共查询到20条相似文献,搜索用时 15 毫秒
1.
van Remoortere A Vermeer HJ van Roon AM Langermans JA Thomas AW Wilson RA van die I van den Eijnden DH Agoston K Kérèkgyarto J Vliegenthart JF Kamerling JP van dam GJ Hokke CH Deelder AM 《Experimental parasitology》2003,105(3-4):219-225
The development of the humoral anti-glycan immune response of chimpanzees, either or not vaccinated with radiation-attenuated Schistosoma mansoni cercariae, was followed during 1 year after infection with S. mansoni. During the acute phase of infection both the vaccinated and the control chimpanzees produce high levels of immunoglobulin G (IgG) antibodies against carbohydrate structures that are characteristic for schistosomes carrying the Fucalpha1-3GalNAc and Fucalpha1-2Fucalpha1-3GlcNAc motifs, but not to the more widespread occurring structures GalNAcbeta1-4GlcNAc, GalNAcbeta1-4(Fucalpha1-3)GlcNAc, and Galbeta1-4(Fucalpha1-3)GlcNAc (Lewis(x)). In addition, high levels of IgM antibodies were found against the trimeric Lewis(x) epitope. Apparently, the schistosome-characteristic carbohydrate structures are dominant epitopes in the anti-glycan humoral immune response of the chimpanzees. All chimpanzees showed an increase in the level of antibodies against most of the carbohydrate structures tested directly after vaccination, peaking at challenge time and during the acute phase of infection. With the exception of anti-F-LDN antibody responses, the anti-carbohydrate antibody responses upon schistosome infection of the vaccinated animals were muted in comparison to the control animals. 相似文献
2.
3.
Schistosoma mansoni is a parasitic trematode infecting humans and animals. We reported previously that adult S. mansoni synthesizes complex type biantennary N-glycans bearing the terminal sequence GalNAc beta 1-->4GlcNAc-R (lacdiNAc or LDN). We now report that mice infected with S. mansoni generate antibodies to LDN, as assessed by ELISA using a synthetic neoglycoconjugate containing LDN sequences. Sera of infected mice, but not uninfected mice, contained primarily IgM and low levels of IgG toward LDN. Interestingly, these antibodies also recognize bovine milk glycoproteins, which are known to express LDN sequences. The anti-LDN in sera of infected mice were affinity purified on immobilized bovine milk glycoproteins and shown to specifically bind LDN. An IgM monoclonal antibody (SMLDN1.1) was derived from the spleens of S. mansoni infected mice and shown to specifically bind LDN determinants. Immunoblots with affinity purified anti-LDN and SMLDN1.1 demonstrate that LDN sequences occur primarily on N-glycans of numerous glycoproteins of adult S. mansoni. LDN sequences are also expressed in many glycoproteins from S. japonicum and S. haematobium. The availability of antibody to LDN determinants should aid in defining the roles of these glycans in helminth and vertebrate biology. 相似文献
4.
El-Fasakhany FM Uchimura K Kannagi R Muramatsu T 《The Journal of biological chemistry》2001,276(29):26988-26994
Based on sequence homology with the previously cloned human cerebroside sulfotransferase (CST) cDNA, a novel sulfotransferase was cloned by screening a human fetal brain cDNA library. The novel sulfotransferase gene was present on human chromosome 11q13; the location was different from human CST and from that of the recently cloned human beta-Gal 3'-sulfotransferase (GP3ST). The isolated cDNA contained an open reading frame that encoded a predicted protein of 431 amino acid residues with type II transmembrane topology. The amino acid sequence showed 33% identity with that of human CST and 38% with that of human GP3ST. The recombinant enzyme expressed in Chinese hamster ovary cells catalyzed transfer of sulfate to position 3 of non-reducing beta-galactosyl residues in Galbeta1-4GlcNAc. Type 2 chains served as good acceptors, whereas type 1 chains served as poor acceptors, and intermediate activity was found toward Galbeta1-3GalNAc. Therefore, the substrate specificity was different from that of GP3ST. CST activity was not detected in the newly cloned enzyme. Northern blotting analysis showed that the sulfotransferase mRNA was strongly expressed in the thyroid and moderately expressed in the brain, heart, kidney, and spinal cord. Co-transfection of the enzyme cDNA and fucosyltransferase III into COS-7 cells resulted in expression of (SO(4)-3)Galbeta1-4(Fucalpha1-3)GlcNAc and a small amount of (SO(4)-3)Galbeta1-3(Fucalpha1-4)GlcNAc. These results indicated that the newly cloned enzyme is a novel Gal-3-O-sulfotransferase and is involved in biosynthesis of the (SO(4)-3)Galbeta1-4(Fucalpha1-3)GlcNAc structure. 相似文献
5.
