首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The renewed interests in clostridial acetone-butanol-ethanol (ABE) fermentation as a next-generation biofuel source led to significantly intensified research in the past few years. This mini-review focuses on the current status of metabolic engineering techniques available for the model organism of ABE fermentation, Clostridium acetobutylicum. A comprehensive survey of various application examples covers two general issues related to both basic and applied research questions: (i) how to improve biofuel production and (ii) what information can be deduced from respective genotype/phenotype manipulations. Recently developed strategies to engineer C. acetobutylicum are summarized including the current portfolio of altered gene expression methodologies, as well as systematic (rational) and explorative (combinatorial) metabolic engineering approaches.  相似文献   

2.
Biosynthetic thiolases catalyze the condensation of two molecules acetyl‐CoA to acetoacetyl‐CoA and represent key enzymes for carbon–carbon bond forming metabolic pathways. An important biotechnological example of such a pathway is the clostridial n‐butanol production, comprising various natural constraints that limit titer, yield, and productivity. In this study, the thiolase of Clostridium acetobutylicum, the model organism for solventogenic clostridia, was specifically engineered for reduced sensitivity towards its physiological inhibitor coenzyme A (CoA‐SH). A high‐throughput screening assay in 96‐well microtiter plates was developed employing Escherichia coli as host cells for expression of a mutant thiolase gene library. Screening of this library resulted in the identification of a thiolase derivative with significantly increased activity in the presence of free CoA‐SH. This optimized thiolase comprised three amino acid substitutions (R133G, H156N, G222V) and its gene was expressed in C. acetobutylicum ATCC 824 to assess the effect of reduced CoA‐SH sensitivity on solvent production. In addition to a clearly delayed ethanol and acetone formation, the ethanol and butanol titers were increased by 46% and 18%, respectively, while the final acetone concentrations were similar to the vector control strain. These results demonstrate that thiolase engineering constitutes a suitable methodology applicable to improve clostridial butanol production, but other biosynthetic pathways involving thiolase‐mediated carbon flux limitations might also be subjected to this new metabolic engineering approach. Biotechnol. Bioeng. 2013; 110: 887–897. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
《Biotechnology advances》2017,35(2):310-322
Butanol as an advanced biofuel has gained great attention due to its environmental benefits and superior properties compared to ethanol. However, the cost of biobutanol production via conventional acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is not economically competitive, which has hampered its industrial application. The strain performance and downstream process greatly impact the economics of biobutanol production. Although various engineered strains with carefully orchestrated metabolic and sporulation-specific pathways have been developed, none of them is ideal for industrial biobutanol production. For further strain improvement, it is necessary to develop advanced genome editing tools and a deep understanding of cellular functioning of genes in metabolic and regulatory pathways. Processes with integrated product recovery can increase fermentation productivity by continuously removing inhibitory products while generating butanol (ABE) in a concentrated solution. In this review, we provide an overview of recent advances in C. acetobutylicum strain engineering and process development focusing on in situ product recovery. With deep understanding of systematic cellular bioinformatics, the exploration of state-of-the-art genome editing tools such as CRISPR-Cas for targeted gene knock-out and knock-in would play a vital role in Clostridium cell engineering for biobutanol production. Developing advanced hybrid separation processes for in situ butanol recovery, which will be discussed with a detailed comparison of advantages and disadvantages of various recovery techniques, is also imperative to the economical development of biobutanol.  相似文献   

4.
Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting acetone to isopropanol by metabolic engineering. Since isopropanol can be used as a fuel additive, the mixture of isopropanol, butanol, and ethanol (IBE) produced by engineered C. acetobutylicum can be directly used as a biofuel. IBE production is achieved by the expression of a primary/secondary alcohol dehydrogenase gene from Clostridium beijerinckii NRRL B-593 (i.e., adh(B-593)) in C. acetobutylicum ATCC 824. To increase the total alcohol titer, a synthetic acetone operon (act operon; adc-ctfA-ctfB) was constructed and expressed to increase the flux toward isopropanol formation. When this engineering strategy was applied to the PJC4BK strain lacking in the buk gene (encoding butyrate kinase), a significantly higher titer and yield of IBE could be achieved. The resulting PJC4BK(pIPA3-Cm2) strain produced 20.4 g/liter of total alcohol. Fermentation could be prolonged by in situ removal of solvents by gas stripping, and 35.6 g/liter of the IBE mixture could be produced in 45 h.  相似文献   

