首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Asakura  C Nakamura  I Ohtsuka 《Génome》1997,40(2):201-210
Alien cytoplasms cause a wide range of phenotypic alterations in the nucleus-cytoplasm (NC) hybrids in the Triticeae. Nuclear genomes of timopheevii wheat (Triticum timopheevii and Triticum araraticum) are fully compatible with the cytoplasm of Aegilops squarrosa, while those of a majority of emmer or durum wheat cultivars and more than half the wild emmer wheats are incompatible, and a maternal 1D chromosome is required to restore seed viability and male fertility in the NC hybrids. A euploid NC hybrid of Triticum durum cv. Langdon with Ae. squarrosa cytoplasm produced by introgressing the NC compatibility (Ncc) gene from T. timopheevii was used to identify random amplified polymorphic DNA (RAPD) markers linked to it. After a survey of 200 random decamer primers, four markers were selected, all of which were completely linked in 64 individuals of a SB8 mapping population. One marker was derived from a single locus, while three others were from interspersed repetitive sequences. Also, the hybrid chromosomes and those of the parental T. durum had identical C-banding patterns. RAPD-PCR analysis of 65 accessions from wild and cultivated tetraploid wheat species showed the exclusive presence of the markers in timopheevii wheat. In conclusion, the chromosomal region flanking Ncc of T. timopheevii is highly conserved in the genome of this group of tetraploid wheats.  相似文献   

2.
Chromosome pairing at metaphase I was studied in different interspecific hybrids involving Aegilops speltoides (SS) and polyploid wheats Triticum timopheevii (AtAtGG), T. turgidum (AABB), and T. aestivum (AABBDD) to study the relationships between the S, G, and B genomes. Individual chromosomes and their arms were identified by means of C-banding. Pairing between chromosomes of the G and S genomes in T. timopheevii x Ae. speltoides (AtGS) hybrids reached a frequency much higher than pairing between chromosomes of the B and S genomes in T. turgidum x Ae. speltoides (ABS) hybrids and T. aestivum x Ae. speltoides (ABDS) hybrids, and pairing between B- and G-genome chromosomes in T. turgidum x T. timopheevii (AAtBG) hybrids or T. aestivum x T. timopheevii (AAtBGD) hybrids. These results support a higher degree of closeness of the G and S genomes to each other than to the B genome. Such relationships are consistent with independent origins of tetraploid wheats T. turgidum and T. timopheevii and with a more recent formation of the timopheevi lineage.  相似文献   

3.
H Ozkan  M Feldman 《Génome》2001,44(6):1000-1006
The Ph1 gene has long been considered the main factor responsible for the diploid-like meiotic behavior of polyploid wheat. This dominant gene, located on the long arm of chromosome 5B (5BL), suppresses pairing of homoeologous chromosomes in polyploid wheat and in their hybrids with related species. Here we report on the discovery of genotypic variation among tetraploid wheats in the control of homoeologous pairing. Compared with the level of homoeologous pairing in hybrids between Aegilops peregrina and the bread wheat cultivar Chinese Spring (CS), significantly higher levels of homoeologous pairing were obtained in hybrids between Ae. peregrina and CS substitution lines in which chromosome 5B of CS was replaced by either 5B of Triticum turgidum ssp. dicoccoides line 09 (TTD09) or 5G of Triticum timopheevii ssp. timopheevii line 01 (TIMO1). Similarly, a higher level of homoeologous pairing was found in the hybrid between Ae. peregrina and a substitution line of CS in which chromosome arm 5BL of line TTD140 substituted for 5BL of CS. It appears that the observed effect on the level of pairing is exerted by chromosome arm 5BL of T turgidum ssp. dicoccoides, most probably by an allele of Ph1. Searching for variation in the control of homoeologous pairing among lines of wild tetraploid wheat, either T turgidum ssp. dicoccoides or T timopheevii ssp. armeniacum, showed that hybrids between Ae. peregrina and lines of these two wild wheats exhibited three different levels of homoeologous pairing: low, low intermediate, and high intermediate. The low-intermediate and high-intermediate genotypes may possess weak alleles of Ph1. The three different T turgidum ssp. dicoccoides pairing genotypes were collected from different geographical regions in Israel, indicating that this trait may have an adaptive value. The availability of allelic variation at the Ph1 locus may facilitate the mapping, tagging, and eventually the isolation of this important gene.  相似文献   

