首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J J Ye  J W Neal  X Cui  J Reizer    M H Saier  Jr 《Journal of bacteriology》1994,176(12):3484-3492
Lactobacillus brevis takes up glucose and the nonmetabolizable glucose analog 2-deoxyglucose (2DG), as well as lactose and the nonmetabolizable lactose analoge thiomethyl beta-galactoside (TMG), via proton symport. Our earlier studies showed that TMG, previously accumulated in L. brevis cells via the lactose:H+ symporter, rapidly effluxes from L. brevis cells or vesicles upon addition of glucose and that glucose inhibits further accumulation of TMG. This regulation was shown to be mediated by a metabolite-activated protein kinase that phosphorylase serine 46 in the HPr protein. We have now analyzed the regulation of 2DG uptake and efflux and compared it with that of TMG. Uptake of 2DG was dependent on an energy source, effectively provided by intravesicular ATP or by extravesicular arginine which provides ATP via an ATP-generating system involving the arginine deiminase pathway. 2DG uptake into these vesicles was not inhibited, and preaccumulated 2DG did not efflux from them upon electroporation of fructose 1,6-diphosphate or gluconate 6-phosphate into the vesicles. Intravesicular but not extravesicular wild-type or H15A mutant HPr of Bacillus subtilis promoted inhibition (53 and 46%, respectively) of the permease in the presence of these metabolites. Counterflow experiments indicated that inhibition of 2DG uptake is due to the partial uncoupling of proton symport from sugar transport. Intravesicular S46A mutant HPr could not promote regulation of glucose permease activity when electroporated into the vesicles with or without the phosphorylated metabolites, but the S46D mutant protein promoted regulation, even in the absence of a metabolite. The Vmax but not the Km values for both TMG and 2DG uptake were affected. Uptake of the natural, metabolizable substrates of the lactose, glucose, mannose, and ribose permeases was inhibited by wild-type HPr in the presence of fructose 1,6-diphosphate or by S46D mutant HPr. These results establish that HPr serine phosphorylation by the ATP-dependent, metabolite-activated HPr kinase regulates glucose and lactose permease activities in L. brevis and suggest that other permeases may also be subject to this mode of regulation.  相似文献   

2.
Regulation of the beta-galactoside transport system in response to growth substrates in the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable analog methyl-beta-D-thiogalactopyranoside (TMG) as the transport substrate. T. neapolitana cells grown on galactose or lactose accumulated TMG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external galactose or lactose and showed induced levels of beta-galactosidase. Cells grown on glucose, maltose, or galactose plus glucose showed no capacity to accumulate TMG, though these cells carried out active transport of the nonmetabolizable glucose analog 2-deoxy-D-glucose. Glucose neither inhibited TMG uptake nor caused efflux of preaccumulated TMG; rather, glucose promoted TMG uptake by supplying metabolic energy. These data show that beta-D-galactosides are taken up by T. neapolitana via an active transport system that can be induced by galactose or lactose and repressed by glucose but which is not inhibited by glucose. Thus, the phenomenon of catabolite repression is present in T. neapolitana with respect to systems catalyzing both the transport and hydrolysis of beta-D-galactosides, but inducer exclusion and inducer expulsion, mechanisms that regulate permease activity, are not present. Regulation is manifest at the level of synthesis of the beta-galactoside transport system but not in the activity of the system.  相似文献   

3.
ABSTRACT. Leishmania tropica promastigotes transport α-aminoisobutyric acid (AIB), the nonmetabolizable analog of neutral amino acids, against a substantial concentration gradient. AIB is not incorporated into cellular material but accumulates within the cells in an unaltered form. Intracellular AIB exchanges with external AIB. Various energy inhibitors (amytal, HOQNO, KCN, DNP, CCCP, and arsenate) and sulfhydryl reagents (NEM, pCMB, and iodoacetate) severely inhibit uptake. The uptake system is saturable with reference to AIB-and the Lineweaver-Burk plots show biphasic kinetics suggesting the involvement of two transport systems. AIB shares a common transport system with alanine, cysteine, glycine, methionine, serine, and proline. Uptake is regulated by feedback inhibition and transinhibition.  相似文献   

