首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Leaf expansion of four sunflower cultivars ( Helianthus annuus L. cvs. Hysun 31, Havasupai, Hopi and Seneca) was monitored continuously in a growth cabinet through the final stages of a drying cycle and then throughout the first 2 days after rewatering in order to study the responses of leaf expansion to water deficits. Comparable plants were also measured throughout a diurnal cycle in a glasshouse.
In the cabinet, leaf extension was faster in the dark than in the light, but an extended dark period suppressed leaf extension. At similar leaf water potentials, the rate of leaf extension was greater in the light than in the dark, but as the osmotic potential was lower in the light than in the dark, the relationship between turgor pressure and leaf extension rate was similar in both environments. Throughout the drying and recovery cycles turgor and leaf extension rate was positively correlated: no significant differences among cultivars were observed.
In the plants grown and measured in the glasshouse, leaf expansion occurred at lower leaf water potentials in stressed than in unstressed plants, but the relationship between leaf expansion and turgor was similar in both stressed and unstressed plants as a result of a lowering of the osmotic potential in the former. Diurnal turgor maintenance resulting from osmotic adjustment was almost half that occurring during a complete drying cycle. During the day, the leaf expansion rate increased linearly with turgor pressure in all cultivars: the expansion rate per unit turgor pressure was greater in the glasshouse than in the growth cabinet. Nocturnal leaf expansion in the stressed and unstressed plants was not, however, correlated with turgor pressure.  相似文献   

2.
Acclimation of leaf growth to low water potentials in sunflower   总被引:13,自引:5,他引:13  
Abstract Leaf growth is one of the most sensitive of plant processes to water deficits and is frequently inhibited in field crops. Plants were acclimated for 2 weeks under a moderate soil water deficit to determine whether the sensitivity of leaf growth could be altered by sustained exposure to low water potentials. Leaf growth under these conditions was less than in the controls because expansion occurred more slowly and for less of the day than in control leaves. However, acclimated leaves were able to grow at leaf water potentials (Ψ1) low enough to inhibit growth completely in control plants. This ability was associated with osmotic adjustment and maintenance of turgor in the acclimated leaves. Upon rewatering, the growth of acclimated leaves increased but was less than the growth of controls, despite higher concentrations of cell solute and greater turgor in the acclimated leaves than in controls. Therefore, factors other than turgor and osmotic adjustment limited the growth of acclimated leaves at high ψ1 Four potentially controlling factors were investigated and the results showed that acclimated leaves were less extensible and required more turgor to initiate growth than control leaves. The slow growth of acclimated leaves was not due to a decrease in the water potential gradient for water uptake, although changes in the apparent hydraulic conductivity for water transport could have occurred. It was concluded that leaf growth acclimated to low ψ1, by adjusting osmotically, and the concomitant maintenance of turgor permitted growth where none otherwise would occur. However, changes in the extensibility of the tissue and the turgor necessary to initiate growth caused generally slow growth in the acclimated leaves.  相似文献   

3.
植物根系和叶片生长对水分亏缺的原初反应   总被引:14,自引:0,他引:14  
细胞扩张生长是植物受水分亏缺影响最敏感的生理过程之一。主要在对细胞水分导性、细胞壁特性和延伸组织中溶质传输结果分析的基础上 ,从细胞、组织和器官水平上对细胞扩展生长进行了探讨。根系和叶片细胞主要通过以下 2个过程来补偿水分胁迫的作用 :调节扩展生长需要的细胞临界膨压 ;溶质在延伸组织中的运移。此外 ,还探讨了植物根系和叶片生长对水分亏缺的生理适应机制  相似文献   