O Renkonen A Lepp?nen R Niemel? A Vilkman J Helin L Penttil? H Maaheimo A Seppo J Suopanki 《Biochimie et biologie cellulaire》1992,70(1):86-89
Four radiolabeled pentasaccharides, GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4GlcNAc, Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc, GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)Gal beta 1-4Glc, and Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc, were prepared in virtually pure form. They were obtained by partial enzymic beta 1,4-galactosylations of the appropriate tetrasaccharide acceptors or by partial enzymic degalactosylations of the appropriate hexasaccharides, followed by paper chromatographic separations. All four pentasaccharides contain two nonidentical distal branches, making them valuable primers for enzymatic in vitro synthesis of larger oligo(N-acetyllactosaminoglycans). 相似文献
6.
O Renkonen J Helin A Vainio R Niemel? L Penttil? P Hilden 《Biochimie et biologie cellulaire》1990,68(7-8):1032-1036
The branch specificity of Escherichia coli beta-galactosidase (EC 3.2.1.23) was studied by analyzing the cleavage of the branched hexasaccharide Gal beta 1-4GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)[14C(U)]Gal beta 1-4GlcNAc (1). This hexasaccharide was cleaved to pentasaccharides Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6) [14C(U)]Gal beta 1-4GlcNAc (3) and GlcNAc beta 1-3(Gal-beta 1-4GlcNAc beta 1-6) [14C(U)]Gal beta 1-4GlcNAc (4) without any appreciable branch specificity. Even the further conversions of the pentasaccharides 3 and 4 into the tetrasaccharide GlcNAc beta 1-3(GlcNAc beta 1-6)[14C(U)]Gal beta 1-4GlcNAc seemed to proceed at similar rates, without any appreciable branch specificity. In marked contrast to the hexasaccharide 1, the pentasaccharide Gal beta 1-4GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)[14C(U)]Gal (2), missing the reducing end GlcNAc, is known to be cleaved selectively at the 6-branch; this finding was confirmed in the present study. The different behaviour of hexasaccharide 1 and pentasaccharide 2 reflects differences in the reactivity of their 6-branches; the preferred conformations of these closely related molecules may be quite different. 相似文献
7.
8.
Kawar ZS Haslam SM Morris HR Dell A Cummings RD 《The Journal of biological chemistry》2005,280(13):12810-12819
Glycans containing the GalNAcbeta1-4GlcNAc (LacdiNAc or LDN) motif are expressed by many invertebrates, but this motif also occurs in vertebrates and is found on several mammalian glycoprotein hormones. This motif contrasts with the more commonly occurring Galbeta1-4GlcNAc (LacNAc or LN) motif. To better understand LDN biosynthesis and regulation, we stably expressed the cDNA encoding the Caenorhabditis elegans beta1,4-N-acetylgalactosaminyltransferase (GalNAcT), which generates LDN in vitro, in Chinese hamster ovary (CHO) Lec8 cells, to establish L8-GalNAcT CHO cells. The glycan structures from these cells were determined by mass spectrometry and linkage analysis. The L8-GalNAcT cell line produces complex-type N-glycans quantitatively bearing LDN structures on their antennae. Unexpectedly, most of these complex-type N-glycans contain novel "poly-LDN" structures consisting of repeating LDN motifs (-3GalNAcbeta1-4GlcNAcbeta1-)n. These novel structures are in contrast to the well known poly-LN structures consisting of repeating LN motifs (-3Galbeta1-4GlcNAcbeta1-)n. We also stably expressed human alpha1,3-fucosyltransferase IX in the L8-GalNAcT cells to establish a new cell line, L8-GalNAcT-FucT. These cells produce complex-type N-glycans with alpha1,3-fucosylated LDN (LDNF) GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-R as well as novel "poly-LDNF" structures (-3GalNAcbeta1-4(Fucalpha 1-3)GlcNAcbeta1-)n. The ability of these cell lines to generate glycoprotein hormones with LDN-containing N-glycans was studied by expressing a recombinant form of the common alpha-subunit in L8-GalNAcT cells. The alpha-subunit N-glycans carried LDN structures, which were further modified by co-expression of the human GalNAc 4-sulfotransferase I, which generates SO4-4GalNAcbeta1-4GlcNAc-R. Thus, the generation of these stable mammalian cells will facilitate future studies on the biological activities and properties of LDN-related structures in glycoproteins. 相似文献
9.
