首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chloroplast ribosome dissociation factor (IF-3chl) has been identified in whole cell extracts of Euglena gracilis. This work represents the first report of an organellar ribosome dissociation factor. E. gracilis IF-3chl facilitates the dissociation of Escherichia coli ribosomes as demonstrated by sucrose density gradient analysis. Chloroplast IF-3 stimulates initiation complex formation on E. coli ribosomes with natural mRNA from the bacteriophage MS2. In addition, IF-3chl is effective in initiation complex formation with Euglena chloroplast or E. coli ribosomes in the presence of synthetic mRNA. IF-3chl is induced 12-fold by exposure of the cells to light. The chloroplast factor has been purified 30-fold by chromatography on DEAE-cellulose and phosphocellulose. The chromatographic properties of this factor differ considerably from those of prokaryotic ribosome dissociation factors.  相似文献   

2.
The mechanism of action of chain initiation factor 3 in translation was examined by using E. coli 70S ribosomes which were covalently crosslinked with dimethylsuberimidate. Crosslinked ribosomes were inactive in AUG-dependent fMet-tRNA binding, and were not stimulated by IF-3 in poly(U) translation. IF-3 is known to be required for maximal rates of amino acid incorporation with synthetic polynucleotides at 18 mM Mg2+. A direct interaction of IF-3 with 70S ribosomes was demonstrated by crosslinking 14C-labeled IF-3 to 70S ribosomes. The labeled factor was also crosslinked to 30S and 50S ribosomal subunits. A model is presented proposing the mechanism of action of IF-3 on 70S ribosomes.  相似文献   

3.
The bovine liver mitochondrial factor that promotes the binding of fMet-tRNA to mitochondrial ribosomes, initiation factor 2 (IF-2mt), has been identified in the postribosomal supernatant fraction of isolated liver mitochondria. This factor has been purified approximately 5,000-fold and present preparations are estimated to be about 10% pure. IF-2mt has an apparent molecular weight of about 140,000 as determined by gel filtration chromatography. IF-2mt is active in stimulating fMet-tRNA binding to Escherichia coli ribosomes but E. coli IF-2 is not active in promoting initiator tRNA binding to animal mitochondrial ribosomes. The IF-2mt-mediated binding of fMet-tRNAi(Met) to mitochondrial ribosomes is dependent on the presence of a message such as poly(A,U,G) and on GTP. Nonhydrolyzable analogs of GTP are 2-3-fold less effective in promoting initiation complex formation on mitochondrial ribosomes than is GTP suggesting that IF-2mt is capable of recycling to some extent under the current assay conditions.  相似文献   

4.
A method that permits the preparation of Euglena gracilis chloroplast 30 S ribosomal subunits that are largely free of endogenous initiation factors and that are active in the binding of fMet-tRNA in response to poly(A, U, G), has been developed. These 30 S subunits have been tested for activity in initiation complex formation with initiation factors from both procaryotes and eucaryotes. We have observed that Escherichia coli IF-2 binds fMet-tRNA nearly as well to Euglena chloroplast ribosomal subunits as it does to its homologous subunits. Neither wheat germ eIF-2 nor Euglena eIF-2A can bind fMet-tRNA efficiently to Euglena chloroplast or E. coli 30 S subunits although both are active with wheat germ 40 S ribosomal subunits. Euglena chloroplast 68 S ribosomes will also bind the initiator tRNA. Both E. coli IF-2 and E. coli IF-3 stimulate this reaction on chloroplast ribosomes with approximately the same efficiency as they do on their homologous ribosomes. E. coli IF-1 enhances the binding of fMet-tRNA to the chloroplast 68 S ribosomes when either IF-2 or IF-3 is limiting. The chloroplast ribosomes unlike E. coli ribosomes show considerable activity over a broad range of Mg2+ ion concentrations.  相似文献   