4.
Potted two-year-old lemon plants (Citrus limon (L.) Burm. fil.) cv. Fino, growing under field conditions were subjected to drought by withholding irrigation for 13 d. After that, plants were re-irrigated and the recovery was studied for 5 d. Control plants were daily irrigated maintaining the soil matric potential at about -30 kPa. Young leaves of control plants presented higher leaf conductance (g1) and lower midday leaf water potential (Ψmd) than mature ones. Young leaves also showed higher leaf water potential at the turgor loss point (Ψtlp) than mature leaves. In both leaf types g1 decreased with increased vapour pressure deficit of the atmosphere. From day 1 of the withholding water, predawn and midday leaf water potentials (Ψpd and Ψmd) decreased, reaching in both cases minimum values of -5.5 MPa, with no significant differences between mature and young leaves. Water stress induced stomatal closure, leaf rolling and partial defoliation. No osmotic adjustment was found in response to water stress in either leaf type, but both were able to enhance the cell wall elasticity (elastic adjustment). After rewatering, leaf water potential recovered quickly (within 2 d) but g1 did not. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The possibility that changes in the plasticity of expanding cell walls are involved in regulating early leaf growth responses to nutrient deficiencies in monocot plants was investigated. Intact maize seedlings (Zea mays L.) which were hydroponically grown with their roots in low-nutrient solution (1 mol m?3 CaCl2) showed early inhibition of first-leaf growth, as compared with seedlings on complete nutrient solution. This early inhibition of leaf growth was not associated with reduced cell production. However, segmental elongation along the cell expansion zone at the base of the leaf and the lengths of mature epidermal cells were reduced by the low-nutrient treatment. Solute (osmotic) potentials in the expanding leaf tissues were unchanged. In contrast, low-nutrient treatments significantly altered leaf plasticity, i.e. the irreversible extension caused by applying a small force in the direction of leaf growth. For example, in vivo plasticity decreased, along with leaf growth, after transfer of seedlings from complete nutrient solution to low-nutrient solution for 15 h. Conversely, in vivo plasticity increased, along with leaf growth, after transfer of plants previously grown on low-nutrient solution to complete nutrient solution for 15 h. The nutrient treatments also induced similar changes in the in vitro plasticity of the expanding leaf cell walls. There were no consistent changes in elasticity. Thus, reductions in the plasticity of expanding leaf cell walls appear to be involved in controlling the early inhibition of maize leaf growth by root imposition of nutrient stress.  相似文献   

6.
The effects of water stress on water potential components, tissue water content, mean elastic modulus and the osmoregulation capacity of olive (Olea europaea L. cv. Coratina) leaves was determined. Artificial rehydration of olive leaf tissues altered the P-V relationships so that a plateau phenomenon occurred. Points in the P-V curve in the region affected by the plateau, generally up to –0.5 MPa, were corrected for all the samples analyzed. In the corrected P-V relationship, an osmotic adjustment was found in drought-stressed leaf tissues. Osmotic potentials at full turgor (0 (sat)) and osmotic potential at turgor-loss (0 (TVT)) decreased from –2.06±0.01 MPa and –3.07±0.16 MPa in controls to –2.81±0.03 MPa and –3.85±0.12 MPa in most stressed plants. Osmotic adjustment values obtained from the P-V curves agreed with those obtained using an osmometer. An active osmotic adjustment of 1.42 MPa was also observed in 1–4 mm- diameter roots. Mannitol is the main carbohydrate involved in osmotic potential decrease in all treatments. The maximum elastic modulus increased from 11.6±0.95 MPa in the controls to 18.6±0.61 MPa in the most stressed plants.  相似文献   

7.
We measured leaf water relations and leaf structural traits of 20 species from three communities growing along a topographical gradient. Our aim was to assess variation in seasonal responses in leaf water status and leaf tissue physiology between sites and among species in response to summer water deficit. Species from a ridge-top heath community showed the greatest reductions in pre-dawn leaf water potentials (Psi(leaf)) and stomatal conductance during summer; species from a valley-floor woodland and a midslope mallee community showed less reductions in these parameters. Heath species also displayed greater seasonal reduction in turgor-loss point (Psi(TLP)) than species from woodland or mallee communities. In general, species that had larger reductions in Psi(leaf) during summer showed significant shifts in either their osmotic potential at full turgor (Psi(pi 100); osmotic adjustment) or in tissue elasticity (epsilon(max)). Psi(pi 100) and epsilon(max) were negatively correlated, during both spring and summer, suggesting a trade-off between these different mechanisms to cope with water stress. Specific leaf area varied greatly among species, and was significantly correlated with seasonal changes in Psi(TLP) and pre-dawn Psi(leaf). These correlations suggest that leaf structure is a prerequisite for cellular mechanisms to be effective in adjusting to water deficit.  相似文献   

