首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we found that the ancient Chinese remedy of Suanzaorentang was a promising anxiolytic drug (Chen and Hsieh, 1985; Chen and Hsieh, 1985a). We also found that Suanzaorentang decreased the turnover rate of central monoamines and central catecholaminergic activity (Hsieh, et al., 1986). In this study, we found that 5-hydroxytryptophan (5-HTP) induced decrease in locomotor activity was significantly antagonized by Suanzaorentang, p-chlorophenylalanine (p-CPA) induced increase in locomotor activity was significantly inhibited by Suanzaorentang, Suanzaorentang had no significant effects on baclofen, muscimol, aminooxyacetic acid (AOAA) and thiosemicarbazide induced changes in locomotor activity, Suanzaorentang significantly decreased vanillylmandelic acid (VMA) in striatum and hippocampus, homovanillic acid (HVA) in hippocampus and 5-hydroxyindol acetic acid (5-HIAA) in striatum and hypothalamus, Suanzaorentang significantly reversed the alpha-methyltyrosine (alpha-MT) produced decrease in DA concentrations in striatum and hippocampus, and (6) Suanzaorentang significantly reversed the p-CPA produced decrease in 5-HT concentrations on amygdala. These facts implied that Suanzaorentang might decrease the serotonergic activity but have no significant effect on GABAergic activity. The main locus of action might be in the limbic system.  相似文献   

2.
The increase in locomotor activity induced by cocaine (15 mg/kg, i.p.) in the mouse was antagonized by pretreatment with compounds which inhibited monoanimergic receptors such as phenoxybenzamine, chlorpromazine or methysergide. On the contrary, the lethal dose of cocaine in rats and mice was not reduced by these substances. These data suggest that monoamines are involved in mediating the motor activity of cocaine but not implicated in the toxic effect of the drug.  相似文献   

3.
Obese, leptin deficient obob mice have profoundly decreased activity and increased food seeking behavior. The decreased activity has been attributed to obesity. In mice, we tested the hypothesis that leptin increases total locomotor activity but inhibits food anticipatory activity. We also sought to determine if leptin induced increases in total locomotor activity are independent of changes in body weight and obesity. We studied obob mice and also created a novel transgenic mouse where leptin is over-expressed in a tetracycline-off system and can be abruptly and non-invasively suppressed by doxycycline within few hours. The studies were performed using two independent behavioral assays: home cage activity (HCA) and running wheel activity (RWA). Systemic administration of leptin (150 ng/hr) to obob mice produced a 122%±30% (mean ± SEM) increase (p≤0.01) in locomotor activity within 2 days In addition, cerebroventricular administration of leptin (5 ng/hr) also produced an early and progressive increase in total locomotor activity beginning on the 1st day (+28±8%; p≤0.05) and increasing to +69±23% on day 3 without a decrease in body weight during this time. The increase in activity was restricted to the dark phase. Conversely, in a tet-off transgenic obob mouse line, acute leptin suppression reduced spontaneous locomotor activity. To further define activities that are leptin regulated, we assayed food anticipatory activity (FAA) and found that it was markedly augmented in obob mice compared to wild type mice (+38±6.7 in obob vs +20±6.3% in wild type at peak; mean ± SEM; p≤0.001) and abolished by leptin. Although melanocortin-3 receptors (MC3R) reportedly mediate FAA, we found augmented FAA and preserved inhibitory effects of leptin on FAA in MC3R-/-obob mice. In summary, this study demonstrates that total activity and FAA are regulated independently by leptin. Leptin, acting in the central nervous system and at physiologic levels, produces early increases in locomotor activity before substantial weight loss. In contrast, leptin suppresses augmented food anticipatory activity in obob mice.  相似文献   

