首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immune serum was prepared against phosphate-dependent glutaminase purified from rat kidney and was used to investigate the cause of increased renal glutaminase activity in acidotic rats. Crude kidney homogenates from acidotic rats exhibited a fourfold greater specific activity for phosphate-dependent glutaminase. The glutaminase was solubilized initially by lyophilization of borate treated mitochondria with a 40–60% recovery and with maintenance of threefold difference in specific activity. Both preparations showed the same equivalence point in a quantitative precipitin experiment. To confirm these results, phosphate-dependent glutaminase was also solubilized by treatment of mitochondria isolated from normal and acidotic rat kidney cortex with 1% Triton X-100. The two preparations exhibited a fivefold difference in specific activity and again showed the same equivalence point in a quantitative precipitin experiment. These results indicate that the cause of increased phosphate-dependent glutaminase activity during acidosis is due to the presence of an increased amount of this enzyme. The antiserum prepared against the kidney phosphate-dependent glutaminase did not crossreact with glutaminase solubilized from rat liver mitochondria. But, rat brain mitochondria do contain a phosphate-dependent glutaminase that is immunologically identical to the enzyme from rat kidney.  相似文献   

2.
Well coupled mitochondria were isolated from transplantable chicken hepatoma induced by MC-29 virus. The mitochondrial phosphate-dependent and phosphate-independent glutaminase activities were increased compared with those from normal chicken liver. Glutamate dehydrogenase was undetectable in the tumor mitochondria. Oxypolarographic tests showed the following: glutamine oxidation was prominent in the tumor mitochondria and was mediated through an NAD-linked reaction, while mitochondria from the liver showed a feeble glutamine oxidation; glutamine oxidation by tumor mitochondria was inhibited either by aminooxyacetate, inhibitor of transaminases, or prior incubation of mitochondria with DON (6-diazo-5-oxonorleucine), which inhibited mitochondrial glutaminases. Bromofuroate, inhibitor of glutamate dehydrogenase, had little or no effect; and glutamate oxidation was also inhibited by aminooxyacetate, while it was not affected by DON. These findings clearly show a high glutamate oxidation activity in the hepatoma and indicate that the product of glutamine hydrolysis, glutamate, is catabolized via transamination in the mitochondria to supply ATP.  相似文献   

3.
The distribution of theanine-degrading activity in Wistar rats was examined and this activity was detected only in the kidney. Judging from polyacrylamide gel electrophoresis, theanine-degrading enzyme from rat kidney was purified almost to homogeneity. Theanine-degrading activity was co-purified with glutaminase activity, and the relative activity for theanine was about 85% of that for L-glutamine throughout purification. Substrate specificity of purified enzyme preparation coincided well with the data of phosphate-independent glutaminase [EC 3.5.1.2], which had been previously reported. It was very curious that gamma-glutamyl methyl and ethyl esters were more effectively hydrolyzed than theanine and L-glutamine, in view of relative activity and K(m) value. It was suggested that gamma-glutamyl moiety in theanine molecule was transferred to form gamma-glutamylglycylglycine with relative ease in the presence of glycylglycine. On the other hand, purified phosphate-dependent glutaminase did not show theanine-degrading activity at all. Thus, it was concluded that theanine was hydrolyzed by phosphate-independent glutaminase in kidney and suggested that, as for the metabolic fate of theanine, its glutamyl moiety might be transferred by means of gamma-glutamyl transpeptidase reaction to other peptides in vivo.  相似文献   

4.
1. In the absence of added ADP glutamine is transformed by pig kidney mitochondria to ammonium glutamate, which appears in the external medium. This reaction is stimulated only slightly by the addition of ADP, but under these conditions about 20% of the glutamate is oxidized to aspartate. 2. Externally added glutamate is oxidized to aspartate, and at about the same rate as glutamine. 3. The net rates of glutamine and glutamate influx into the intramitochondrial compartment are very slow. 4. The phosphate-dependent glutaminase activity of intact mitochondria is stimulated by the provision of energy. 5. The provision of energy also decreases the concentration of glutamate and increases the concentration of glutamine in the intramitochondrial compartment. These energy-linked changes in the glutamine and glutamate concentrations are of equal magnitude. 6. It is suggested that transport of glutamine and glutamate across the inner membrane of kidney mitochondria occurs by an obligatory exchange between the two metabolites, and is electrogenic. The existence of an electrogenic glutamine-glutamate anti-porter is proposed.  相似文献   