5.
Chromatography of partially purified preparations of Euglena gracilis chloroplast initiation factor 2 (IF-2chl) on gel filtration resins indicates that this factor is present in high molecular mass forms ranging from 200 to 700 kDa. The higher molecular weight complexes can be separated from the 200,000 Mr form of this factor by chromatography on DEAE-cellulose. Further purification indicates that the majority of the IF-2chl is present as dimeric, tetrameric, and probably hexameric complexes of polypeptides of 97,000-110,000 in molecular weight. In addition, one form consisting of subunits of about 200,000 Mr has been detected. All of these species are active in promoting fMet-tRNA binding to chloroplast 30 S subunits in a message-dependent reaction. Initiation complex formation promoted by IF-2chl requires the presence of GTP. Similar levels of binding are obtained when GTP is replaced by a nonhydrolyzable analog suggesting that IF-2chl is acting stoichiometrically rather than catalytically under the conditions used. The activity of this factor is stimulated by the presence of either Escherichia coli or chloroplast IF-3. None of the forms of IF-2chl detected is active on E. coli ribosomes.  相似文献   

6.
No alteration in the messenger specificity of initiation factor 3 (IF-3) is observed upon T4 phage infection of several strains of Escherichia coli. IF-3 present in the 1.0 m NH4Cl washes of ribosomes from T4-infected cells supports the translation of f2 RNA and T4 late mRNA with the same degree of efficiency as the IF-3 in the ribosomal washes obtained from uninfected cells. At high concentrations the ribosomal washes obtained from T4-infected cells are more inhibitory for both f2 RNA- and T4 late mRNA-directed protein synthesis than the ribosomal washes from uninfected cells. Furthermore, this increased inhibition is also observed in the poly(U)-directed synthesis of polyphenylalanine. These data suggest that translational controls exerted at the level of IF-3 probably do not account for the alterations in protein synthesis observed upon T4 infection.  相似文献   

7.
Bovine liver mitochondrial translational initiation factor 2 (IF-2mt) has been purified to near homogeneity. The scheme developed results in a 24,000-fold purification of the factor with about 26% recovery of activity. SDS-polyacrylamide gel electrophoresis indicates that IF-2mt has a subunit molecular mass of 85 kDa. IF-2mt promotes the binding of formyl(f)Met-tRNA to mitochondrial ribosomes but is inactive with the nonformylated derivative. IF-2mt is active on chloroplast 30 S ribosomal subunits, but IF-2chl has no activity in promoting fMet-tRNA binding to animal mitochondrial ribosomes. IF-2mt is sensitive to elevated temperatures and is inactivated by treatment with N-ethylmaleimide. It is partially protected from heat and N-ethylmaleimide inactivation by the presence of either GTP or GDP suggesting that guanine nucleotides may bind to this factor directly. The binding of fMet-tRNA to mitochondrial ribosomes requires the presence of GTP and is inhibited by GDP. DeoxyGTP is very effective in replacing GTP in promoting fMet-tRNA binding to ribosomes and some activity is also observed with ITP. No activity is observed with ATP, CTP, or UTP. Nonhydrolyzable analogs of GTP can promote formation of both 28 S and 55 S initiation complexes indicating that GTP hydrolysis is not required for subunit joining in the animal mitochondrial system.  相似文献   

8.
The high salt wash of rabbit reticulocyte ribosomes contains two separate factors which can partially reverse the inhibition of polypeptide chain initiation that results when reticulocyte lysate is incubated in the absence of hemin. These two factors, termed initiation factor (IF) 1 and IF-2, have been separated from each other by chromatography on diethylaminoethyl cellulose and then further purified on hydroxyapatite. IF-1 forms a GTP-dependent complex with methionyl-tRNAf that is retained on Millipore filters. When these factors are added to a system containing reconstituted, salt-extracted ribosomes, IF-1 promotes the binding of methionyl-tRNAf to the 40 S subunit, whereas IF-2 promotes the formation of 80 S initiation complexes from 40 S complexes. Addition of small amounts of one factor and a saturating level of the other to the unfractionated lysate and incubation in the absence of hemin produce an additive stimulation of protein synthesis. Each factor can also partially reverse the inhibitory effect of the hemin-controlled translational repressor. The implication of these findings for the mechanism of hemin control of protein synthesis in reticulocyte lysates is discussed.  相似文献   