A Seppo L Penttil? A Makkonen A Lepp?nen R Niemel? J J?ntti J Helin O Renkonen 《Biochimie et biologie cellulaire》1990,68(1):44-53
GlcNAc beta 1-3(GlcNAc beta 1-6) [14C(U)]Gal and GlcNAc beta 1-3(GlcNAc beta 1-6)[14C(U)]Gal beta 1-4GlcNAc were prepared by in vitro synthesis. They were characterized by enzymatic sequencing, by partial acid hydrolysis, and by periodate oxidation experiments. The two saccharides were isolated also from partial acid hydrolysates of metabolically labeled poly-N-acetyllactosaminoglycans of murine embryonal carcinoma cells (line PC 13). The tetrasaccharide was retarded in a column of agarose-linked wheat germ agglutinin; the trisaccharide was strongly bound. Chromatography in this column separated the trisaccharide into two distinct peaks, which represented interconvertible molecules. Together with our previous data on linear teratocarcinoma saccharides, these findings show that affinity chromatography with immobilized wheat germ agglutinin can be advantageously used in fractionating radiolabeled oligo-N-acetyllactosaminoglycans and saccharides related to them. 相似文献
10.
11.
The sialyloligosaccharide, NeuAc alpha 2-3Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc (LS-tetrasaccharide a), a minor component of human milk, is obtained in relatively large quantities from autohydrolysates of the major milk disialyloligosaccharide, NeuAc alpha 2-3Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc (disialyllacto-N-tetraose). Rabbits immunized with an oligosaccharide-protein conjugate prepared from keyhole limpet hemocyanin and LS-tetrasaccharide a produce antibodies directed against the corresponding oligosaccharide alditol. The anti-LS-tetrasaccharide a sera bind 3H-labeled LS-tetrasaccharide a in a direct-binding radioimmunoassay on nitrocellulose filters. The specificities of these antibodies are determined by comparing inhibitory activities of structurally related oligosaccharides. Strong hapten-antibody binding (Ka greater than 10(6) M-1) requires sialic acid linked alpha 2-3 to the nonreducing terminal galactose residue of reduced lacto-N-tetraose (Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4GlcOH). Specificities of antibodies prepared against keyhole limpet hemocyanin conjugates of LS-tetrasaccharide b (Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc) and LS-tetrasaccharide c (NeuAc alpha 2-6Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc) differ only slightly from rabbit antibodies prepared against the corresponding bovine serum albumin conjugates described previously [D. F. Smith and V. Ginsburg (1980) J. Biol. Chem. 255, 55-59]. 相似文献
12.
A A Bergwerff J E Thomas-Oates J van Oostrum J P Kamerling J F Vliegenthart 《FEBS letters》1992,314(3):389-394
Structural analysis of enzymically released N-linked carbohydrate chains of human urokinase (urinary-type plasminogen activator) by 1H NMR spectroscopy and FAB-MS demonstrated that the N-linked oligosaccharides on the only N-glycosylation site contain diantennary structures with the novel GalNAc beta (1-4) [Fuc alpha (1-3)]GlcNAc beta (1-2) element in the upper or the lower branch. 相似文献
13.