5.
Clostridium acetobutylicum has been considered as an attractive platform host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. The pta-ctfB-deficient C. acetobutylicum CEKW, in which genes encoding phosphotransacetylase and CoA-transferase were knocked out, was assessed for its potential as a butyric acid producer in fermentations with four controlled pH values at 5.0, 5.5, 6.0, and 6.4. Butyric acid could be best produced by fermentation of the CEKW at pH 6.0, resulting in the highest titer of 26.6 g/l, which is 6.4 times higher than that obtained with the wild type. However, due to the remaining solventogenic ability of the CEKW, 3.6 g/l solvents were also produced. Thus, the CEKW was further engineered by knocking out the adhE1-encoding aldehyde/alcohol dehydrogenase to prevent solvent production. Batch fermentation of the resulting C. acetobutylicum HCEKW at pH 6.0 showed increased butyric acid production to 30.8 g/l with a ratio of butyric-to-acetic acid (BA/AA) of 6.6 g/g and a productivity of 0.72 g/l/h from 86.9 g/l glucose, while negligible solvent (0.8 g/l ethanol only) was produced. The butyric acid titer, BA/AA ratio, and productivity obtained in this study were the highest values reported for C. acetobutylicum, and the BA/AA ratio and productivity were also comparable to those of native butyric acid producer Clostridium tyrobutyricum. These results suggested that the simultaneous deletion of the pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid production.  相似文献   

6.
7.
8.
Acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum has been extensively studied in recent years because the organism is recognized as an excellent butanol producer. A parallel bioreactor system with 48 stirred-tank bioreactors on a 12 mL scale was evaluated for batch cultivations of the strictly anaerobic, butanol-producing C. acetobutylicum ATCC 824. Continuous gassing with nitrogen gas was applied to control anaerobic conditions. Process performances of ABE batch fermentations on a milliliter scale were identical to the liter-scale stirred-tank reactor if reaction conditions were identical on the different scales (e.g., initial medium, pH, temperature, specific evaporation rates, specific power input by the stirrers). The effects of varying initial ammonia concentrations (0.1-4.4 g L(-1) ) were studied in parallel with respect to glucose consumption and butanol production of C. acetobutylicum ATCC 824 as a first application example. The highest butanol yield of 33% (mol mol(-1) ) was observed at initial ammonia concentrations of 0.5 and 1.1 g L(-1) . This is the first report on the successful application of a 48 parallel stirred-tank bioreactor system for reaction engineering studies of strictly anaerobic microorganisms at the milliliter scale.  相似文献   

9.
10.
11.
Abstract: The pathway from acetyl-CoA to butyryl-CoA serves as a major carbon metabolism channel in Clostridium acetobutylicum and other butyrate-forming clostridia, and the steps are similar to those involved in fatty acid metabolism. Recent findings are discussed, reviewing the isolation and characterization of the enzymes of the pathway, and the analyses of metabolic intermediate levels and possible points of regulation of enzyme activity by CoA compounds. DNA analyses have identified the genes for two thiolase proteins, and an apparent operon encoding five proteins involved in the conversion of acetoacetyl-CoA to butyryl-CoA. These five proteins are β-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase and the α and β subunits of an electron transfer flavoprotein.  相似文献   

12.
A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta, buk, ctfB and adhE1) at pH 6.0 resulted in the production of 32.5 g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3 g/g from 83.3 g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5 g/g) obtained with the HYCBEKW strain (pta, buk, ctfB, adhE1 and hydA) was 1.6 times higher than that (18.2 g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum.  相似文献   

13.
Mutagenesis of Clostridium acetobutylicum   总被引:3,自引:0,他引:3  
Mutagenesis of the obligate anaerobe Clostridium acetobutylicum was best accomplished using agents (e.g. ethyl methane sulphonate or N-methyl-N'-nitro-N-nitrosoguanidine) which are believed to act by a direct mutagenic mechanism. Other agents (e.g. u.v. radiation) whose effectiveness relies on misrepair of damaged DNA via an error-prone pathway, were poor mutagens of this organism. Procedures are described which readily yielded a variety of auxotrophic and other useful mutant strains of Cl. acetobutylicum and related saccharolytic clostridia.  相似文献   