4.
The chromosome structure of four different wild populations and a cultivated line of Triticum timopheevii (2n = 28, AtAtGG) relative to Triticum turgidum (2n = 28, AABB) was studied, using genomic in situ hybridisation (GISH) and C-banding analysis of meiotic configurations in interspecific hybrids. Two wild accessions and the cultivated line showed the standard C-banding karyotype. The other two accessions are homozygous for translocation 5At/3G and translocations 1G/2G and 5G/6G. GISH analysis revealed that all the T. timopheevii accessions carry intergenome translocations 6At/1G and 1G/4G and identified the position of the breakpoint in translocation 5At/3G. C-banding analysis of pairing at metaphase I in the hybrids with T. turgidum provides evidence that four species-specific translocations (6AtS/1GS, 1GS/4GS, 4GS/4AtL, and 4AtL/3AtL) exist in T. timopheevii, and that T. timopheevii and T. turgidum differ in the pericentric inversion of chromosome 4A. Bridge plus acentric fragment configurations involving 4AL and 4AtL were identified in cells at anaphase I. This result suggests that the paracentric inversion of 4AL from T. turgidum does not exist in T. timopheevii. Both tetraploid species have undergone independent and distinct evolutionary chromosomal rearrangements. The position, intercalary or subdistal, of the breakpoints in species-specific translocations and inversions contrasts with the position, at or close to the centromere, of intraspecific translocations. Different mechanisms for intraspecific and species-specific chromosome rearrangements are suggested.  相似文献   

5.
Homoeoalleles of Ncc confer nucleus-cytoplasm (NC) compatibility on NC hybrids of wheat with the D plasmon of Aegilops squarrosa. To dissect the chromosomal region containing Ncc, a RAPD marker linked to the Ncc-tmplA locus, which is located on chromosome 1A of T timopheevi, was sequenced and converted to a PCR-based sequence-tagged-site (STS) marker. Five single nucleotide polymorphisms (SNPs) between T timopheevi and T turgidum. were detected in a 509-bp genomic DNA fragment. Based on the SNPs, the STS alleles in 164 accessions from emmer wheat, timopheevi wheat and two einkorn wheats, T. urartu and T. boeoticum were surveyed by PCR-RFLP analysis. The sequence comparisons and PCR-RFLP analyses revealed nine alleles based on six SNPs. These SNPs were highly conserved within each group of wheat, and all groups could be distinguished by particular combinations of the SNPs. All accessions of T. urartu had one unique STS allele as compared with the others. Our results indicate that the SNPs in the STS marker linked to the Ncc-tmplA locus would be informative for studies of the differentiation of chromosome 1A in wheat.  相似文献   

6.
In this study, the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA in the tetraploid wheats, Triticum turgidum (AABB) and Triticum timopheevii (AAGG), their possible diploid donors, i.e., Triticum monococcum (AA), Triticum urartu (AA), and five species in Aegilops sect. Sitopsis (SS genome), and a related species Aegilops tauschii were cloned and sequenced. ITS1 and ITS2 regions of 24 clones from the above species were compared. Phylogenetic analysis demonstrated that Aegilops speltoides was distinct from other species in Aegilops sect. Sitopsis and was the most-likely donor of the B and G genomes to tetraploid wheats. Two types of ITS repeats were cloned from Triticum turgidum ssp. dicoccoides, one markedly similar to that from T. monococcum ssp. boeoticum (AA), and the other to that from Ae. speltoides (SS). The former might have resulted from a recent integression event. The results also indicated that T. turgidum and T. timopheevii might have simultaneously originated from a common ancestral tetraploid species or be derived from two hybridization events but within a very short interval time. ITS paralogues in tetraploid wheats have not been uniformly homogenized by concerted evolution, and high heterogeneity has been found among repeats within individuals of tetraploid wheats. In some tetraploid wheats, the observed heterogeneity originated from the same genome (B or G). Three kinds of ITS repeats from the G genome of an individual of T. timopheevii ssp. araraticum were more divergent than that from inter-specific taxa. This study also demonstrated that hybridization and polyploidization might accelerate the evolution rate of ITS repeats in tetraploid wheats.  相似文献   