5.
Glutamine synthetase and glutaminase activities in various hepatoma cells   总被引:4,自引:0,他引:4  
Glutamine synthetase and glutaminase activities in a series of hepatoma cells of human and rat origins were determined for comparison with normal liver tissues. Marked decrease in glutamine synthetase activity was observed in the tumor cells. Phosphate-dependent and phosphate-independent glutaminase activities were increased compared with those from normal liver tissues. Well coupled mitochondria were isolated from HuH 13 line of human hepatoma cells and human liver. Oxypolarographic tests showed that glutamine oxidation was prominent in the tumor mitochondria, while mitochondria from the liver showed a feeble glutamine oxidation. Glutamine oxidation was inhibited by prior incubation of the mitochondria with DON (6-diazo-5-oxo-L-norleucine), which inhibited mitochondrial glutaminase. These results indicate that the product of glutamine hydrolysis, glutamate, is catabolized in the tumor mitochondria to supply ATP.  相似文献   

6.
Purified mitochondria isolated from pea (Pisum sativum L. cv Alaska) stems and Jerusalem artichoke (Helianthus tuberosus L. cv OB1) tubers were loaded with the acetoxymethyl ester of the fluorescent Ca2+ indicator fura-2. This made possible the continuous monitoring of free [Ca2+] in the matrix ([Ca2+]m) without affecting the apparent viability of the mitochondria. Pea stem mitochondria contained an initial [Ca2+]m of approximately 60 to 100 nM, whereas [Ca2+]m was severalfold higher (400-600 nM) in mitochondria of Jerusalem artichoke tubers. At low extramitochondrial Ca2+ concentrations ([greater than or equal to]100 nM), there was an energy-dependent membrane potential increase in [Ca2+]m; the final [Ca2+]m was phosphate-dependent in Jerusalem artichoke but was phosphate-independent in pea stem mitochondria. The data presented indicate that (a) there is no absolute requirement for phosphate in Ca2+ uptake; (b) plant mitochondria can accumulate external free Ca2+ by means of an electrophoretic Ca2+ uniporter with an apparent affinity for Ca2+ (Km approximately 150 nM) that is severalfold lower than that measured by conventional methods (isotopes and Ca2+-sensitive electrodes); and (c) [Ca2+]m is within the regulatory range of mammalian intramitochondrial dehydrogenases.  相似文献   

7.
Zoran Kovačević 《BBA》1976,430(3):399-412
The effect of mersalyl, an inhibitor of phosphate transport across the inner mitochondrial membrane, was investigated on the uncoupled respiration of pig kidney mitochondria in the presence of glutamine as substrate and on the activity of the phosphate-dependent glutaminase in the intact organelles. In addition, the submitochondrial location of the enzyme was reinvestigated.

1. (1) It was found that mersalyl completely inhibits uncoupled respiration of the mitochondria in the presence of glutamine as substrate, whereas respiration with glutamate was not affected. The same amount of mersalyl which inhibits coupled oxidation of glutamine also inhibits coupled oxidation of glutamate and some other substrates.

2. (2) Mersalyl strongly inhibited the activation of glutaminase in intact mitochondria only in the presence of inhibitors of electron transport or of an uncoupler. The addition of a detergent prevented or fully released the inhibition. The effect of mersalyl was observed even when the mitochondria were pre-incubated with phosphate or incubated in the phosphate-free medium. If mersalyl and carbonyl cyanide m-chlorophenylhydrazone (CCCP) were added 3 min after pre-incubation with phosphate the same intramitochondrial concentration of the anion as in control experiments was found, whereas the activity of glutaminase was severely inhibited. These findings suggest that the activation of the enzyme by phosphate in intact nonenergized mitochondria occurs only if the activator moves across the inner mitochondrial membrane.