8.
逆境下玉米果穗形状及其与产量的关系   总被引:1,自引:0,他引:1  
Li NN  Yang JZ  Hao JP 《应用生态学报》2011,22(7):1782-1788
为量化玉米果穗形状并明确逆境对其生长的影响,借助图像处理,用矩形度(E)、体积差(V)、纵向质心(L)、偏轴距(T)和球体度(S)分别表示矩形相似性、体积均等性、纵向及横向对称性和圆球相似性,对2种生长条件、2个玉米品种和2种去叶处理的试验结果进行聚类、典型变量和方差分析.结果表明:在吐丝后2周内形状变化明显,E(0.72~0.78)和S(0.40~0.48)上升,L(0.56~0.51)、T(0.02~0.01)和V(0.25~0.21)下降,以后各特征都趋于稳定.逆境(高种植密度,不施肥)使成熟期的E降低了4.5%,V扩大了17.7%,它们与穗长和穗粗结合,能够解释产量变化的87%~97%.纵观玉米果穗生长全过程,L、V和S3个形状参数对逆境较敏感,可作为逆境胁迫的量化指标.  相似文献   

9.
Abstract. The influence of a slow stress and recovery cycle on the pattern of leaf expansion in four diverse sunflower cultivars ( Helianthus annuus L. cvs. Hysun 31, Havasupai, Hopi and Seneca) was studied in a glasshouse. Stress had no significant effect on the time of flower bud emergence and anthesis, or on final leaf number, but delayed the appearance of leaves at high insertions in all cultivars except Hysun 31.
Leaf expansion was markedly reduced as the predawn leaf water potential decreased from −0.35 to −0.60 MPa, and the predawn turgor pressure decreased from 0.3 to 0.2 MPa, and expansion ceased at a predawn leaf water potential of about −1.0 MPa, i.e. when the predawn turgor pressure reached zero.
The leaves most reduced in final size when water was withheld were those at the insertions which grew the most rapidly in unstressed plants. The maximum reduction in final leaf size of 25–35% was similar in all cultivars and was due to retardation of the rate of leaf expansion: the duration of leaf expansion was actually increased by stress. However, leaves that were initiated during stress, but emerged after rewatering, had final leaf areas at least equal to those in the unstressed plants: in the cultivar Seneca, the final size of leaves of high insertion was significantly greater in stressed than unstressed plants, whereas in the three other cultivars the final leaf sizes were similar in both treatments. All four cultivars examined adjusted osmotically to the same degree, but leaf water potentials in one, Seneca, increased more rapidly after rewatering than in the other three, and this may have contributed to the greater relative leaf size in the leaves of high insertion in this cultivar.  相似文献   

10.
This study on expansive growth of the first leaf of maize has two goals: one is to determine how the sensitivity of growth to changes in water status varies with the initial water status of the leaf, and the other is to adapt the pressure-jump technique of Okamoto et al. (1989 , Plant and Cell Physiology 30, 979–985), developed for studying growth of excised stem segments, for use on whole seedlings. Initial water status was varied by using: transpiring vs. non-transpiring conditions, seedlings differing in emerged leaf length and hence transpiring area, and root medium without mannitol vs. medium with added mannitol (to –0·3 MPa). The results show that growth changed with changes in plant water status when the water status was low, but was unaffected when water status was very high. A stepwise change in hydrostatic pressure on the root medium was quickly and fully transmitted to the base of the leaf. The increase in leaf elongation due to a pressure step of 0·025 MPa was negligible under conditions of high plant water status and became substantial under conditions of low water status. In adapting the pressure-jump method to the whole seedling, there was some loss of resolution, and the yield threshold Y of the Lockhart equation could not be estimated directly. Nonetheless, the data were suitable for the calculation of volumetric extensibility m and the estimation of growth effective turgor (turgor above Y ). Extensibility was shown to increase 3- to 4-fold when leaf water status was reduced from the maximum to the point where elongation rate was halved, while growth effective turgor was calculated to diminish even more markedly.  相似文献   