9.
The chloroplast protein synthesizing factor responsible for the binding of aminoacyl-tRNA to ribosomes (EF-Tuchl) has been identified in extracts of Euglena gracilis. This factor is present in low levels when Euglena is grown in the dark and can be induced more than 10-fold when the organism is exposed to light. The induction of the chloroplast EF-Tu by light is inhibited by streptomycin, an inhibitor of protein synthesis on chloroplast ribosomes, indicating that protein synthesis within the chloroplast itself is required for the induction of this factor. The induction of the chloroplast EF-Tu by light is also inhibited by cycloheximide, a specific inhibitor of protein synthesis on cytoplasmic ribosomes. The effect of cycloheximide probably results from the inhibition of chloroplast ribosome synthesis which requires the synthesis of many proteins by the cytoplasmic translational system. Chloroplast EF-Tu cannot be induced by light in an aplastidic mutant (strain W3BUL) of Euglena which has neither significant plastid structure nor detectable chloroplast DNA. These data strongly suggest that the genetic information for chloroplast EF-Tu resides in the chloroplast genome and that this protein is synthesized within the organelle itself.  相似文献   

10.
Two forms of initiation factor 2, (IF-2α, Mr, 118,000 and IF-2β, Mr 90,000) have been isolated from Escherichia coli extracts and tested for their ability to support β-galactosidase synthesis in a phage DNA-directed in vitro protein synthesis system. Although both forms are equally active in supporting the binding of fMet-tRNA to ribosomes only IF-2α functions in β-galactosidase synthesis.  相似文献   

11.
Euglena gracilis chloroplast translational initiation factor 2 (IF-2chl) occurs in several complex forms ranging in molecular mass from 200 to 800 kDa. Subunits of 97 to greater than 200 kDa have been observed in these preparations. Two monoclonal antibodies were prepared against the 97-kDa subunits of IF-2chl. Both of these antibodies recognize all of the higher molecular mass forms of this factor, suggesting that these subunits are closely related. Gel filtration chromatography indicates that the higher molecular mass subunits of IF-2chl are present in the higher molecular mass complexes, whereas the smaller subunits are present in the 200-400 kDa forms of IF-2chl. Probing extracts of light-induced and dark-grown cells with the antibodies indicates that the light induction of this chloroplast factor results from the synthesis of new polypeptide rather than from the activation of an inactive precursor form of the protein. Both the higher and lower molecular mass subunits of IF-2chl are present in 30 S initiation complexes as indicated by Western analysis. The binding of IF-2chl to chloroplast 30 S ribosomal subunits requires the presence of GTP, but does not require fMet-tRNA, messenger RNA, or other initiation factors. Neither polyclonal nor monoclonal antibodies against E. gracilis IF-2chl cross-react with Escherichia coli IF-2 or with animal mitochondrial IF-2.  相似文献   

12.
Chloroplast ribosome-binding sites were identified on the plastidrbcL andpsbA mRNAs using toeprint analysis. TherbcL translation initiation domain is highly conserved and contains a prokaryotic Shine-Dalgarno (SD) sequence (GGAGG) located 4 to 12 nucleotides upstream of the initiator AUG. Toeprint analysis ofrbcL mRNA associated with plastid polysomes revealed strong toeprint signals 15 nucleotides downstream from the AUG indicating ribosome binding at the translation initiation site.Escherichia coli 30S ribosomes generated similar toeprint signals when mixed withrbcL mRNA in the presence of initiator tRNA. These results indicate that plastid SD sequences are functional in chloroplast translation initiation. ThepsbA initiator region lacks a SD sequence within 12 nucleotides of the initiator AUG. However, toeprint analysis of soluble and membrane polysome-associatedpsbA mRNA revealed ribosomes bound to the initiator region.E. coli 30S ribosomes did not associate with thepsbA translation initiation region.E. coli and chloroplast ribosomes bind to an upstream region which contains a conserved SD-like sequence. Therefore, translation initiation onpsbA mRNA may involve the transient binding of chloroplast ribosomes to this upstream SD-like sequence followed by scanning to localize the initiator AUG. Illumination 8-day-old dark-grown barley seedlings caused an increase in polysome-associatedpsbA mRNA and the abundance of initiation complexes bound topsbA mRNA. These results demonstrate that light modulates D1 translation initiation in plastids of older dark-grown barley seedlings.  相似文献   