3. (3) Mersalyl (plus CCCP) markedly decreased [14C]glutamine- and [32P]-phosphate-permeable mitochondrial spaces. A close correlation between the decrease of phosphate and glutamine permeable spaces and the inhibition of glutaminase activity was found.

4. (4) If the activation energy of the enzyme was determined with frozen mitochondrial preparations, a discontinuity or break in the Arrhenius plot was observed, whereas the presence of a detergent completely abolished the break. Digitonin or ultrasonic treatment of the mitochondria followed by separation of the membrane and the soluble fraction revealed that glutaminase is a membrane-bound enzyme.

On the basis of these findings it is concluded that there is an association between the transport of phosphate on one side and the transport of glutamine and glutaminase activity on the other. It is possible that the movement of phosphate across the membrane activates the enzyme which facilitates diffusion of glutamine down a concentration gradient. However, the existence of a specific glutamine-phosphate carrier is not ruled out.  相似文献   


8.
Deviant energetic metabolism of glycolytic cancer cells.   总被引:9,自引:0,他引:9  
L G Baggetto 《Biochimie》1992,74(11):959-974
The central glycolytic and oxidative pathways and the ATP-producing mechanisms differ in sane and malignant cells by their regulation and dynamics. Fast-growing, poorly-differentiated cancer cells characteristically show high aerobic glycolysis. In the same way, cholesterol biosynthesis, which occurs by normal pathways in tumors, is deficient in feed-back regulation and in sterol-transport mechanisms. Other metabolic ways are deficient, as for example, intramitochondrial aldehyde catabolism, at the origin of a possible acetaldehyde toxicity, which can be circumvented by the synthesis of an unusual and neutral product for mammalian cells acetoin, through tumoral pyruvate dehydrogenase. If most of the glycolytic pyruvate is deviated to lactate production, little of the remaining carbons enter a truncated Krebs cycle where citrate is preferentially extruded to the cytosol where it feeds sterol synthesis. Glutamine is the major oxidizable substrate by tumor cells. Inside the mitochondrion, it is deaminated to glutamate through a phosphate-dependent glutaminase. Glutamate is then preferentially transaminated to alpha-ketoglutarate that enters the Krebs cycle. Glutamine may be completely oxidized through the abnormal Krebs cycle only if a way of forming acetyl CoA is present: cytosolic malate entering mitochondria is preferentially oxidized to pyruvate + CO2 through an intramitochondrial NAD(P)(+)-malic enzyme, whereas intramitochondrial malate is preferentially oxidized to oxaloacetate through malate dehydrogenase, thus providing a high level of intramitochondrial substrate compartmentation. These and other regulatory aberrations in tumor cells appear to be reflections of a complex set of non-random phenotypic changes, initiated by expression of oncogenes.  相似文献   

9.
1. Glutamine hydrolysis in liver mitochondria was studied by measuring the production of glutamate under conditions where this compound could not be further metabolized. 2. Glutaminase activity in intact mitochondria was very low in the absence of activators. 3. Glutamine hydrolysis was markedly stimulated by NH4Cl and also by HCO3- ions. 4. The stimulation by each of these compounds was much decreased if the mitochondria were uncoupled. 5. Maximum rates of glutamine hydrolysis required the addition of phosphate. A correlation was observed between the activity of glutaminase in the presence of NH4Cl plus HCO3- and the intramitochondrial content of ATP. 6. In disrupted mitochondria, NH4Cl stimulated glutaminase to a much smaller extent than in intact mitochondria. The NH4Cl stimulation in disrupted mitochondria was much increased by the addition of ATP. KHCO3 also stimulated glutaminase activity in disrupted mitochondria, and ATP increased the magnitude of this stimulation. 7. It was concluded that maximum rates of glutaminase activity in liver mitochondria require the presence of phosphate, ATP and either HCO3- or NH4+. A comparison of the results obtained on intact and broken mitochondria indicates that these effectors have a direct effect on the glutaminase enzyme system rather than an indirect effect mediated by changes in transmembrane ion gradients or in the concentrations of intramitochondrial metabolites.  相似文献   