11.
Studies were undertaken to determine if there is an association between nonstomatally-mediated acclimation of photosynthesis to low water potential (w) and the maintenance of chloroplast volume during water stress. Spinach plants either kept well watered throughout their growth (non-acclimated), or subjected to water stress such that leaf w dropped to -1.5 megapascals (MPa) and then were rewatered (acclimated) were subjected to drought episodes. During these stress periods, photosynthesis was maintained to a greater extent in acclimated plants as compared to non-acclimated plants at w below -1 MPa.Estimates of internal leaf [CO2] suggested that photosynthetic acclimation to low w was not primarily due to altered stomatal response. As w dropped from initial values, a decline in steady state levels of ribulose 1,5-bisphosphate (RuBP) occurred in both non-acclimated and acclimated plants. RuBP decline was less severe in acclimated plants.Low w effects on chloroplast volume in non-acclimated and acclimated plants were estimated by measuring the volume of intact chloroplasts isolated from plants in solutions which were made isotonic to declining leaf osmotic potential during the drought episodes. Chloroplast volume was maintained to a greater extent at low w in acclimated, as compared with non-acclimated plants. Although substantial osmotic adjustment occurred in both non-acclimated and acclimated plants, the extent of osmotic adjustment was the same. These data were interpreted as supporting the hypothesis that cellular-level acclimation to low w is associated with chloroplast volume maintenance, and this physiological acclimation is correlated with enhanced photosynthetic capacity of the leaf at low w.Abbreviations [CO2]i internal leaf CO2 concentration - s osmotic potential - RWC relative water content - RuBP ribulose 1,5-bisphosphate - w water potential  相似文献   

12.
Abstract Leaf water relations characteristics of creosote bush, Larrea tridentata, were studied in view of previous reports that its leaves commonly experience zero or negative turgor under dry conditions. Leaf turgor loss point () was determined by a pressure-volume method for samples subjected to a hydration procedure and for untreated samples. Hydration caused to increase by as much as 3 M Pa. Hydration of samples also caused changes in other leaf water relations characteristics such as symplastic solute content, tissue elasticity and symplasmic water fraction, but total leaf solute content was unchanged. Comparison of our field plant water potential data with values of obtained by the two methods resulted in predictions of turgor loss during part or all of a diurnal cycle based on hydrated samples, and turgor maintenance (at least 0.3 MPa) based on untreated samples. Pooled data for obtained from both partially hydrated and untreated samples showed that L. tridentata maintains fairly constant levels of turgor over a wide range of leaf water potential. Dilution of cell contents by apoplastic water introduced significant errors in psychrometric determinations of osmotic potential in both frozen and thawed leaf tissue and expressed cell sap. Use of these values of osmotic potential resulted in predictions of zero turgor at all plant water potentials measured in the field.  相似文献   

13.
The inhibitory effects of PEG on whole-plant growth can exceed the effects of other osmolytes such as NaCI, and this has been ascribed to toxic contaminants, or to reduced oxygen availability in PEG solutions. We investigated another possibility, namely that PEG has an additional inhibitory effect on root water transport which in turn affects leaf development. The effects on first-leaf growth of applications of PEG 6000 or isoosmotic NaCI to the roots were determined using hydroponically grown maize (Zea mays L.) seedlings. Leaf growth rates were inhibited within minutes of PEG application to the roots and remained inhibited for days. The inhibitory effects on growth of NaCI, and also of KCl and mannitol, were much smaller. The comparative effects of NaCI and PEG on root water transport were determined by assaying pressurized flow through excised roots. PEG induced a 7-fold greater inhibition of flow through live roots than NaCI. Killing of the roots by heat treatment, to reduce cell membrane resistances to solute penetration, nearly doubled the flow rate for roots in NaCI, but not for roots in PEG. We suggest that the greater viscosity of PEG solutions, as compared with NaCI, may be a primary factor contributing to the additional inhibition of water flow through live and killed roots. PEG did not have additional effects on leaf turgor but had a 3 times greater inhibitory effect than NaCI on the irreversible extensibility of the leaves and induced 16 times more leaf accumulation of the growth inhibitory stress hormone abscisic acid (ABA). We conclude that greater inhibition of root water transport by PEG 6000, as compared with NaCI, leads to additional reductions in extensibility, additional ABA accumulation, and a greater inhibition of leaf growth.  相似文献   