13.
Initiation factor-free 30S subunits of E. coli ribosomes bind aminoacyl-tRNAs more efficiently than fMet-tRNA inff supMet . Elongator-tRNA binding was unaffected by IF-1 or IF-2 but was inhibited by IF-3. Their combination reduced this binding up to 40% and stimulated that of fMet-tRNA inff supMet . Unexpectedly, EF-T also prevented elongator-tRNA binding by complexing both to the 30S and to the aminoacyl-tRNAs. Using AUGU3 as mRNA, elongator-tRNAs competed with fMet-fRNA inff supMet and with tRNA inff supMet . fMet-tRNA inff supMet reacted with puromycin after addition of 50S subunits suggesting that it occupied the P site. EF-T directed binding of phe-tRNA to the 30S.AUGU3 complex at the A site only if fMet-tRNA inff supMet or tRNA inff supMet filled the P/E site. We propose that one function of EF-T may be to prevent the entry of aminoacyl-tRNAs into the 30S particle during initiation. The possibility that a special site for fMet-tRNA resides on 16S rRNA is also discussed.  相似文献   

14.
An improved method for the isolation of Euglena chloroplast ribosomes is described which presents a number of advantages over past procedures. First, ribosomes are prepared from whole cell extracts, thus bypassing the need to isolate intact chloroplasts and resulting in a 10-fold improvement in yield. Second, the inclusion of 40 mm Mg2+ in the preparation buffers, while stabilizing the chloroplast ribosomes, precipitates and, thereby, virtually eliminates the cytoplasmic 89 S ribosomes. Third, greater than 95% of the chloroplast ribosomes sediment at 68 S rather than as the damaged 53 S particle frequently generated in other preparation procedures. Fourth, even with a high-salt wash to remove endogenous factors, the chloroplast ribosomes still sediment at 68 S and are just as active in in vitro protein synthesis as are E. coli ribosomes. These ribosomes have been tested for activity with elongation factors from prokaryotes, eukaryotes, and the chloroplast itself, and the results have been compared to those obtained with E. coli and wheat germ ribosomes. The data may be summarized as follows: (a) Chloroplast ribosomes use E. coliEF-TuTs and EF-G with the same efficiency as do E. coli ribosomes in protein synthesis, (b) E. coli and chloroplast ribosomes can use Euglena chloroplast EF-G to catalyze translocation, but wheat germ ribosomes cannot, (c) Wheat germ EF-1H and EF-2 are highly active in polymerization with wheat germ ribosomes, but ribosomes from neither E. coli nor the chloroplast are able to recognize these factors, (d) All three types of ribosomes accept Phe-tRNA from E. coli EF-Tu although to differing degrees. However, neither chloroplast nor E. coli ribosomes recognize wheat germ EF-1H for the binding of Phe-tRNA.  相似文献   

15.
Initiation factor IF-3 is required for the binding of fMet-tRNA to 70S ribosomes directed by AUG, poly (U,G), f2RNA and T4 late RNA as well as for the binding of acPhe-tRNA directed by poly (U). In contrast, IF-3 is not required for the binding of the initiator aminoacyl-tRNAs to isolated 30S subunits directed by the synthetic messengers, but is required for maximal formation of initiation complexes with natural messengers. These data indicate that with synthetic messengers the sole function of IF-3 is to dissociate the 70S ribosomes into subunits, whereas with natural messengers IF-3 is required not only for dissociation of the ribosomes but also for the binding of the messenger to the 30S subunit.  相似文献   

