首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Phosphate-activated glutaminase (EC 3.5.1.2; l-glutamine amidohydrolase) purified from pig kidney and brain is activated by CoA and short-chain acyl-CoA derivatives. Acetyl-CoA is the most powerful activator (K(A) about 0.2mm). Acetyl-CoA is maximally effective in the absence of other activating anions such as phosphate and citrate, and at low glutamine concentrations. The negative co-operative substrate activation observed at pH7 becomes more pronounced in the presence of acetyl-CoA. Similarly to phosphate, acetyl-CoA produces at high protein concentrations a different type of activation, which is time-dependent, depends on protein concentration and is accompanied by an increase in the sedimentation coefficient. Acetyl-CoA, phosphate and citrate appear to have binding sites in common. No significant difference was observed between kidney and brain phosphate-activated glutaminase.  相似文献   

5.
6.
7.
8.
Kinetic properties of glutaminase from pig renal cortex   总被引:5,自引:0,他引:5  
  相似文献   

9.
Cytochemical and ultrastructural analysis of wild-type cells of Saccharomyces cerevisiac, grown aerobically in a glucose-limited chemostat, shows that cytochrome c peroxidase is localized between the membranes of the cristae, that is, in the intracristal space. This enzyme is thus positioned appropriately within the organelle to act as an alternate terminal oxidase for the respiratory chain. The proximity of the peroxidase to major sites of generation of its two substrates may account for the small leakage of hydrogen peroxide from yeast mitochondria, as compared with the larger outflow from mammalian mitochondria.In the cytoplasmic petite mutant, gross distortion of promitochondrial membrane arrangement is evident. Nevertheless, cytochrome c peroxidase activity is present in the same amounts as is found in wildtype cell, and is localized predominantly within annuli of membrane which constitute the promitochondria in these cells.No unequivocal evidence was obtained for the localization of catalase in microbodies or other organelles in either wild-type or petite cells.  相似文献   

10.
1. Fatty n-acyl-CoA derivatives in the concentration range 5muM-0.1mM and with 5-18 fatty acyl carbons have dual effects on phosphate-activated glutaminase from pig brain and kidney. Generally, fatty acyl-CoA derivatives in low concentrations activate the enzyme, but inhibit at higher concentrations; phosphate and citrate potentiate the activation, displaying positive co-operatively, and protect against inactivation. The fatty acyl-CoA derivatives affect glutaminase similarly to Bromothymol Blue, but differently from acetyl-CoA, which activates the enzyme only at very low phosphate or citrate concentrations. 2. Saturated fatty acyl-CoA derivatives, with 5-10 fatty acyl carbons, only activate the enzyme in the concentration range 0-0.1 mM. When the fatty acyl chain is elongated, the fatty acyl-CoA derivatives gradually become more powerful inhibitors of glutaminase at the expense of their activating capacity. In particular, palmitoyl-CoA and stearoyl-CoA are strong inhibitors at concentrations (10 muM) at which the corresponding free fatty acids and fatty acyl-carnitine derivatives have no effect. 3. The unsaturated fatty acyl-CoA derivatives, oleoyl-CoA and linoleoyl-CoA, behave as potent activators in the lower part of the concentration range tested (0-0.05mM), and as inhibitors in the upper part of this range (0.02-0.10mM). Oleic acid and linoleic acid have similar properties, but their activating capacity is less pronounced. 4. Phosphate both prevented and reversed the inhibition, but no restoration of activity was possible once the enzyme became inactivated. 5. By changing the pH from 7.0 to 8.0 the activating capacity of the fatty acyl-CoA derivatives is increased, as is their concentration range for activation. 6. The fatty acyl-CoA derivatives are somewhat more potent activator for brain glutaminase, but otherwise they affect the two enzymes similarly.  相似文献   

11.
The steady-state concentrations of glutamine, glutamate and ammonia in the kidney cells might regulate the rate of renal xanthine dehydrogenase activity. Both glutamate and glutamine were found to be effective inhibitors of the renal xanthine dehydrogenase activity in vivo. The inhibition by glutamate depends essentially on the glutaminase inhibition.  相似文献   