7.
S J Xu  L R Joppa 《Génome》1995,38(3):607-615
First division restitution (FDR) in intergeneric Triticeae hybrids provides an important meiotic mechanism for the production of amphidiploids without the use of colchicine and similar chemicals. The genetic controls of FDR were investigated by examining microsporogenesis and fertility in F1 hybrids of two- and three-way crosses of durum wheat (Triticum turgidum L. var. durum) cultivars Langdon (LDN) and Golden Ball (GB), 'Gazelle' rye (Secale cereale L.), and one accession (RL5286) of Aegilops squarrosa L. The results from two-way crosses indicated that the first meiotic division varied, depending on the hybrid. GB crossed with Ae. squarrosa developed tripolar spindles and prevented congregation of chromosomes at the equatorial plate. The hybrid of GB with rye had a delayed first division. But, the hybrids of LDN with both Ae. squarrosa and rye had a high frequency of FDR. Analysis from the three-way crosses indicated that inheritance in rye crosses differed from those with Ae. squarrosa. FDR segregated in a 1:1 ratio in the rye cross, suggesting that the FDR is controlled by a single gene from LDN. However, FDR fit a 1:3 ratio in the three-way crosses with Ae. squarrosa. Cytological data suggested that tripolar spindles are a major factor preventing FDR in Ae. squarrosa crosses. Some progenies from the three-way cross with rye had a high frequency of monads that resulted from second division failure of FDR cells.  相似文献   

8.
Introgression from allohexaploid wheat (Triticum aestivum L., AABBDD) to allotetraploid jointed goatgrass (Aegilops cylindrica Host, CCDD) can take place in areas where the two species grow in sympatry and hybridize. Wheat and Ae. cylindrica share the D genome, issued from the common diploid ancestor Aegilops tauschii Coss. It has been proposed that the A and B genome of bread wheat are secure places to insert transgenes to avoid their introgression into Ae. cylindrica because during meiosis in pentaploid hybrids, A and B genome chromosomes form univalents and tend to be eliminated whereas recombination takes place only in D genome chromosomes. Wheat random amplified polymorphic DNA (RAPD) fragments, detected in intergeneric hybrids and introgressed to the first backcross generation with Ae. cylindrica as the recurrent parent and having a euploid Ae. cylindrica chromosome number or one supernumerary chromosome, were assigned to wheat chromosomes using Chinese Spring nulli-tetrasomic wheat lines. Introgressed fragments were not limited to the D genome of wheat, but specific fragments of A and B genomes were also present in the BC1. Their presence indicates that DNA from any of the wheat genomes can introgress into Ae. cylindrica. Successfully located RAPD fragments were then converted into highly specific and easy-to-use sequence characterised amplified regions (SCARs) through sequencing and primer design. Subsequently these markers were used to characterise introgression of wheat DNA into a BC1S1 family. Implications for risk assessment of genetically modified wheat are discussed.  相似文献   

9.
L Yan  M Bhave 《Génome》2001,44(4):582-588
The granule-bound starch (GBSS I, waxy protein) in Triticum timopheevii (AtAtGG) and T. zhukovskyi (AtAtAzAzGG) and a diagnostic section of the genes encoding GBSS-I from the Wx-TtA and Wx-G loci of T. timopheevii and the Wx-TtA, Wx-G, and Wx-TzA loci of T. zhukovskyi were investigated in this study. The waxy proteins in these two polyploid wheats could not be separated into distinct bands, in contrast to those in the T. turgidum (AABB)-T. aestivum (AABBDD) lineage. Alignment of sequences of the section covering exon4-intron4-exon5 of the various waxy genes led to the identification of gene-specific sequences in intron 4. The sequences specific to the Wx-TtA and Wx-G genes of T. timopheevii were different from those of the Wx-A1 gene and Wx-B1 genes of T. turgidum and T. aestivum. A surprising observation was that the Wx-TzA of T. zhukovskyi did not match with the Wx-TmA of T. monococcum, a putative donor of the Az genome, but matched unexpectedly and perfectly with the Wx-B1 gene on chromosome 4A, which is proposed to have translocated from the chromosome 7B of T. aestivum. The possible genetic mechanism explaining these observations is discussed.  相似文献   