14.
Mutagenesis of the obligate anaerobe Clostridium acetobutylicum was best accomplished using agents (e.g. ethyl methane sulphonate or N -methyl- N '-nitro- N -nitrosoguanidine) which are believed to act by a direct mutagenic mechanism. Other agents (e.g. u.v. radiation) whose effectiveness relies on misrepair of damaged DNA via an error-prone pathway, were poor mutagens of this organism. Procedures are described which readily yielded a variety of auxotrophic and other useful mutant strains of Cl. acetobutylicum and related saccharolytic clostridia.  相似文献   

15.
The biosynthesis of the solvents 1-butanol and acetone is restricted to species of the genus Clostridium, a diverse group of Gram-positive, endospore forming anaerobes comprising toxin-producing strains as well as terrestrial non-pathogenic species of biotechnological impact. Among solventogenic clostridia, Clostridium acetobutylicum represents the model organism and general but yet important genetic tools were established only recently to investigate and understand the complex life cycle-accompanied physiology and its regulatory mechanisms. Since clostridial butanol production regained much interest in the past few years, different metabolic engineering approaches were conducted--although promising and in part successful strategies were employed, the major breakthrough to generate an optimum phenotype with superior butanol titer, yield and productivity still remains to be expected.  相似文献   

16.
17.
Xylanolytic Activity of Clostridium acetobutylicum   总被引:3,自引:9,他引:3       下载免费PDF全文
Of 20 strains of Clostridium spp. screened, 17 hydrolyzed larch wood xylan. Two strains of Clostridium acetobutylicum, NRRL B527 and ATCC 824, hydrolyzed xylan but failed to grow on solid media with larch xylan as the sole carbon source; however, strain ATCC 824 was subsequently found to grow on xylan under specified conditions in a chemostat. These two strains possessed cellulolytic activity and were therefore selected for further studies. In cellobiose-limited continuous cultures, strain NRRL B527 produced maximum xylanase activity at pH 5.2. Strain ATCC 824 produced higher xylanase, xylopyranosidase, and arabinofuranosidase activities in chemostat culture with xylose than with any other soluble carbon source as the limiting nutrient. The activities of these enzymes were markedly reduced when the cells were grown in the presence of excess glucose. The xylanase showed maximum activity at pH 5.8 to 6.0 and 65°C. The enzyme was stable on the alkaline side of pH 5.2 but was unstable below this pH value. The extracellular xylanolytic activity from strain ATCC 824 hydrolyzed 12% of the larch wood xylan during a 24-h incubation period, yielding xylose, xylobiose, and xylotriose as the major hydrolysis products. Strain ATCC 824, after being induced to grow in batch culture in xylan medium supplemented with a low concentration of xylose, failed to grow reproducibly in unsupplemented xylan medium. A mutant obtained by mutagenesis with ethyl methanesulfonate was able to grow reproducibly in batch culture on xylan. Both the parent strain and the mutant were able to grow with xylan as the sole source of carbohydrate in continuous culture with the pH maintained at either 5.2 or 6.0. Under these conditions, the cells utilized approximately 50% of the xylan.  相似文献   

18.
李宏 《生物信息学》2012,10(1):55-60
代谢工程是近年来发展起来的新技术,随着各种组学技术的发展,高通量数据整合方法用于分析细胞的代谢网络,改造代谢途径,以提高目标产物的产量。本文就代谢工程的发展状况,基因组尺度的分析技术,以及代谢工程策略进行了综述。分析了生物信息学和系统生物学方法在代谢途径构建和代谢网络分析中的作用,并就存在的问题和可能的解决途径进行了阐述。  相似文献   

19.
Summary Qualitative characteristics of changes in culture fluorescence during batch growth ofClostridium acetobutylicum [ATCC 824] have been determined. A solventogenic phase culture shows higher changes in normalized fluorescence levels per unit change in cell concentration compared with an acidogenic phase culture. This suggests that during solvent formation intracellular NADH levels are higher than in the acidogenic phase and that NADH availability may influence the onset of solventogenesis.  相似文献   

20.
RNA interference-based strategies for metabolic syndrome treatment.   总被引:2,自引:0,他引:2  
RNA interference is a naturally occurring cellular mechanism to inhibit the expression of specific gene products. The technical application of RNA interference offers great potential for the specific treatment of a huge variety of diseases including the metabolic syndrome, one of the most challenging threats to human health associated with our civilization. In order to develop novel and powerful strategies for the treatment of the metabolic syndrome, it is essential to define a set of specific gene products that may be targeted by RNA interference. Based on currently available in vitro and in vivo data, we discuss the feasibility of candidate genes involved in the pathophysiology of the metabolic syndrome as potential targets for a rational RNA interference based therapy in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号