10.
The activities of key glutamine and urea cycle enzymes were assayed in liver homogenates from control and chronically acidotic rats and compared with citrulline and urea productions by isolated mitochondria and intact liver slices, respectively. Glutamine-dependent urea and citrulline synthesis were increased significantly in isolated mitochondria and in liver slices; the activities of carbamoyl phosphate synthetase and arginase were unchanged and increased, respectively. Glutamine was not a precursor in the carbamoyl phosphate synthetase system, suggesting that the glutamine effect is an indirect one and that glutamine requires prior hydrolysis. Increased mitochondrial citrulline synthesis was associated with enhanced oxygen consumption, suggesting glutamine acts both as a nitrogen and fuel source. Hepatic phosphate-dependent glutaminase was elevated by chronic acidosis. The results indicate that the acidosis-induced reduction in ureagenesis and reversal from glutamine uptake to release observed in vivo are not reflections of corresponding changes in the hepatic enzyme content. Rather, when available, glutamine readily supports ureagenesis, suggesting a close coupling of hepatic glutaminase flux with citrulline synthesis.  相似文献   

11.
1. The mitochondrial malate dehydrogenase from rat liver has been purified to a state of homogeneity as judged by starch-gel electrophoresis and the cytoplasmic isoenzyme has been obtained in a partically purified state. 2. Inhibition of the isoenzymes by sulphite has been studied. 3. In mitochondria loaded with sulphite, the catalytic activity of the (partially inhibited) internal malate dehydrogenase has been measured by addition of oxaloacetate to the suspension medium and observation of the consequent decrease in fluorescence of NADH. 4. Addition of mitochondrial malate dehydrogenase to suspensions of mitochondria loaded with sulphite resulted in an increase in the level of intramitochondrial enzymic activity as measured by the above technique. Addition of the cytoplasmic isoenzyme did not result in such an increase. 5. These results show that mitochondria in suspension are permeable to the mitochondrial malate dehydrogenase but not to the cytoplasmic isoenzyme. 6. This conclusion has been confirmed by direct measurement of a decrease of enzyme activity in solution and an increase inside the mitochondria after incubation of organelles in solutions containing mitochondrial malate dehydrogenase. No such effect was observed with the cytoplasmic isoenzyme. 7. Some features of the permeation process have been studied.  相似文献   

12.
1. A method was devised to allow determination of intramitochondrial aspartate amino-transferase activity in suspensions of intact mitochondria. 2. Addition of purified rat liver mitochondrial aspartate aminotransferase to suspensions of rat liver mitochondria caused an apparent increase in the intramitochondrial enzyme activity. No increase was observed when the mitochondria were preincubated with the purified cytoplasmic isoenzyme. 3. These results suggest that mitochondrial aspartate aminotransferase, but not the cytoplasmic isoenzyme, is able to pass from solution into the matrix of intact rat liver mitochondria in vitro. 4. This system may provide a model for studies of the little-understood processes by which cytoplasmically synthesized components are incorporated into mitochondria in vivo.  相似文献   

13.
When electrophoresed on polyacrylamide gels in the presence of sodium lauryl sulfate, highly purified rat renal phosphate-dependent glutaminase exhibits subunits which range in molecular weight from 57,000 to 75,000. Peptide mapping of the separated subunits following limited proteolysis in the presence of sodium lauryl sulfate shows that all of the various subunits are related in structure. The glutaminase, immunoprecipitated from Triton X-100-solubilized mitochondria, is composed primarily of subunits which have molecular weights of 83,000. In addition, the series of smaller subunits is generated during storage of the Triton-solubilized glutaminase at 4 degrees C. These results indicate that the heterogeneity of subunit size found in the purified glutaminase results from a noninactivating partial proteolysis of the native form of the enzyme.  相似文献   