4.
The influence of intraperitoneal (IP) and intramuscular (IM) injections of serotonin (5-hydroxytryptamine or 5-HT, 10 μg/g body weight) on a number of parameters of feeding behavior and locomotor activity in carp Cyprinus carpio L. has been investigated. It was shown that exogenous serotonin decreased various parameters of feeding and locomotor activities, and IM injections caused stronger inhibitory effect than IP injections. IP administration of this biogenic amine reduced the food intake in fishes of different age groups, induced an increase of the search reaction time (the latency to leave the starting chamber after its front wall was raised, or latency period for feeding of fish) in carp fingerlings in the experiments with “single” feeding. IM injections significantly lowered food intake of carp fingerlings in 1, 5 and 53 h, two other parameters—during all period of observation. In the experiments with “group” feeding food intake, duration of “group” feeding and total duration of feeding decreased during all period of observation after IM administration and in 1 h after IP injections only. Duration of “single” feeding and locomotor activity were changed less distinctly. The strongest effect of serotonin (up to 100%) was shown for duration of “group” feeding. It was supposed that inhibitory effects of exogenous serotonin on feeding and locomotor activities in carps were caused by its peripheral effects as well as by partial involving of central effect.  相似文献   

5.
1. The monoamines serotonin (5-HT) and octopamine (OA) enhance the expression of swimming activity in the medicinal leech (Willard, 1981; Belanger and Orchard, 1988). We explored further the effects of these monoamines and related agents on swimming activity observed in isolated leech nerve cords. 2. We confirmed that swimming activity is induced reversibly following exposure of the nerve cord to 5-HT (50 microM); the half-maximal rate of swimming activity develops in about 15 min. Swimming activity returns to control levels about 30 min after drug washout. 3. Swim-induction by 5-HT is blocked by the presence of 10 microM cyproheptadine (a 5-HT antagonist). 4. Although apparently less effective than 5-HT, OA application to nerve cords also induced swimming activity. 5. Depletion of endogenous amines from nerve cords by acute exposure to reserpine (10-150 microM) blocked stimulus-evoked swimming activity within 4 hr. 6. Subsequent application of 5-HT (50 microM) or OA (100 microM) reinstated stimulus-evoked swimming and induced repeated episodes of non-triggered swimming activity. 7. Application of cAMP and cAMP analogs, as well as phosphodiesterase inhibitors (theophylline and IBMX), mimicked the effects of the monoamines, suggesting that 5-HT and OA may activate swimming activity by increasing neuronal cAMP. 8. We obtained episodes of swim-like activity from individual, isolated ganglia exposed to 5-HT or OA. Such episodes were usually brief, with variable cycle period. 9. We conclude that individual nerve cord ganglia contain the complete neuronal circuitry required to generate the rudiments of swimming activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Sickness behavior is an expression of a central motivational state triggered by activation of the immune system, being considered a strategy of the organism to fight infection. Sickness behavior is induced by peripheral administration of lipopolysaccharide (LPS). LPS can increase the levels of proinflammatory cytokines, which induce the activation of the kynurenine pathway (KP) and behavioral alterations. Previous studies have shown that omega-3 (n-3) polyunsaturated fatty acid (PUFA) has anti-inflammatory properties. Because of this, the purpose of the present study was to evaluate the protective effect of fish oil (FO) supplementation against LPS-induced sickness behavior in aged mice with respect to anhedonia, locomotor activity and body weight. Moreover, we evaluated the ability of FO treatment on the regulation of neuroinflammation (levels of interleukin-1β, interleukin-6, tumor factor necrosis-α and interferon-γ), KP biomarkers (levels of tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine and quinolinic acid and activities of indoleamine-2,3-dioxygenase, kynurenine monooxygenase and kynurenine aminotransferase) and serotonergic system (levels of serotonin and 5-hydroxyindoleactic acid) in the hippocampus, striatum and prefrontal cortex of LPS-treated mice. We found that FO prevented the LPS-mediated body weight loss, anhedonic behavior, reduction of locomotor activity, up-regulation of the proinflammatory cytokines and serotoninergic alterations. We also found that FO was effective in modulating the KP biomarkers, inhibiting or attenuating KP dysregulation induced by LPS. Together, our results indicated that FO may have beneficial effects on LPS induced sickness-behavior in aged mice either by modulating central inflammation, KP and serotonergic signaling (indirectly effect) or by fatty acids incorporation into neuronal membranes (direct effect).  相似文献   