10.
L Zhang  J Luo  M Hao  L Zhang  Z Yuan  Z Yan  Y Liu  B Zhang  B Liu  C Liu  H Zhang  Y Zheng  D Liu 《BMC genetics》2012,13(1):69-8
ABSTRACT: BACKGROUND: A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. RESULTS: Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. CONCLUSIONS: A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.  相似文献   

11.
Nucleo-cytoplasmic hybrid wheat NC4 is resistent to a number of stresses and produces high yield. It was obtained by crossing Aegilops squarrosa (♀) with Triticum aestivum ( ♂ ), and several back crossings. The rbcLs (the gene of large subunit of Rubisco ( rihulose-1, 5-bisphosphate carboxylase/oxygenase )) cloned from NC4 and T. aestivum have been sequenced, and the result showed that the rbcL of NC4 was originated from Ae. squarrosa. The ratio of carhoxylase activity to oxygenase activity, Vco2/Vo2, of hybrid NC4 Was lower than that of Ae. squarrosa, but higher than that of T. aestivum. This difference may be accounted for the higher yield of NC4 than that of T. aestivum. Sequence analysis showed that three nucleotides in the rbcL of NC4 which were different from those of T. aestivum, corresponded to the No. 14, 86 and 95 amino acid residues of rbcL.  相似文献   

12.
Cytogenetic work has shown that the tetraploid wheats, Triticum turgidum and T. timopheevii, and the hexaploid wheat T. aestivum have one pair of A genomes, whereas hexaploid T. zhukovskyi has two. Variation in 16 repeated nucleotide sequences was used to identify sources of the A genomes. The A genomes of T. turgidum, T. timopheevii, and T. aestivum were shown to be contributed by T. urartu. Little divergence in the repeated nucleotide sequences was detected in the A genomes of these species from the genome of T. urartu. In T. zhukovskyi one A genome was contributed by T. urartu and the other was contributed by T. monococcum. It is concluded that T. zhukovskyi originated from hybridization of T. timopheevii with T. monococcum. The repeated nucleotide sequence profiles in the A genomes of T. zhukovskyi showed reduced correspondence with those in the genomes of both ancestral species, T. urartu and T. monococcum. This differentiation is attributed to heterogenetic chromosome pairing and segregation among chromosomes of the two A genomes in T. zhukovskyi.  相似文献   

13.
The evolution of 2 tandemly repeated sequences Spelt1 and Spelt52 was studied in Triticum species representing 2 evolutionary lineages of wheat and in Aegilops sect. Sitopsis, putative donors of their B/G genomes. Using fluorescence in situ hybridization we observed considerable polymorphisms in the hybridization patterns of Spelt1 and Spelt52 repeats between and within Triticum and Aegilops species. Between 2 and 28 subtelomeric sites of Spelt1 probe were detected in Ae. speltoidies, depending on accession. From 8 to 12 Spelt1 subtelomeric sites were observed in species of Timopheevi group (GAt genome), whereas the number of signals in emmer/aestivum accessions was significantly less (from 0 to 6). Hybridization patterns of Spelt52 in Ae. speltoides, Ae. longissima, and Ae. sharonensis were species specific. Subtelomeric sites of Spelt52 repeat were detected only in T. araraticum (T. timopheevii), and their number and chromosomal location varied between accessions. Superimposing copy number data onto our phylogenetic scheme constructed from RAPD data suggests 2 major independent amplifications of Spelt52 and 1 of Spelt1 repeats in Aegilops divergence. It is likely that the Spelt1 amplification took place in the ancient Ae. speltoides before the divergence of polyploid wheats. The Spelt52 repeat was probably amplified in the lineage of Ae. speltoides prior to divergence of the allopolyploid T. timopheevii but after the divergence of T. durum. In a separate amplification event, Spelt52 copy number expanded in the common ancestor of Ae. longissima and Ae. sharonensis.  相似文献   