4.
Abstract In studies on alanine and lactose transport in Rhodopseudomonas sphaeroides we have demonstrated that the rate of solute uptake in this phototrophic bacterium is regulated by the rate of lightinduced cyclic electron transfer.
In the present paper the interaction between linear electron transfer chains and solute transport systems was studied in Rhodopseudomonas sphaeroides and Escherichia coli .
The results demonstrate that the activities of alanine transport in Rps. sphaeroides and lactose and proline transport in E. coli are directly controlled by the electron transfer activity in the respiratory chain, under conditions that the proton-motive force remains constant.  相似文献   

5.
Uptake of alanine and its nonmetabolizable analog α-aminoisobutyric acid (AIB) by the photosynthetic purple sulfur bacterium Chromatium vinosum is stimulated fivefold by Na+. Neither Li+ nor K+ have any stimulatory effect. AIB uptake can be supported by a Na+ gradient in the absence of other energy sources. AIB uptake is also accompanied by Na+ uptake. These results suggest that AIB is taken up by C. vinosum via a sodium symport. Cells of C. vinosum and the purple nonsulfur bacterium Rhodospirillum rubrum show energy-dependent Na+ efflux and Na+ uptake can be demonstrated with chromatophores prepared from these bacteria.  相似文献   

6.
α-Aminoisobutyrate (AIB) serves as a transportable, nonmetabolizable alanine analog in the purple sulfur bacterium Chromatium vinosum. AIB transport in C. vinosum appears to be catalyzed by an electrogenic Na+-alanine (AIB) symport without any direct participation of ATP-driven or H+-symport systems. In addition to Na+ being cotransported with AIB via the symport, a transmembrane Na+ gradient appears to increase the affinity of the symport of AIB. It appears that these two effects of Na+ involve different Na+-binding sites.  相似文献   

7.
The functional and molecular properties of system L in human mammary cancer cells (MDA-MB-231 and MCF-7) have been examined. All transport experiments were conducted under Na(+)-free conditions. alpha-Aminoisobutyric acid (AIB) uptake by MDA-MB-231 and MCF-7 cells was almost abolished by BCH (2-amino-2-norbornane-carboxylic acid). AIB uptake by MDA-MB-231 cells was also inhibited by L-alanine (83.6%), L-lysine (75.6%) but not by L-proline. Similarly, L-lysine and L-alanine, respectively, reduced AIB influx into MCF-7 cells by 45.3% and 63.7%. The K(m) of AIB uptake into MDA-MB-231 and MCF-7 cells was, respectively, 1.6 and 8.8 mM, whereas the V(max) was, respectively, 9.7 and 110.0 nmol/mg protein/10 min. AIB efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH, L-glutamine, L-alanine, L-leucine, L-lysine and AIB (all at 2 mM). In contrast, L-glutamate, L-proline, L-arginine and MeAIB had no effect. The interaction between L-lysine and AIB efflux was one of low affinity. The fractional release of AIB from MDA-MB-231 cells was trans-accelerated by D-leucine and D-tryptophan but not by D-alanine. MDA-MB-231 and MCF-7 cells expressed LAT1 and CD98 mRNA. MCF-7 cells also expressed LAT2 mRNA. The results suggest that AIB transport in mammary cancer cells under Na(+)-free conditions is predominantly via system L which acts as an exchange mechanism. The differences in the kinetics of AIB transport between MDA-MB-231 and MCF-7 cells may be due to the differential expression of LAT2.  相似文献   