7.
<正>INTRODUCTION Anthostomella rostrispora W.H. Hsieh, C.Y. Chen & Sivan. [as rostrospora] was described by Hsieh et al. (1975) and was accepted in the world monograph of the genus Anthostomella Sacc.  相似文献   

8.
Adenosine analogs, such as N6-cyclohexyladenosine (CHA) that are selective for A1-adenosine receptors, and analogs, such as 5'-N-ethylcarboxamidoadenosine (NECA) that are active at both A1 and A2 receptors, cause a profound depression of locomotor activity in mice via a central mechanism. The depression is effectively reversed by non-selective adenosine antagonists such as theophylline. We report that 2-([2-aminoethylamino) carbonylethylphenylethylamino]-5'-N-ethylcarboxamidoadenosine (APEC), an amine derivative of the A2-selective agonist, CGS21680, is a potent locomotor depressant in mice. The in vivo pharmacology is consistent with A2-selectivity at a central site of action. Two parameters indicative of locomotor activity, horizontal activity and total distance travelled, were measured using a computerized activity monitor. From dose-response curves it was found that APEC (ED50 16 micrograms/kg) is more potent than CHA (ED50 60 micrograms/kg) and less potent than NECA (ED50 2 micrograms/kg). The locomotor depression by APEC was reversible by theophylline, but not by the A1-selective antagonists 8-cyclopentyltheophylline (CPT) and 8-cyclopentyl-1, 3-dipropyl-2-thioxanthine, nor by the peripheral antagonists 8-p-sulfophenyltheophylline (8-PST) and 1,3-dipropyl-8-p-sulfophenylxanthine. The locomotor activity depression elicited by NECA and CHA was reversed by A1-selective antagonists. These results suggest that the effects of APEC are due to stimulation of A2 adenosine receptors in the brain.  相似文献   

9.
The locomotor response following injection of dopamine into the nucleus accumbens was attenuated by the injection of 5HT and potentiated by the injection of methysergide into the same site. D-amphetamine-induced locomotor activity was also reduced by the intra-accumbens injection of 5HT. In contrast, apomorphine- induced stereotyped behaviour (sniffing, licking, biting, gnawing) was reduced by systematic administration of the putative 5HT receptor antagonists, cyproheptadine and metergoline. In addition the low intensity sniffing responses produced by a low dose of apomorphine were converted to high intensity biting, gnawing or licking by the putative 5HT receptor agonist, quipazine or the putative 5HT uptake blocker, ORG 6582. The selective induction of either hyperactive or stereotyped behaviour may therefore be influenced by the functional state of central serotonergic systems.  相似文献   

10.
The anxiety- and stress-related neuropeptide corticotropin-releasing factor (CRF) elicits behavioral changes in vertebrates including increases in behavioral arousal and locomotor activity. Intracerebroventricular injections of CRF in an amphibian, the roughskin newt (Taricha granulosa), induces rapid increases in locomotor activity in both intact and hypophysectomized animals. We hypothesized that this CRF-induced increase in locomotor activity involves a central effect of CRF on serotonergic neurons, based on known stimulatory actions of serotonin (5-hydroxytryptamine, 5-HT) on spinal motor neurons and the central pattern generator for locomotor activity in vertebrates. In Experiment 1, we found that neither intracerebroventricular injections of low doses of CRF (25 ng) nor the selective serotonin reuptake inhibitor fluoxetine (10, 100 ng), by themselves, altered locomotor activity. In contrast, newts treated concurrently with CRF and fluoxetine responded with marked increases in locomotor activity. In Experiment 2, we found that increases in locomotor activity following co-administration of CRF (25 ng) and fluoxetine (100 ng) were associated with decreased 5-HT concentrations in a number of forebrain structures involved in regulation of emotional behavior and emotional states, including the ventral striatum, amygdala pars lateralis, and dorsal hypothalamus, measured 37 min after treatment. These results are consistent with the hypothesis that CRF stimulates locomotor activity through activation of serotonergic systems.  相似文献   