14.
Diurnal rates of leaf elongation vary in maize (Zea mays L.) and are characterized by a decline each afternoon. The cause of the afternoon decline was investigated. When the atmospheric environment was held constant in a controlled environment, and water and nutrients were adequately supplied to the soil or the roots in solution, the decline persisted and indicated that the cause was internal. Inside the plants, xylem fluxes of water and solutes were essentially constant during the day. However, the forces moving these components changed. Tensions rose in the xylem, and gradients of growth-induced water potentials decreased in the surrounding growing tissues of the leaf. These potentials, measured with isopiestic thermocouple psychrometry, changed because the roots became less conductive to water as the day progressed. The increased tensions were reversed by applying pressure to the soil/root system, which rehydrated the leaf. Afternoon elongation immediately recovered to rapid morning rates. The rapid morning rates did not respond to soil/root pressurization. It was concluded that increased xylem tension in the afternoon diminished the gradients in growth-induced water potential and thus inhibited elongation. Because increased tensions cause a similar but larger inhibition of elongation if maize dehydrates, these hydraulics are crucial for shaping the growth-induced water potential and thus the rates of leaf elongation in maize over the entire spectrum of water availability.  相似文献   

15.
Removing 4 out of 5 serminal roots from 7-day-old wheat seedlings arrested leaf elongation for 1.5 h. This effect can be explained by an initial decrease in foliar water content resulting from the smaller root surface area available for water uptake. Subsequently, leaf hydration increased with time and came to equal that of intact plants within 2 h. The rehydration was seemingly effected by an increasing conductivity of the one remaining root axis, since transpiration of the partially de-rooted plants did not fall below that of controls. With time, leaf elongation resumed, but at a slower rate than in intact plants. This slower growth may be attributed to a decrease in leaf extensibility since this was found to be reduced when measured by a counterweight technique involving linear displacement transducers. Loss of extensibility was associated with decreased IAA concentration in the leaf elongation zone.  相似文献   

16.
Laboski  C.A.M.  Dowdy  R.H.  Allmaras  R.R.  Lamb  J.A. 《Plant and Soil》1998,203(2):239-247
Initial field observations revealed a shallow corn (Zea mays L.) root system on a Zimmerman fine sand in a corn/soybean (Glycine max L.) rotation. Since root distribution influences crop water and nutrient absorption, it is essential to identify factors limiting root growth. The objective of this study was to determine the factor(s) limiting corn rooting depth on an irrigated fine sand soil. Bulk density, saturated hydraulic conductivity, and soil water retention were measured on undisturbed soil cores. Corn root distribution assessed at tasseling over a 3-yr period showed an average of 94% of total root length within the upper 0.60 m of soil with 85% in the upper 0.30 m of soil. Mechanical impedance was estimated with a cone penetrometer on two dates with differing water contents. Cone penetrometer measurements greater than 3 MPa indicated mechanical impedance in soil layers extending from 0.15 to 0.35 m deep. Penetration resistance decreased as soil water content increased. However, soil water contents greater than field capacity were required to decrease penetration resistance below the 3 MPa threshold. Such water saturated conditions only occurred for short periods immediately after precipitation or irrigation events, thus roots usually encountered restrictive soil strengths. The soil layer from 0.15 to 0.60 m had high bulk density, 1.57 Mg m-3. This compacted soil layer, with slower saturated hydraulic conductivities (121 to 138 mm hr-1), held more water than the soil above or below it and reduced water movement through the soil profile. Crop water use occurred to a depth of approximately 0.75 m. In conclusion, a compacted soil layer confined roots almost entirely to the top 0.60 m of soil because it had high soil strength and bulk density. The compacted layer, in turn, retained more water for crop use.  相似文献   

17.
Water relations and growth of tomato fruit pericarp tissue   总被引:2,自引:0,他引:2  
The water relations of young tomato fruit pericarp tissue were examined and related to tissue expansion. The relationship between bulk turgor pressure and tissue expansion (as change in fresh mass or length of tissue) was determined in slices of pericarp cut from young, growing fruit by incubation in different osmotic concentrations of polyethylene glycol 6000 or mannitol. The bulk turgor of this tissue was low (about 0.2 MPa), even in fruit from plants that were otherwise fully turgid, whether measured psychrometrically or by length change in osmotic solutions. The rate of tissue growth at maximum turgor was less than that at moderate turgor unless calcium was added to the incubation medium. However, added calcium also decreased the rate of growth at lower turgor pressures. Yield turgor was < 0.1 MPa, but it was increased by the addition of calcium ions. Electrolyte leakage from tissue was greatest at maximum turgor pressure but was decreased by the addition of calcium ions or osmoticum. Tissue growth was unaffected by a range of plant growth regulators (IAA, abscisic acid, benzyladenine and GA3) but was inhibited, particularly at high turgor, by low concentrations of malic or citric acid. The low turgor pressure of pericarp tissue could be due to the presence of apoplastic solutes within the pericarp, and evidence for this is discussed. Thus, fruit tissue may be able to maintain optimal expansion rates only at moderate turgor and low calcium concentration.  相似文献   