Natunen J Aitio O Helin J Maaheimo H Niemelä R Heikkinen S Renkonen O 《Glycobiology》2001,11(3):209-216
Human alpha3-fucosyltransferases (Fuc-Ts) are known to convert N-acetyllactosamine to Galbeta1-4(Fucalpha1-3)GlcNAc (Lewis x antigen); some of them transfer fucose also to GalNAcbeta1-4GlcNAc, generating GalNAcbeta1-4(Fucalpha1-3)GlcNAc determinants. Here, we report that recombinant forms of Fuc-TV and Fuc-TVI as well as Fuc-Ts of human milk converted chitin oligosaccharides of 2-4 GlcNAc units efficiently to products containing a GlcNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-4R determinant at the nonreducing terminus. The product structures were identified by mass spectrometry and nuclear magnetic resonance experiments; rotating frame nuclear Overhauser spectroscopy data suggested that the fucose and the distal N-acetylglucosamine are stacked in the same way as the fucose and the distal galactose of the Lewis x determinant. The products closely resembled a nodulation factor of Mesorhizobium loti but were distinct from nodulation signals generated by NodZ-enzyme. 相似文献
14.
Fucose is a major constituent of the protein- and lipid-linked glycans of
the various life-cycle stages of schistosomes. These fucosylated glycans
are highly antigenic and seem to play a role in the pathology of
schistosomiasis. In this article we describe the identification and
characterization of two fucosyltransferases (FucTs) in cercariae of the
avian schistosome Trichobilharzia ocellata, a GDP-Fuc:[Galbeta1--
>4]GlcNAcbeta-R alpha1-->3-FucT and a novel GDP-Fuc:Fucalpha-R
alpha1-- >2-FucT. Triton X-100 extracts of cercariae were assayed for
FucT activity using a variety of acceptor substrates. Type 1 chain
(Galbeta1- ->3GlcNAc) based compounds were poor acceptors, whereas those
based on a type 2 chain (Galbeta1-->4GlcNAc), whether
alpha2'-fucosylated, alpha3'-sialylated, or unsubstituted, and whether
present as oligosaccharide or contained in a glycopeptide or glycoprotein,
all served as acceptor substrates. In this respect the schistosomal alpha3-
FucT resembles human FucT V and VI rather than other known FucTs. N-
ethylmaleimide, an inhibitor of several human FucTs, had no effect on the
activity of the schistosomal alpha3-FucT, whereas GDP-beta-S was strongly
inhibitory. Large scale incubations were carried out with
Galbeta1-->4GlcNAc, GalNAcbeta1-->4GlcNAcbeta-O -(CH2)8COOCH3 and
Fucalpha1-->3GlcNAcbeta1-->2Man as acceptor substrates and the
products of the incubations were isolated using a sequence of
chromatographic techniques. By methylation analysis and 2D-TOCSY and
ROESY1H-NMR spectroscopy the products formed were shown to be Galbeta1--
>4[Fucalpha1-->2Fucalpha1-->3]GlcNAc,
GalNAcbeta1-->4[Fucalpha1-- >2Fucalpha1-->3]GlcNAcbe
ta-O-(CH2)8COOCH3, and Fucalpha1-->2Fucalpha1--
>3GlcNAcbeta1-->2Man, respectively. It is concluded that the alpha2-
FucT and alpha3-FucT are involved in the biosynthesis of the (oligomeric)
Lewisx sequences and the Fucalpha1-->2Fucalpha1-->3GlcNAc structural
element that have been described on schistosomal glycoconjugates.
相似文献
15.
16.
The lacdiNAc sequence GalNAcß1 相似文献
17.
S W Homans 《Glycobiology》1992,2(2):153-159
Two new homonuclear three-dimensional NMR techniques are described for the simplification of proton resonance assignment in oligosaccharides, namely HOHAHA-COSY and ROESY-COSY. The former technique is of value in the resonance assignment of gluco-configuration monosaccharide residues, whereas the latter is more suited to resonance assignment of galacto-configuration monosaccharide residues. The value of these techniques is illustrated by application to the proton resonance assignment of the pentasaccharide Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-3 Gal beta 1-4Glc, a compound which exhibits a variety of assignment problems due to severe cross-peak overlap in conventional COSY or HOHAHA spectra. 相似文献
18.