11.
Caffeine ingestion can delay fatigue during exercise, but the mechanisms remain elusive. This study was designed to test the hypothesis that blockade of central nervous system (CNS) adenosine receptors may explain the beneficial effect of caffeine on fatigue. Initial experiments were done to confirm an effect of CNS caffeine and/or the adenosine A(1)/A(2) receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) on spontaneous locomotor activity. Thirty minutes before measurement of spontaneous activity or treadmill running, male rats received caffeine, NECA, caffeine plus NECA, or vehicle during four sessions separated by approximately 1 wk. CNS caffeine and NECA (intracerebroventricular) were associated with increased and decreased spontaneous activity, respectively, but caffeine plus NECA did not block the reduction induced by NECA. CNS caffeine also increased run time to fatigue by 60% and NECA reduced it by 68% vs. vehicle. However, unlike the effects on spontaneous activity, pretreatment with caffeine was effective in blocking the decrease in run time by NECA. No differences were found after peripheral (intraperitoneal) drug administration. Results suggest that caffeine can delay fatigue through CNS mechanisms, at least in part by blocking adenosine receptors.  相似文献   

12.
Eight experiments supported the hypotheses that reflexive testosterone release by male mice during sexual encounters reduces male anxiety (operationally defined in terms of behavior on an elevated plus-maze) and that this anxiolysis is mediated by the conversion of testosterone to neurosteroids that interact with GABA(A) receptors. In Experiment 1, a 10-min exposure to opposite-sex conspecifics significantly reduced both male and female anxiety 20 min later (as indexed by increased open-arm time on an elevated plus-maze) compared to control mice not receiving this exposure. In contrast, locomotor activity (as indexed by enclosed-arm entries on the elevated plus-maze) was not significantly affected. The remaining experiments examined only male behavior. In Experiment 2, exposure to female urine alone was anxiolytic while locomotor activity was not significantly affected. Thus, urinary pheromones of female mice likely initiated the events leading to the male anxiolysis. In phase 1 of Experiment 3, sc injections of 500 microg of testosterone significantly reduced anxiety 30 min later while locomotor activity was not significantly affected. Thus, testosterone elevations were associated with reduced male anxiety and the time course consistent with a nongenomic, or very rapid genomic, mechanism of testosterone action. In phase 2 of Experiment 3, the anxiolytic effect of testosterone was dose dependent with a 250 microg sc injection required. Thus, testosterone levels likely must be well above baseline levels (i.e., in the range induced by pulsatile release) in order to induce anxiolysis. In Experiment 4, a high dosage of 5alpha-dihydrotestosterone was more anxiolytic than a high dosage of estradiol benzoate, suggesting that testosterone action may require 5alpha-reduction. In Experiments 5 and 6, 3alpha,5alpha-reduced neurosteroid metabolites of testosterone (androsterone and 3alpha-androstandione) were both anxiolytic at a lower dosage (100 microg/sc injection) than testosterone, supporting the notion that testosterone is converted into neurosteroid metabolites for anxiolytic activity. Experiments 7 and 8 found that either picrotoxin or bicucculine, noncompetitive and competitive antagonists of the GABA(A) receptor, respectively, blocked the anxiolytic effects of testosterone. However, conclusions from these 2 experiments must be tempered by the reduction in locomotor activity that was also seen. The possible brain locations of testosterone action as well as the possible adaptive significance of this anxiolytic response are discussed.  相似文献   