14.
The action of species cytoplasm specific (scs) gene(s) can be observed when a durum (Triticum turgidum L.) nucleus is placed in the Aegilops longissimum S. & M. cytoplasm. This alloplasmic combination, (lo) durum, results in nonviable progeny. A scs gene derived from T. timopheevii Zhuk. (scs(ti)) produced compatibility with the (lo) cytoplasm. The resulting hemizygous (lo) scs(ti)- durum line was male sterile and when crossed to normal durum produced a 1:1 ratio of plump, viable (PV) seeds with scs(ti) and shriveled inviable (SIV) seeds without scs(ti). In a systematic characterization of durum lines an unusual line was identified that when crossed to (lo) scs(ti)- produced all PV seeds. When planted these PV seeds segregated at a 1:1 ratio of normal vigor plants (NVPs) and low vigor plants (LVPs). The LVP senescence before full maturity. The NVPs were male sterile and when crossed to common durum lines resulted in all plump seeds that again segregated at a 1:1 ratio of NVPs to LVPs. The crosses of these NVPs to common durum lines resulted in a 1:1 ratio of PV to SIV seeds. This study was extended to 317 individuals segregating for scs(ti) and the new locus, derived from durum wheat (scs(d)), establishing the allelic relationship of these two genes.  相似文献   

15.
J A Anderson  S S Maan 《Génome》1995,38(4):803-808
Triticum longissimum cytoplasm is incompatible with the T. turgidum nuclear genome. Two nuclear genes, scs and Vi, derived from the nuclear genome of T. timopheevii and by a spontaneous mutation, respectively, restore nuclear-cytoplasmic compatibility, normal plant vigor, and male fertility in these alloplasmic genotypes. The objectives of this study were (i) to determine the chromosomal locations of scs and Vi; (ii) to identify DNA markers for scs and Vi; and (iii) to determine the interactions involving the dosage of scs and Vi. Two populations segregating for scs and Vi were produced and scored for seedling vigor (indicating presence of scs) and degree of self-fertility (indicating presence of Vi). Four RFLP markers were mapped near scs. Aneuploid analysis revealed that these markers, and hence the scs gene, are located on the long arm of chromosome 1A. Four RFLP markers were mapped near Vi on 1BS. Results indicated that other factors may be inhibiting the expression of Vi. We determined the dosage of scs and Vi in both populations with the aid of the linked RFLP markers. Individuals with two versus one dose of scs had reduced self-fertility, while individuals with two versus one dose of Vi had similar self-fertility.  相似文献   

16.
山羊草属异源多倍体植物基因组进化的RAPD分析   总被引:5,自引:0,他引:5  
和24个随机引物对山羊草属(Aegilops L.)异源多倍体物种对其祖先二倍体物进行RAPD分析,对扩增出的313条带进行聚类分析发现,含D基因组的多倍体与二倍体祖先Ae.squarrosa(DD)在聚类图上聚为一支;除Ae.juvenalis(DDMMUU)聚到上一支外,含U基因组的多倍 与二倍体祖先Ae.umbellulata(UU)在聚类图上聚为另一支;多倍体与其他二倍体均不聚在一起,表明多倍体分别与Ae.squarrosa(DD)、Ae.umbellulata(UU)具有较近的亲缘关系,这说明多倍体开之后,D和U基因组变化较小,而其他基因组则发生了较大的变化。  相似文献   

17.
In order to estimate the potential of gene flow between wheat (Triticum æstivum L.) and jointed goatgrass (Aegilops cylindrica Host.), we carried out mixed pollinations in experimental and natural conditions. A set of species-specific RAPD (random amplified polymorphic DNA) and microsatellite markers were used to detect the presence of parental markers in the progeny of the plants used in these experiments. No hybrids were found within the offsprings of the plants used for the greenhouse experiments, while 85 Ae. cylindrica×T. æstivum hybrids were found within 2400 analyzed F1 plants resulting from the field pollinations. The hybridization rates for individuals of different populations of the wild species differed considerably: 1% for two populations known for more than 90 years versus 7% for a newly discovered population. Most of the hybrids were completely sterile, but five of them produced 13 seeds (BC1) by backcross with Ae. cylindrica. Twelve seeds germinated and generated viable and partly fertile plants. About 25% of the wheat specific RAPD markers were found in the BC1 plants, indicating that introgression of wheat DNA into Ae. cylindrica is possible. In addition, one microsatellite marker, known to be situated on the D genome (a genome shared by both species), was also found in the BC1 plants.  相似文献   