8.
We have examined the substrate selectivity of the melibiose permease (MelY) from Enterobacter cloacae in comparison with that of the lactose permease (LacY) from Escherichia coli. Both proteins catalyze active transport of lactose or melibiose with comparable affinity and capacity. However, MelY does not transport the analogue methyl-1-thio-β,d-galactopyranoside (TMG), which is a very efficient substrate in LacY. We show that MelY binds TMG and conserves Cys148 (helix V) as a TMG binding residue but fails to transport this ligand. Based on homology modeling, organization of the putative MelY sugar binding site is the same as that in LacY and residues irreplaceable for the symport mechanism are conserved. Moreover, only 15% of the residues where a single-Cys mutant is inactivated by site-directed alkylation differ in MelY. Using site-directed mutagenesis at these positions and engineered cross-homolog chimeras, we show that Val367, at the periplasmic end of transmembrane helix XI, contributes in defining the substrate selectivity profile. Replacement of Val367 with the MelY residue (Ala) leads to impairment of TMG uptake. Exchanging domains N6 and C6 between LacY and MelY also leads to impairment of TMG uptake. TMG uptake activity is restored by the re-introduction of a Val367 in the background of chimera N6(LacY)-C6(MelY). Much less prominent effects are found with the same mutants and chimeras for the transport of lactose or melibiose.  相似文献   

9.
Thiomethyl-beta-galactoside (TMG) accumulation via the melibiose transport system was studied in lactose transport-negative strains of Escherichia coli. TMG uptake by either intact cells or membrane vesicles was markedly stimulated by Na+ or Li+ between pH 5.5 and 8. The Km for uptake of TMG was approximately 0.2 mM at an external Na+ concentration of 5 mM (pH 7). The alpha-galactosides, melibiose, methyl-alpha-galactoside, and o-nitrophenyl-alpha-galactoside had a high affinity for this system whereas lactose, maltose and glucose had none. Evidence is presented for Li+-TMG or Na+-TMG cotransport.  相似文献   

10.
A membrane-bound ATPase detected in extracts of anaerobically grown Staphylococcus epidermidis was inhibited by a variety of compounds which inhibit ATPases in other organisms. Serine and 2-aminoisobutyric acid (AIB) were shown to enter the organism via the same transport system. The transport of AIB, the membrane potential and the transmembrane pH gradient were partially or completely abolished by the same inhibitors and also by uncoupling agents and lipid-soluble ions. It is proposed therefore that this ATPase generates and maintains an electrochemical gradient of protons across the cytoplasmic membrane of S. epidermidis capable of driving AIB uptake. Studies of AIB-induced proton movements suggested that AIB enters via a proton symport mechanism.  相似文献   

11.
Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism.  相似文献   

12.
Osmotic upshock of E. coli cells in NaCl or sucrose medium resulted in a large decrease in the cytoplasmic volume and the inhibition of growth, of the electron transfer chain and of four different types of sugar transport system: the lactose proton symport, the glucose phosphotransferase system, the binding-protein dependent maltose transport system and the glycerol facilitator. In contrast to NaCl and sucrose, the permeant solute glycerol had no marked effect. These inhibitions could be partially relieved by glycine betaine. Despite these inhibitions, the internal pH, the protonmotive force and the ATP pool were maintained. It is concluded that inhibition of electron transfer and of sugar transport is the consequence of conformational changes caused by the deformation of the membrane. It is also concluded that the arrest of growth observed upon osmotic upshock is not due to energy limitations and that it cannot be explained by the inhibition of carbohydrate transport.  相似文献   

13.
The pH dependence of transport of the neutral amino acids L-serine and L-alanine by membrane vesicles of Streptococcus cremoris have been studied in detail. The rates of four modes of facilitated diffusion (e.g., influx, efflux, exchange, and counterflow) of L-serine and L-alanine increase with increasing H+ concentration. Rates of artificially imposed electrical potential across the membrane (delta psi)-driven transport of L-serine and L-alanine show an optimum at pH 6 to 6.5. Under similar conditions, delta psi- and pH gradient across the membrane (delta pH)-driven transport of L-leucine is observed within the pH range studied (pH 5.5 to 7.5). The effect of ionophores on the uptake of L-alanine and L-serine has been studied in membrane vesicles of S. cremoris fused with proteoliposomes containing beef heart mitochondrial cytochrome c oxidase as a proton motive force (delta p)-generating system (Driessen et al., Proc. Natl. Acad. Sci. USA 82:7555-7559, 1985). An increase in the initial rates of L-serine and L-alanine uptake is observed with decreasing pH, which is not consistent with the pH dependency of delta p. Nigericin, an ionophore that induced a nearly complete interconversion of delta pH into delta psi, stimulated both the rate and the final level of L-alanine and L-serine uptake. Valinomycin, an ionophore that induced a collapse of delta psi with a noncompensating increase in delta pH, inhibited L-alanine and L-serine uptake above pH 6.0 more efficiently than it decreased delta p. Experiments which discriminate between the effects of the internal pH and the driving force (delta pH) on solute transport indicate that at high internal pH the transport systems for L-alanine and L-serine are inactivated. A unique relation exists between the internal pH and the initial rate of uptake of L-serine and L-alanine with an apparent pK of 7.0. The rate of L-alanine and L-serine uptake decreases with increasing internal pH. The apparent complex relation between the delta p and transport of L-alanine and L-serine can be explained by a regulatory effect of the internal pH on the activity of the L-serine and L-alanine carriers.  相似文献   