13.
The present study examined interaction between dexamethasone (DEX) and morphine on the locomotor activity in groups of mice by using the activity cage test. Morphine administration (30-75-150 mg/kg, ip) induced a dose-related increase of the locomotor activity of mice, whereas DEX per se (0.1-1.0-10 mg/kg, ip) did not modify the activity of control mice. Pretreatment of mice with DEX 0.1 mg did not alter the hyperactivity produced by the three doses of morphine. In contrast, DEX administered at 1.0 mg reduced the morphine effects on locomotor activity, whereas DEX at 10 mg potentiated the morphine hypermotility. Our results suggest that DEX may play an important regulatory role on the central effects of morphine through a differential modulation of brain excitability systems.  相似文献   

14.
1. Comparative analyses of regional brain biogenic amines and spontaneous locomotor activity of three mouse strains suggest a genotype dependent relationship. 2. A positive correlation between striatal dopamine and locomotor activity was determined in the inbred albino BALB/c mouse strain. 3. An inverse relationship between some brain regions serotonin and motility was found in the inbred black C57BL/6 mouse strain. 4. No correlation could be established between brain monoamines and motor activity in the hybrid CDF-1 mouse strain. 5. The results suggest that inbred BALB/c and C57BL/6 mouse strains may be useful animal models for studying dopaminergic and serotonergic acting agents, respectively.  相似文献   

15.
The effect of quipazine on brain monoamines and the significance of this interaction in its anorectic activity was studied in rats. At doses ranging from 2.5 to 10 mg/kg quipazine markedly reduced brain 5-hydroxyindolacetic acid concentrations without significant effects on steady-state levels of serotonin, noradrenaline and dopamine. Striatal levels of homovanillic acid were significantly reduced by 10 mg/kg of quipazine but not modified by a dose of 5 mg/kg. Quipazine counteracted the decrease of brain serotonin induced by fenfluramine but did not significantly modify the effect of 6-hydroxydopamine on brain nonadrenaline and dopamine. The decrease of food intake induced by 5 mg/kg of quipazine was completely prevented by pretreatment with methergoline but was not affected by an intraventricular injection of 6-hydroxydopamine or pretreatment with penfluridol, propranolol or phentolamine. The results indicate that at doses between 2.5 and 5 mg/kg quipazine specifically acts on brain serotonin and this interaction may be important for its anorectic activity.  相似文献   

16.
Effect of chronic treatment of standardized aqueous extract of Moringa oleifera (MO) root (100, 200, 300, 350, 400, 450 mg/kg; po) on penicillin (PCN) induced convulsion, locomotor behaviour, brain serotonin (5-HTT), dopamine (DA) and norepinephrine (NE) level was studied in Holtzman strain adult albino rats. The result revealed that pretreatment with MO inhibited PCN-induced seizure and markedly reduced locomotor activity. Chronic treatment with MO significantly increased the 5-HT and decreased the DA level in cerebral cortex (CC), midbrain (MB), caudate nucleus (CN) and cerebellum (CB). NE level was significantly decreased in CC but no appreciable change was observed in MB, CB and CN. Thus the central inhibitory effect of MO is discussed in the light of the disturbed balance between 5-HT, DA and NE.  相似文献   

17.
The relationship between locomotor activity and monoamine levels in gerbils after single and/or double forebrain ischemic insult was studied. Locomotor hyperactivity was observed after the first ischemic episode, but the gerbils failed to show hyperactivity after the second ischemic episode induced one week later. The monoamine levels were determined in order to clarify the biochemical basis of post-ischemic locomotor hyperactivity. Norepinephrine increased in response to first ischemic episode but remained at normal levels after the second episode of ischemia. Metabolites of dopamine and serotonin increased after both the first and second ischemic insults, which indicates that these monoamines do not play significant roles in post-ischemic locomotor activity. Therefore, increases in norepinephrine after first ischemic insult may play a role in increasing locomotor activity during the period following such an episode.  相似文献   