14.
Glutamate and aspartate transport in rat brain mitochondria   总被引:11,自引:4,他引:7       下载免费PDF全文
1. Rat brain mitochondria did not swell in iso-osmotic solutions of ammonium or potassium (plus valinomycin) glutamate or aspartate, with or without addition of uncouplers. 2. Glutamate was able to reduce intramitochondrial NAD(P)(+); aspartate was able to cause partial re-oxidation. 3. These effects were inhibited by threo-hydroxy-aspartate in whole but not in lysed mitochondria. 4. The existence of a ;malate-aspartate shuttle' for the oxidation of extramitochondrial NADH was demonstrated. This shuttle requires the net exchange of glutamate for aspartate across the mitochondrial membrane. 5. Extramitochondrial glutamate did not inhibit intramitochondrial glutaminase under conditions in which the inhibition in lysed mitochondria was virtually complete. 6. The glutaminase activity of these mitochondria was not energy-dependent. 7. We conclude that these mitochondria do not possess a glutamate-hydroxyl antiporter similar to that of liver mitochondria nor a glutamate-glutamine antiporter similar to that of pig kidney mitochondria, but that they do possess a glutamate-aspartate antiporter.  相似文献   

15.
Beef liver mitochondrial fraction showed LDH activity (1.76 +/- 0.25 U/g pellet). Sixty seven% of the initial mitochondrial pellet LDH activity (almost M4 isoenzyme) was released when suspended in NaCl 0.15 M. When the washed particles were sonicated in a 0.15 M NaCl medium, the solubilized LDH activity (all five isoenzymes as cytosoluble fraction) was 5-fold higher than the initial pellet activity. The different isoenzymatic composition of intramitochondrial and externally bound forms of the enzyme should be taken into account when investigating the physiological role of intramitochondrial LDH. Beef liver cytosoluble LDH (very little content of M4 isoenzyme) showed no affinity for the beef liver mitochondrial fraction but purified M4-LDH isoenzyme was able to bind to the particulate fraction from the same source. This suggests an isoenzyme specificity for the interaction. The maximum amount of cytosoluble LDH bound to the mitochondrial fraction depends on the enzyme and the particulate fraction source. Therefore, binding capacity to the mitochondrial fraction depends not only on the net charge of LDH isoenzymes, which play a predominant role in the binding, but also on individual characteristics of the LDH isoenzymes and mitochondrial fractions from different sources. This suggests that electrostatic forces are not the only ones involved in the binding process.  相似文献   

16.
A membrane-associated form of phosphate-dependent glutaminase was derived from sonicated mitochondria and purified essentially free of gamma-glutamyl transpeptidase activity. Increasing concentrations of phosphate cause a sigmoidal activation of the membrane-bound glutaminase. Phosphate also causes a similar effect on the rate of glutaminase inactivation by the two affinity labels, L-2-amino-4-oxo-5-chloropentanoic acid and 6-diazo-5-oxo-L-norleucine, as observed previously for the solubilized and purified enzyme. Therefore the two forms of glutaminase undergo similar phosphate-induced changes in conformation. A sensitive radioactive assay was developed and used to determine the kinetics of glutamate inhibition of the membrane-associated glutaminase. The Km for glutamine decreases from 36 to 4 mM when the phosphate concentration is increased from 5 to 100 mM. Glutamate is a competitive inhibitor with respect to glutamine at both high and low concentrations of phosphate. However, the Ki for glutamate is increased from 5 to 52 mM with increasing phosphate concentration. Therefore glutamine and glutamate interact with the same site on the glutaminase, but the specificity of the site is determined by the available phosphate concentration.  相似文献   

17.
In lymphocytes of the rat, pyruvate kinase, phosphoenolpyruvate carboxykinase and NADP+-linked malate dehydrogenase (decarboxylating) are distributed almost exclusively in the cytosol whereas pyruvate carboxylase is distributed almost entirely in the mitochondria. For NAD+-linked malate dehydrogenase and aspartate aminotransferase approximately 80% and 40%, respectively, are in the cytosolic compartment. Since glutaminase is present in the mitochondria, glutamine is converted to malate within the mitochondria but further metabolism of the malate is likely to occur in the cytosol. Hence pyruvate produced from this malate, via oxaloacetate and phosphoenolpyruvate carboxykinase, may be rapidly converted to lactate, so restricting the entry of pyruvate into the mitochondria and explaining why very little glutamine is completely oxidised in these cells despite a high capacity of the Krebs cycle.  相似文献   

