogenesis. The calcareous endoskeleton is formed by a syncytium of mesenchyme cells in the blastocoel. The locations of mesenchyme in the blastocoel, the size of the skeleton, and even the branching pattern of the skeletal rods, are governed by interactions with the blastula wall. Now Guss and Ettensohn(1) show that the rate of deposition of CaCO3 in the skeleton is locally controlled in the mesenchymal syncytium, as is the pattern of expression of three genes involved in skeleton formation. They propose that short range signals emanating from the blastula wall regulate many aspects of the biomineralization process.  相似文献   

15.
The activity of ouabain-sensitive Na+, K+-ATPase in sea urchin embryos at the morula and the swimming blastula stage was practically the same to that in unfertilized eggs. The activity increased during the period between the mesenchyme blastula and the late gastrula stages. In embryo-wall cell fraction, which contained presumptive ectodermal cells as well as those of other cell lineages at the pre-gastrula stage and ectodermal cells at the late gastrula stage, the Na+, K+-ATPase activity increased in this developmental period more largely than in another cell fraction, containing mesenchyme cells and archenteron cells. Cycloheximide did not only block the activity increase in this period but also caused evident decrease in the activity in embryos at all examined stages. The activity increase in this period was strongly blocked by the treatment with actinomycin D, starting before the mesenchyme blastula stage, and was not seriously inhibited by the treatment starting at the mesenchyme blastula stage. The treatment starting at the initiation of gastrulation only slightly blocked further increase in the activity. Probably, an accumulation of mRNA encoding Na+, K+-ATPase occurs mainly in ectodermal cells and is completed up to the early gastrula stage.  相似文献   

16.
Changes in the pattern of protein synthesis were analyzed during the in vitro development of the micromere-primary mesenchyme cell line of the sea urchin embryo. Micromeres were isolated and cultured from 16-cell stage embryos, and primary mesenchyme cells were isolated and cultured from early gastrulae. Both cell isolates developed normally in culture with about the same timing as their in situ counterparts in control embryos. Newly synthesized proteins were labeled with [3H]valine at several stages of development and were analyzed by two-dimensional polyacrylamide gel electrophoresis and fluorgraphy. The electrophoretic pattern of labeled proteins changed dramatically during development. More than half of the analyzed proteins underwent qualitative or quantitative changes in their relative rates of valine incorporation and these changes were highly specific to this cell line. Almost all of the changes were initiated prior to gastrulation and many prior to hatching. The highest frequency of changes in the micromere pattern of protein synthesis occurred between hatching and the start of gastrulation. This peak of activity coincided with the normal time of ingression of the primary mesenchyme and preceded the differentiation of spicules by more than 30 hr. Most of the observed changes were characterized as either decreases in the synthesis of proteins that showed maximum incorporation at the 16-cell stage or increases in the synthesis of proteins that showed maxima in the fully differentiated cells. Very few proteins exhibited transient synthetic maxima at intermediate stages. Thus, the program of protein synthesis associated with the development of micromeres consists largely of a switch in emphasis from early to late proteins, with the primary time of switching being between hatching and the onset of gastrulation.  相似文献   

17.
The synthesis of sulfated polysaccharides during the embryonic development of Paracentrotus lividus has been investigated by incorporation of radioactive sulfate, glucose, glucosamine and fucose. The following substances become labelled: fucan sulfate (approximately 60%), heparan sulfate (approximately 20%) and dermatan sulfate (approximately 20%), and possibly a very slight amount of chondroitin sulfate. In animalized and vegetalized embryos, the rate of incorporation is significantly reduced, and furthermore dermatan sulfate is almost absent in animalized embryos. It is concluded that this substance is associated with the differentiation of vegetative cells, possibly the mesenchyme cells.  相似文献   

18.
The requirement for homotypic cell interaction was studied by making chimeric micromass cultures containing various proportions of chick and quail limb mesenchyme. Cultures made from limb mesenchyme from embryos of Hamburger and Hamilton stages 23–24 produce large clumps of cartilage cells, identified by the accumulation of an extracellular matrix which stains with alcian blue at pH 1 and by the ability of cells to take up 35SO4 rapidly, as demonstrated autoradiographically. Dissociated mesenchyme from stage 19 embryos did not produce cartilage in micromass cultures, but only precartilage cell aggregates. Micromass cultures prepared from mixtures of mesenchyme cells obtained from stage 19 and stages 23–24 embryos contained decreasing numbers of cartilage nodules as the proportion of stage 19-derived mesenchyme increased. At the same time the number of aggregates was not affected. When the ratio of stage 19- to stage 24-derived cells was 3:1 or greater, no nodules were detected. The actual number of cells from each stage was verified by using mixtures of quail and chick cells, which are microscopically distinguishable. Additional evidence suggests that the stage 19-derived mesenchyme inhibits chondrogenesis by passively preventing stage 24-derived cells from interacting. The results presented are consistent with the suggestions that (1) homotypic cell interaction plays a role in limb chondrogenesis and (2) the capacity to interact in the required manner is acquired after the embryos have reached stage 19. These phenomena might be involved in the normal histogenesis of cartilage tissue.  相似文献   

19.
The distribution of fibronectin in situ in the sea urchin embryo was examined by using indirect immunofluorescence with an antibody raised against human plasma fibronectin. Fibronectin was detected on the surfaces of primary mesenchyme cells in the mid-mesenchyme blastula stage, when these cells are migratory. However, it was not detected on these cells at the early mesenchyme blastula or early gastrula stages. Also, it was not detected in the blastocoel nor on the basal surface of the blastular wall. The migration of the primary mesenchyme cells is therefore correlated with a stage-dependent occurrence of cell surface-associated fibronectin.  相似文献   

20.
The purification, biochemical characterization and functional features of a novel extracellular matrix protein are described. This protein is a component of the basal lamina found in embryos from the sea urchin species Paracentrotus lividus and Hemicentrotus pulcherrimus . The protein has been named PI-200 K or Hp-200 K, respectively, because of the species from which it was isolated and its apparent molecular weight in SDS-PAGE under reducing conditions. It has been purified from unfertilized eggs where it is found packed within cytoplasmic granules, and has different binding affinities to type I collagen and heparin, as assessed by affinity chromatography columns. By indirect immunofluorescence experiments it was shown that, upon fertilization, the protein becomes extracellular, polarized at the basal surface of ectoderm cells, and on the surface of primary mesenchyme cells at the blastula and gastrula stages. The protein serves as an adhesive substrate, as shown by an in vitro binding assay where cells dissociated from blastula embryos were settled on 200K protein-coated substrates. To examine the involvement of the protein in morphogenesis of sea urchin embryo, early blastula embryos were microinjected with anti-200K Fab fragments and further development was followed. When control embryos reached the pluteus stage, microinjected embryos showed severe abnormalities in arms and skeleton elongation and patterning. On the basis of current results, it was proposed that 200K protein is involved in the regulation of sea urchin embryo skeletogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号