16.
Summary Once formylated, eukaryotic initiator tRNA behaves in anE. coli translation system like the homologous initiator, in its binding to ribosomes and ability to form a peptide bond with puromycin. Conversely, anE. coli initiator tRNA, either formylated or not, can bind to reticulocyte ribosomes in the presence of poly AUG and reticulocyte factors, but no transfer to puromycin is obtained. Thus, eukaryotic ribosomes seem to impose a more stringent discrimination as far as the biological specificity of initiator tRNA is concerned than doE. coli ribosomes.The possibility to interchange initiation factors has also been examined. When added to reticulocyte 40S subunits,E. coli initiation factors catalyze poly AUG dependent binding ofE. coli initiator tRNA whether formylated or not. Thus, ability ofE. coli factors to discriminate between the N-formyl substituted and unformylated initiator is lost when the ribosomal context is modified. Also in support to the role of the ribosome in tRNA selection is the fact that eukaryotic tRNA's which are recognized by a completeE. coli ribosomal system fail to react whenE. coli factors are crossed with reticulocyte ribosomes.Reticulocyte IF prepared by 2 hrs KCl extraction from ribosomes (IF2hrs) shows no catalytic activity onE. coli ribosomes whereas IF prepared by shorter KCl extraction (IF1/2hr) stimulates low but appreciableE. coli or reticulocyte fMet-tRNA binding to 70S ribosomes. A similar activity is displayed by partially purified IF-M1. Both IF1/2hr and IF-M1 dependent binding to heterologous ribosomes readily take place in the absence of GTP and no transfer to puromycin is observed. Complementation betweenE. coli IF1 and reticulocyte IF-M1 for fMet-tRNA binding to reticulocyte 40S subunits has been obtained suggesting functional similarities between IF-M1 andE. coli IF2. The possible role of IF-M1 in the homologous reaction is discussed.  相似文献   

17.
Initiation factor IF-3 is required for the poly (U)-directed binding of N-acetyl-Phe-tRNA to 70S ribosomes as well as for the binding of fMet-tRNA directed by poly (U,G), AUG, and bacteriophage f2 RNA. The formation of the 70S initiation complex is dependent upon IF-2 and is stimulated by IF-1. The requirement for IF-3 is not alleviated by high concentrations of the synthetic templates.  相似文献   

18.
Dissociation of eukaryotic ribosomes by purified initiation factor EIF-3   总被引:1,自引:0,他引:1  
Purified eukaryotic initiation factor, EIF-3, prepared from ascites cells dissociated rat liver 80S ribosomes into subunits. Ribosomes bearing endogenous mRNA and nascent peptide were not dissociated by EIF-3. When 80S ribosomes reconstituted from subunits were used as substrate the reaction had the following characteristics: Dissociation was rapid--the reaction being completed within 2 min at 30°. The extent of dissociation was directly proportional to the amount of EIF-3; with 21 μg of EIF-3 about 70% (or 10.5 μg) of the 80S monomers were dissociated. The dissociation of 80S monomers by EIF-3 decreased with increasing concentrations of magnesium. The reaction was not catalytic: 28 moles of EIF-3 were required to dissociate 1 mole of 80S ribosomes. The characteristic of the dissociation reaction promoted by EIF-3 and by E. coli initiation factor IF-3 are remarkably similar. The dissociation reaction provides a practical assay for EIF-3 independent of complimentation of other initiating factors.  相似文献   

19.
Summary A comparison of the protein patterns of the 70S and 80S ribosomes from various plants, E. coli and yeast by disc-gel electrophoresis has shown the following relations: 1. There is a greater similarity between chloroplast ribosomes from various plants than between chloroplast and cytoplasmic ribosomes obtained from the same plant. 2. The protein patterns of the cytoplasmic ribosomes from bean, spinach and tobacco are more similar to each other than when compared to that of wheat germ. 3. At least one band is common to cytoplasmic ribosomes from all plants tested. 4. Only very few bands with identical mobilities are observed between chloroplast and E. coli ribosomes and between cytoplasmic plant and yeast ribosomes.  相似文献   

20.
Guanosine 5′-triphosphate, 3′-diphosphate (pppGpp), and dGTP support the initiation factor 2 (IF-2) and elongation factor Tu (EF-Tu) partial reactions of Escherichia coli protein synthesis. These natural analogs of GTP were as effective as GTP in supporting (1) IF-2-dependent binding of f-Met-tRNA to ribosomes, (2) IF-2-dependent formation of N-formylmethionylpuromycin, (3) EF-Tu-dependent binding of Phe-tRNA to a ribosome-polyuridylic acid-N-acetyl-Phe-tRNA complex, and (4) EF-Tu-dependent formation of N-acetyl-Phe-Phe-tRNA. GTP, pppGpp, and dGTP behaved similarly in time-course studies and across a broad concentration range with both enzymes. In addition, both GDP and guanosine 5′-diphosphate, 3′-diphosphate were found to be competitive inhibitors of both GTP and pppGpp in the IF-2- and EF-Tu-dependent reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号