14.
The action of L-triiodothyronine (T3) on amino acid transport in the GC clonal strain of rat pituitary cells was investigated by measurement of the uptake of the nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB). The uptake of AIB by GC cells appeared to require energy and Na+ and displayed Michaelis-Menten kinetics. In comparison to cultures maintained in the absence of T3, T3 addition resulted in an increase in AIB uptake which seemed due to an increase in the initial rate of AIB transport. T3 addition resulted in increased AIB accumulation at later time points as well. T3 induction of AIB transport did not occur until 3.5 h after addition of T3, and this effect was blocked by cycloheximide. Maximal induction occurred 48 to 72 h later. One-half maximal induction occurred 24 to 48 h after addition of T3. No detectable changes either in AIB uptake or intracellular water space, measured by uptake of the nonmetabolizable sugar, 3-O-methyl-D-glucose, were noted for the first 120 min after addition of T3. Induction of AIB transport occurred at 0.05 nM T3 (total medium concentration) and one-half maximal induction occurred at 0.17 nM T3. The relative potencies of four iodothyronine analogues for AIB transport were in accord with their reported activities in nuclear T3 receptor binding assays. These data suggest that induction of AIB transport by T3 may be mediated by the nuclear T3 receptor and may reflect the pleiotrophic response of GC cells to thyroid hormone.  相似文献   

15.
16.
The uptake of 4-chlorobenzoate (4-CBA) in intact cells of the coryneform bacterium NTB-1 was investigated. Uptake and metabolism of 4-CBA were observed in cells grown in 4-CBA but not in glucose-grown cells. Under aerobic conditions, uptake of 4-CBA occurred with a high apparent affinity (apparent Kt, 1.7 microM) and a maximal velocity (Vmax) of 5.1 nmol min-1 mg of protein-1. At pH values below 7, the rate of 4-CBA uptake was greatly reduced by nigericin, an ionophore which dissipates the pH gradient across the membrane (delta pH). At higher pH values, inhibition was observed only with valinomycin, an ionophore which collapses the electrical potential across the membrane (delta psi). Under anaerobic conditions, no uptake of 4-CBA was observed unless an alternative electron acceptor was present. With nitrate as the terminal electron acceptor, 4-CBA was rapidly accumulated by the cells to a steady-state level, at which uptake of 4-CBA was balanced by excretion of 4-hydroxybenzoate. The mechanism of energy coupling to 4-CBA transport under anaerobic conditions was further examined by the imposition of an artificial delta psi, delta pH, or both. Uptake of 4-CBA was shown to be coupled to the proton motive force, suggesting a proton symport mechanism. Competition studies with various substrate analogs revealed a very narrow specificity of the 4-CBA uptake system. This is the first report of carrier-mediated transport of halogenated aromatic compounds in bacteria.  相似文献   