We describe herein the high resolution refined x-ray structure of a trisaccharide, which is a part of the N-acetyllactosamine type glycan found in the majority of the N-glycosyl-proteins, complexed to the isolectin I. According to the potentials used by Imberty et al. (Imburty, A., Gerber, S., Tran, V., and Pérez, S. (1990) Glycoconjugate J. 7, 27-54) the trisaccharide is in a low-energy state. Only one mannose moiety establishes direct hydrogen bonds with the lectin, as it is the case for monosaccharide-lectin complexes. The comparison of our trisaccharide with the one determined in solution by Warin et al. (Warin, V., Baert, F., Fouret, R., Strecker, G., Fournet, B., and Montreuil, J. (1979) Carbohydr. Res. 76, 11-22) shows that both adopt roughly the same conformation. The differences in these two sugar structures allow us to assign the role of water molecules present in the vicinity of our trisaccharide for the stabilization of this sugar-lectin complex. 相似文献
19.
A M Wu S R Lin L K Chin L P Chow J Y Lin 《The Journal of biological chemistry》1992,267(27):19130-19139
The combining site of the nontoxic carbohydrate binding protein (Abrus precatorius agglutinin, APA) purified from the needs of Abrus precatorius (Jequirity bean), was studied by quantitative precipitin and precipitin-inhibition assays. Of 26 glycoproteins and polysaccharides tested, all, except sialic acid-containing glycoproteins and desialized ovine salivary glycoproteins, reacted strongly with the lectin, and precipitated over 70% of the lectin added, indicating that APA has a broad range of affinity and recognizes (internal) Gal beta 1----sequences of carbohydrate chains. The strong reaction with desialized porcine and rat salivary glycoproteins as well as pneumococcus type XIV polysaccharide suggests that APA has affinity for one or more of the following carbohydrate sequences: Thomsen-Friedenreich (T, Gal beta 1----3GalNAc), blood group precursor type I and/or type II (Gal beta 1----3/4GlcNAc) disaccharide determinants of complex carbohydrates. Among the oligosaccharides tested, the T structure was the best inhibitor; it was 2.4 and 3.2 times more active than type II and type I sequences, respectively. The blood group I Ma-active trisaccharide, Gal beta 1----4GlcNAc beta 1----6Gal, was about as active as the corresponding disaccharide (II). From the above results, we conclude that the size of the combining site of the A. precatorius agglutinin is probably as large as a disaccharide and most strongly complementary to the Gal beta 1----3GalNAc (T determinant) sequence. The carbohydrate specificities of this lectin will be further investigated once the related oligosaccharide structures become available. 相似文献
20.
Manfred Wuhrer Sven R Kantelhardt Roger D Dennis Michael J Doenhoff Günter Lochnit Rudolf Geyer 《European journal of biochemistry》2002,269(2):481-493
The carbohydrate moieties of glycosphingolipids from eggs of the human parasite, Schistosoma mansoni, were enzymatically released, labelled with 2-aminopyridine (PA), fractionated and analysed by linkage analysis, partial hydrolysis, enzymatic cleavage, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano-electrospray ionization mass spectrometry. Apart from large, highly fucosylated structures with five to seven HexNAc residues, we found short, oligofucosylated species containing three to four HexNAc residues. Their structures have been determined as Fuc(alpha1-3)GalNAc(beta1-4)[ +/- Fuc (alpha1-3)]GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA, GalNAc(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)GlcNAc(beta1-3)GalNAc(beta1-4) Glc-PA, Fuc(alpha1-3)GalNAc(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-4) GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA, and Fuc(alpha1-3) GalNAc(beta1-4)[ +/- Fuc(alpha1-2) +/- Fuc(alpha1-2)Fuc(alpha1-3)]Glc NAc(beta1-3)GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA. The last structure exhibits a trifucosyl sidechain previously identified on the cercarial glycocalyx. These structures stress the importance of 3-fucosylated GalNAc as a terminal epitope in schistosome glycoconjugates. To what degree these glycans contribute to the pronounced antigenicity of S. mansoni egg glycolipids remains to be determined. In addition, we have identified the compounds GlcNAc(beta1-3)GalNAc(beta1-4)Glc-PA, Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3) GalNAc (beta1-4)Glc-PA, the latter of which is a Lewis X-pentasaccharide identical to that present on cercarial glycolipids, as well as Gal(beta1-3)GalNAc(1-4)Gal(1-4)Glc-PA, which corresponds to asialogangliotetraosylceramide and is most probably derived from the mammalian host. 相似文献