18.
Net fluxes of H+, K+ and Ca2+ ions from maize (Zea mays L.) isolated leaf segments were measured non-invasively using ion-selective vibrating microelectrodes (the MIFE technique). Leaf segments were isolated from the blade base, containing actively elongating cells (basal segments), and from non-growing tip regions (tip segments). Ion fluxes were measured in response to bright white light (2600 micromoles m-2 s-1) from either the leaf segments or the underlying mesophyll (after stripping the epidermis). Fluxes measured from the mesophyll showed no significant difference between basal and tip regions. In leaf segments (epidermis attached), light-induced flux kinetics of all ions measured (H+, Ca2+ and K+) were strikingly different between the two regions. It appears that epidermal K+ fluxes are required to drive leaf expansion growth, whereas in the mesophyll light-induced K+ flux changes are likely to play a charge balancing role. Light-stimulated Ca2+ influx was not directly attributable either to leaf photosynthetic performance or to leaf expansion growth. It is concluded that light-induced ion flux changes are associated with both leaf growth and photosynthesis.  相似文献   

19.
A creep extensiometer technique was used to provide direct evidence that short (20 min) and long-term (3d) exposures of roots to growth inhibitory levels of salinity (100mol m-3 NaCl) induce reductions in the irreversible extension capacity of cell walls in the leaf elongation zone of intact maize seedlings (Zea mays L.). The long-term inhibition of cell wall extension capacity was reversed within 20 min of salt withdrawal from the root medium. Inhibited elongation of leaf epidermal tissues was also reversed after salt removal. The salt-induced changes in wall extension capacity were detected using in vivo and in vitro assays (shortly after localized freeze/thaw treatment of the basal elongation zone). The rapid reversal of the inhibition of wall extensibility and leaf growth after salt removal from root medium of long-term salinized plants, suggested that neither deficiencies in growth essential mineral nutrients nor toxic effects of NaCl on plasmamembrane viability were directly involved in the inhibition of leaf growth. There was consistent agreement between the scale, direction and timing of salinity-induced changes in leaf elongation growth and wall extension capacity. Rapid metabolically regulated changes in the physical properties of growing cell walls, caused by osmotic (or other) effects, appear to be a factor regulating maize leaf growth responses to root salinization.  相似文献   

20.
BACKGROUND AND AIMS: This study aimed at clarifying how the water potential gradient (deltapsi) is maintained in the shoots of evergreen trees with expanding leaves, whose leaf water potentials at the turgor loss point (psi(tlp)) are generally high. MATERIALS: The water relations were examined in current-year expanding (CEX) and 1-year-old (OLD) leaves on the same shoots in temperate (Osaka, Japan) and tropical (Bogor, Indonesia) areas. A temperate evergreen species, Quercus glauca growing in both sites, was compared with a temperate deciduous species, Q. serrata, in Osaka, and two tropical evergreen species, Q. gemelliflora and Q. subsericea, in Bogor. KEY RESULTS: (1) In Osaka, the midday leaf water potential (psi(midday)) was slightly higher in OLD (-0.5 MPa) than in CEX leaves (-0.6 MPa), whereas psi(tlp) was significantly lower in OLD (-2.9 MPa) than in CEX leaves (-1.0 MPa). In Bogor, psi(midday) was also higher in OLD leaves (-1.0 MPa) despite the low psi(tlp) (-1.9 MPa), although stomatal conductance was not always low in OLD leaves. In the branch bearing CEX and OLD leaves, most of the hydraulic resistance (86 %) exists in the current-year branch, leading to differences in water supply between CEX and OLD leaves. The removal of buds just before breaking did not affect the high psi(midday) in OLD leaves after 1 month. Psi(midday) in OLD leaves thus appears to be independent of that in CEX leaves. CONCLUSIONS: The moderate decrease in psi(midday) in OLD leaves would contribute to maintenance of deltapsi in the shoots during leaf expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号