17.
The mechanism of L-glutamate uptake was studied in Rhodobacter sphaeroides. Uptake of L-glutamate is mediated by a high-affinity (Kt of 1.2 microM), shock-sensitive transport system that is inhibited by vanadate and dependent on the internal pH. From the shock fluid, an L-glutamate-binding protein was isolated and purified. The protein binds L-glutamate (apparent Kd of 1.3 microM) and L-glutamine (Ki of 15 microM) with high affinity. The expression level of this binding protein is maximal at limiting concentrations of glutamine in the growth medium. The glutamate-binding protein restores the uptake of L-glutamate in spheroplasts. L-Aspartate is a strong competitive inhibitor of L-glutamate uptake (Ki of 3 microM) but competes only poorly with L-glutamate for binding to the binding protein (Ki of > 200 microM). The uptake of L-aspartate in R. sphaeroides also involves a binding protein which is distinct from the L-glutamate-binding protein. These data suggest that in R. sphaeroides, the L-glutamate- and L-aspartate-binding proteins interact with the same membrane transporter.  相似文献   

18.
Rhodopseudomonas sphaeroides was provided with the ability to transport lactose via conjugation with a strain of Escherichia coli bearing a plasmid containing the lactose operon (including the lac Y gene, coding for the lactose carrier or M protein) and subsequent expression of the lac operon in Rps. sphaeroides (Nano, F.E. and Kaplan, S. submitted). The initial rate of lactose transport in Rps. sphaeroides was studied as a function of the light intensity and the magnitude of the proton-motive force. The results demonstrate that lactose transport is regulated by the rate of cyclic electron transfer in the same way as the endogenous transport systems.  相似文献   

19.
Uptake of L-alanine against a concentration gradient has been shown to occur with isolated brush border membranes from rat small intestine. An alanine transport system, displaying the following characteristics, was shown: (a) L-alanine was taken up and released faster than D-alanine; (b) Na+ as well as Li+ stimulated the uptake of both stereoisomers; (c) the uptake of L- and D-alanine showed saturation kinetics; (d) countertransport of L-alanine was shown; (e) other neutral amino acids inhibited L-alanine but not D-alanine entry when an electrochemical Na+ gradient across the membrane was present initially during incubation. No inhibition occurred in the absence of a Na+ gradient. The electrogenicity of L-alanine transport was established by three types of experiments: (a) Gradients of Na+ salts across the vesicle membrane (medium concentration greater than intravesicular concentration) supported a transient uptake of L-alanine above equilibrium level, and the lipophilic anion SCN- was the most effective counterion. (b) A gradient of K= across the membrane (vesicle greater than medium) likewise supported active transport of L-alanine into the vesicles provided the K= conductance of the membrane was increased with valinomycin. (c) Similarly, a proton gradient (vesicle greater than medium) in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, an agent known to increase the proton conductance of membranes, produced an overshooting L-alanine uptake. A consideration of the possible forces, existing under the experimental conditions, suggests that the gradients of SCN-, K+ in the presence of valinomycin, and H+ in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone contribute to the driving force for L-alanine transport by creating a diffusion potential. Since the presence of Na+ was required in all experiments with active L-alanine transport these results support the existence of a transport system in the brush border membrane which catalyzes the co-transport of Na+ and L-alanine across this membrane.  相似文献   

20.
Analyses of amino acid transport systems in JapaneseParamecium symbiont F36-ZK were performed using14C-amino acids. Kinetic analyses of amino acid uptake and competitive experiments revealed three transport systems; a basic amino acid transport system, which catalyzed transport of L-Arg and L-Lys, a general amino acid transport system, which had broad specificity for 19 amino acids (but not L-Arg), and an alanine transport system. These three systems were considered to be capable of active transport. Amino acid-proton symport was indicated by the following data: decreases in pH of the medium observed during L-Ser and L-Ala uptake, and uptake of L-Arg, L-Ser and L-Ala being inhibited by carbonyl cyanide m-chlorophenylhydrazone, sodium azide and vanadate. The optimal pH for uptake of neutral amino acids and L-Arg was around 5 and 5 to 6.5, respectively. Uptake of L-Asp and L-Glu was very sensitive to pH and little uptake of L-Asp was measured above pH 6.0. Amino acid uptake was not inhibited by nitrate or ammonium, and cultured cells with ammonium also possessed constitutive uptake systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号