18.
Summary Albumins, globulins, gliadins and glutenins presumably comprising 100 percent of the wheat seed proteins were sequentially extracted and electrophoresed on SDS-polyacrylamide gels. The SDS-electrophoretic patterns within each of the four fractions from T. boeotiaum, T. urartu, T. turgidum, T. timopheevii, T. aestivum, Ae. speltoides and Ae. squawosa were similar. They differed from one species to another only in a few minor components or density of certain components. Similarity in MW's of components, as indicated by the SDS-electrophoretic patterns, suggests that the wheats and Aegilops exhibit no variability for structural genes coding seed proteins. A minimum of 60 to 70 and a maximum of 360 to 420 structural genes with major or minor effects control the total seed protein in T. aestivum. Presumably, only one or the other homoeoallele was expressed in the polyploids. Different components of albumins and globulins presumably had distinct MW's and amino acid composition, while the components of gliadins and glutenins could be classified into a few groups each containing one or more components with the same MW and nearly identical amino acid composition. The genes for components with similar MW's and amino acid composition arose through multiplication of a single original gene and perhaps share the same regulatory mechanism. Seed protein content and quality in wheat might be improved through the incorporation of structural genes, coding for polypeptides with distinct MW's, from distantly related species, rather than by manipulation of the structural genes within the Triticum-Aegilops group. Regulatory mutants similar to opaque-2 of corn could be used to alter the proportion of gliadins in relation to albumins and globulins, to improve amino acid composition of wheat proteins.  相似文献   

19.
Natural hybridization and backcrossing between Aegilops cylindrica and Triticum aestivum can lead to introgression of wheat DNA into the wild species. Hybrids between Ae. cylindrica and wheat lines bearing herbicide resistance (bar), reporter (gus), fungal disease resistance (kp4), and increased insect tolerance (gna) transgenes were produced by pollination of emasculated Ae. cylindrica plants. F1 hybrids were backcrossed to Ae. cylindrica under open-pollination conditions, and first backcrosses were selfed using pollen bags. Female fertility of F1 ranged from 0.03 to 0.6%. Eighteen percent of the sown BC1s germinated and flowered. Chromosome numbers ranged from 30 to 84 and several of the plants bore wheat-specific sequence-characterized amplified regions (SCARs) and the bar gene. Self fertility in two BC1 plants was 0.16 and 5.21%, and the others were completely self-sterile. Among 19 BC1S1 individuals one plant was transgenic, had 43 chromosomes, contained the bar gene, and survived glufosinate treatments. The other BC1S1 plants had between 28 and 31 chromosomes, and several of them carried SCARs specific to wheat A and D genomes. Fertility of these plants was higher under open-pollination conditions than by selfing and did not necessarily correlate with even or euploid chromosome number. Some individuals having supernumerary wheat chromosomes recovered full fertility.  相似文献   

20.
The individuals of diploid wheat Triticum boeoticum, T. monococcum and T. sinskajae and goatgrass Aegilops squarrosa were picked out with screening the dense spike characteristics. The dense-spike accessions were discovered in diploid wheat (T. sinskajae) and Ae. squarrosa. Inheritance of the dense spike was studied. The trait was found to be controlled by a recessive gene in T. sinskajae and by an incomplete dominant gene in Ae. squarrosa. The dosage effect of dominant gene C was detected in interspecific pentaploid F1 hybrid plants T. compactum x T. palmovae (2n =35, A(u)A(b)BDD genome). The spike of pentaploid hybrid was not so dense as compared to hexaploid wheat T. compactum. This is the first report showing similarity of the expression of dominant gene C on D genome of the hexaploid wheat to that of dense spike gene in Ae. squarrosa. The existence of dense-spike accessions of Ae. squarrosa allows us to hypothesize that the origin of T. compactum is independent from that of common wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号