18.
Treatment with Spinacia oleracea extract (SO; 400 mg/kg body weight) decreased the locomotor activity, grip strength, increased pentobarbitone induced sleeping time and also markedly altered pentylenetetrazole induced seizure status in Holtzman strain adult male albino rats. SO increased serotonin level and decreased both norepinephrine and dopamine levels in cerebral cortex, cerebellum, caudate nucleus, midbrain and pons and medulla. Result suggests that SO exerts its CNS depressive effect in PTZ induced seizure by modulating the monoamines in different brain areas.  相似文献   

19.
Bacterial challenge induced a significant increase in the total hemocyte population within 4 h in the beet armyworm, Spodoptera exigua. Octopamine and 5-hydroxytryptamine (5-HT) are known to play critical roles in mediating insect immune responses. This study analyzed the effects of both biogenic monoamines on mediating up-regulation of circulating hemocyte population in response to bacterial challenge. Injection of either octopamine or 5-HT induced a significant increase in the total hemocyte count in the hemolymph without any bacterial challenge. On the other hand, the monoamine antagonists, phentolamine (an octopamine antagonist) and ketanserin (a 5-HT antagonist) each suppressed the increase of the circulating hemocyte counts in response to bacterial challenge. This rapid change of circulating hemocyte population did not appear to be the result of de novo hemocyte production from the hematopoietic organ because a physical block (“ligation”) of hemolymph circulation between thorax and abdomen did not inhibit the increase of hemocyte counts in the isolated abdomen in response to bacterial challenge. The effects of the two monoamines on hemocyte numbers were not dependent on the mediatory effects of eicosanoids, because dexamethasone, an eicosanoid biosynthesis inhibitor, had no effect on the hemocyte recruitment induced by the monoamines. On the other hand, an adenylate cyclase inhibitor, NKY80, significantly impaired hemocyte mobilization in response to bacterial challenge, implying involvement of cyclic AMP in the control of hemocyte numbers. Also, a Rac1 inhibitor, NSC23766, significantly antagonized the effects of monoamines in increasing circulating hemocyte numbers. Rac1 activity was necessary to form F-actins in the hemocytes of S. exigua, where its activity showed a quantitative correlation with hemocyte-spreading behavior. This study suggests that octopamine and 5-HT mediate a rapid increase of circulating hemocyte population in response to bacterial challenge via Rac1 signal in S. exigua.  相似文献   

20.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to be involved in the maintenance of striatal dopaminergic neurons. Neurotrophic factors are crucial for the plasticity of central nervous system and may be involved in long-term responses to drug exposure. To study the effects of reduced GDNF on dopaminergic behaviour related to addiction, we compared the effects of morphine on locomotor activity, conditioned place preference (CPP) and extracellular accumbal dopamine in heterozygous GDNF knockout mice (GDNF+/-) with those in their wild-type (Wt) littermates. When morphine 30 mg/kg was administered daily for 4 days, tolerance developed towards its locomotor stimulatory action only in the GDNF+/- mice. A morphine 5 mg/kg challenge dose stimulated locomotor activity only in the GDNF+/- mice withdrawn for 96 h from repeated morphine treatment, whereas clear and similar sensitization of the locomotor response was seen after a 10 mg/kg challenge dose in mice of both genotypes. Morphine-induced CPP developed initially similarly in Wt and GDNF+/- mice, but it lasted longer in the Wt mice. The small challenge dose of morphine increased accumbal dopamine output slightly more in the GDNF+/- mice than in the Wt mice, but doubling the challenge dose caused a dose-dependent response only in the Wt mice. In addition, repeated morphine treatment counteracted the increase in the accumbal extracellular dopamine concentration we previously found in drug-naive GDNF+/- mice. Thus, reduced endogenous GDNF level alters the dopaminergic behavioural effects to repeatedly administered morphine, emphasizing the involvement of GDNF in the neuroplastic changes related to long-term effects of drugs of abuse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号