12.
Chicken gizzard has been considered to be an exceptional organ of smooth musculature in which a myoglobin is present. Since the characterization of the gizzard myoglobin has to date, been very incomplete, we studied the structures and functions in detail. The main component, which constituted roughly 90% of the protein, isolated by chromatofocusing, was homogeneous by electrophoretic and ultracentrifugal analyses. The molecular weight was consistently 1.8 X 10(4) by equilibrium sedimentation and iron analysis, and the isoelectric point was 7.8. Spectroscopic properties of the oxy-, carboxy- and deoxy-derivatives were typical of myoglobin. The oxygenation equilibria were also typical of myoglobin, showing neither homotropic nor heterotropic allosteric interactions, and the temperature-dependence (delta H0) was estimated as -16.6 kcal/mol. All these characteristics of the gizzard myoglobin were identical with those of the protein from the skeletal muscles. The amino acid composition and peptide mapping results also concluded that identical myoglobin was present in the gizzard, skeletal and probably cardiac muscles.  相似文献   

13.
14.
The phosphate independent glutaminase is contained in the brush border membrane of the rat kidney proximal tubule cells. This glutaminase activity cofractionates with the brush border membrane marker activities, alkaline phosphatase and γ-glutamyltranspeptidase, during differential centrifugation. About 30% of these activities are recovered with the mitochondrial fraction, the remainder is pelleted in the heavy microsomal fraction. The phosphate independent glutaminase in both fractions bands, during isopycnic centrifugation, with a mean density of 1.16–1.17 and is coincident with both brush border membrane marker activities. The isolation of intact, individual kidney cells was accomplished by initial perfusion of the kidneys in situ with a collagenase-papain solution followed by a brief incubation in the same enzyme solution. Incubation of isolated cells with a higher concentration of papain results in selective release of the phosphate independent glutaminase. The fact that this occurs without appreciable release of a cytoplasmic marker activity, lactate dehydrogenase, suggests that the phosphate independent glutaminase may be localized on the external surface of the kidney cells.  相似文献   

15.
Conditions for activity of glutaminase in kidney mitochondria   总被引:7,自引:6,他引:1       下载免费PDF全文
1. Rat kidney mitochondria oxidize glutamate very slowly. Addition of glutamine stimulates this respiration two- to three-fold. Addition of glutamate also stimulates respiration in the presence of glutamine. 2. By measuring mitochondrial swelling in iso-osmotic solutions of glutamine or of ammonium glutamate it was shown that glutamine penetrates the mitochondrial membrane rapidly whereas ammonium glutamate penetrates very slowly. 3. Experiments in which reduction of NAD(P)+ was measured in preparations of intact and broken mitochondria indicated that glutamate dehydrogenase shows the phenomenon of `latency'. On the addition of glutamine rapid reduction of nicotinamide nucleotides in intact mitochondria was obtained. 4. During the action of glutaminase there is an accumulation of glutamate inside the mitochondria. 5. When the mitochondria were suspended in a medium containing glutamine, Pi and rotenone the rate of production of ammonia was stimulated by the addition of a substrate, e.g. succinate. Addition of an uncoupler or antimycin A abolished this stimulation. 6. The effects of succinate and uncoupler were especially pronounced in the presence of glutamate, which is an inhibitor of glutaminase activity by competition with Pi. 7. Determination of the enzyme activity in media at different pH values showed that the optimum pH for glutaminase activity in the preparation of broken mitochondria was 8, whereas for intact mitochondria it was dependent on the energy state. In the presence of succinate as an energy source it was pH 8.5, but in the presence of uncoupler or antimycin A it was 9. This displacement of the pH optimum to a higher value was especially pronounced in the presence of both glutamate and uncoupler. 8. If nigericin was present in potassium chloride medium the pH optimum for enzyme activity in intact non-respiring mitochondria was nearly the same as in the preparation of broken mitochondria; however, its presence in K+-free medium displaced the pH optimum for glutaminase activity to a very high value. 9. It is postulated that because of low permeability of the kidney mitochondrial membrane to glutamate the latter accumulates inside the mitochondria, and that this leads to the inhibition of the enzyme by competition with Pi and also by lowering the pH of the intramitochondrial space. With succinate as substrate for respiration there is an outward translocation of H+ ions, which together with accumulation of Pi increases glutaminase activity. Translocation of K+ ions inward increases the enzyme activity, perhaps by increasing the pH of the internal spaces and causing an accumulation of Pi. 10. The importance of the location of the enzyme in the mitochondria in relation to its biological function and conditions for activity is discussed.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号