18.
6-Diazo-5-oxo-l-norleucine is both an effective affinity label and a substrate for the rat renal phosphate-dependent glutaminase. Both reactions exhibit a similar phosphate-dependent activation profile. Under the conditions tested, hydrolysis of the diazoketone to yield l-glutamate occurs at a rate approximately 1000-fold greater than the rate of enzyme inactivation. In the presence of phosphate, 6-diazo-5-oxo-l-[6-14C]norleucine interacts convalently with the glutaminase. Glutamate protects against inactivation and proportionately reduces the extent of [6-14C]diazoketone binding. The stoichiometry of binding was also proportional to the specific activity of the more labile protomeric form of the glutaminase. With the most active preparation, the normalized stoichiometry approached 1 mol/mol of glutaminase subunit. Tryptic peptide mapping indicates that [6-14C]diazoketone binding is localized to a single tryptic peptide. These results indicate that 6-diazo-5-oxo-l-[6-14C]norleucine interacts specifically with a catalytically active group that is located at the glutamine binding site of the phosphate-dependent glutaminase.  相似文献   

19.
NH4Cl-induced acidosis in rats resulted in renal enlargement and increase in activities of phosphate-dependent glutaminase and glutamic dehydrogenase. The renal enlargement was associated with protein synthesis but not deoxyribonucleic acid synthesis. In control rats histochemical activity of glutamic dehydrogenase was seen dominantly in the proximal straight tubule. In acidotic rats high activity was noted in the proximal convoluted tubule as well as in the proximal straight tubule. By electron microscopy reaction product was in mitochondria. The results suggest that urine ammonia is produced in mitochondria of epithelial cells in the proximal straight tubule in both normal and acidotic rats. Increased enzyme activity in acidotic rats is largely associated with epithelial cells of the proximal convoluted tubule.  相似文献   

20.
gamma-Glutamyl transpeptidase, present in various mammalian tissues, transfers the gamma-glutamyl moiety of glutathione to a variety of acceptor amino acids and peptides. This enzyme has been purified from human kidney cortex about 740-fold to a specific activity of 200 units/mg of protein. The purification steps involved incubation of the homogenate at 37 degrees followed by centrifugation and extraction of the sediment with 0.1 M Tris-HCl buffer, pH 8.0, containing 1% sodium deoxycholate; batchwise absorption on DEAE-cellulose; DEAE-cellulose (DE52) column chromatography; Sephadex G-200 gel filtration; and affinity chromatography using concanavalin A insolubilized on beaded Agarose. Detergents were used throughout the purification of the enzyme. The purified enzyme separated into three protein bands, all of which had enzyme activity, on polyacrylamide disc electrophoresis in the presence of Triton X-100. The enzyme has an apparent molecular weight of about 90,000 as shown by Sephadex G-200 gel filtration, and appears to be a tetramer with subunits of molecular weights of about 21,000. The Km for gamma-glutamyl transpeptidase using the artificial substrate, gamma-glutamyl-p-nitroanilide, with glycylglycine as the acceptor amino acid was found to be about 0.8 mM. The optimum pH for the enzyme activity is 8.2 and the isoelectric point is 4.5. Both GSH and GSSG competitively inhibited the activity of gamma-glutamyl transpeptidase when gamma-glutamyl-p-nitroanilide was used as the substrate. Treatment of the purified enzyme with papain has no effect on the enzyme activity or mobility on polyacrylamide disc electrophoresis. The purified gamma-glutamyl transpeptidase had no phosphate-independent glutaminase activity. The ratio of gamma-glutamyl transpeptidase to phosphate-independent glutaminase changed significantly through the initial steps of gamma-glutamyl transpeptidase purification. These studies indicate that the transpeptidase and phosphate-independent glutaminase activities are not exhibited by the same protein in human kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号