首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During spermatogenesis, cell-cell actin-based adherens junctions (AJs), such as ectoplasmic specializations (ESs), between Sertoli and germ cells undergo extensive restructuring in the seminiferous epithelium to facilitate germ cell movement across the epithelium. Although the mechanism(s) that regulates AJ dynamics in the testis is virtually unknown, Rho GTPases have been implicated in the regulation of these events in other epithelia. Studies have shown that the in vitro assembly of the Sertoli-germ cell AJs but not of the Sertoli cell tight junctions (TJs) is associated with a transient but significant induction of RhoB. Immunohistochemistry has shown that the localization of RhoB in the seminiferous epithelium is stage specific, being lowest in stages VII-VIII prior to spermiation, and displays cell-specific association during the epithelial cycle. Throughout the cycle, RhoB was localized near the site of basal and apical ESs but was restricted to the periphery of the nuclei in elongating (but not elongated) spermatids, spermatocytes, and Sertoli cells. However, RhoB was not detected near the site of apical ESs at stages VII-VIII. Furthermore, disruption of AJs in Sertoli-germ cell cocultures either by hypotonic treatment or by treatment with 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide (AF-2364) also induced RhoB expression. When adult rats were treated with AF-2364 to perturb Sertoli-germ cell AJs in vivo, a approximately 4-fold induction in RhoB in the testis, but not in kidney and brain, was detected within 1 h, at least approximately 1-4 days before germ cell loss from the epithelium could be detected by histological analysis. The signaling pathway(s) by which AF-2364 perturbed the Sertoli-germ cell AJs apparently began with an initial activation of integrin, which in turn activated RhoB, ROCK1, (Rho-associated protein kinase 1, also called ROKbeta), LIMK1 (LIM kinase 1, also called lin-11 isl-1 mec3 kinase 1), and cofilin but not p140mDia and profilin via phosphorylation. Immunoprecipitation and immunoblots revealed that the induction of LIMK1 was mediated via an increase in its phospho-Ser but not phospho-Tyr content. Furthermore, Y-27632 ([(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexane-carboxamide, 2HCl]), a specific ROCK inhibitor, could effectively delay the AF-2364-induced germ cell loss from the seminiferous epithelium in vivo, illustrating that the integrin/RhoB/ROCK/LIMK pathway indeed plays a crucial role in the regulation of Sertoli-germ cell AJ dynamics. The fact that the RhoB pathway in the kidney and brain was not activated suggests that AF-2364 exerts its effects primarily at the testis-specific ES multiprotein complex structures between Sertoli cells and spermatids. In summary, this report illustrates that Sertoli germ cell AJ dynamics are regulated, at least in part, via the integrin/ROCK/LIMK/cofilin signaling pathway.  相似文献   

2.
3.
When Sertoli and germ cells were co-cultured in vitro in serum-free chemically defined medium, functional anchoring junctions such as cell-cell intermediate filament-based desmosome-like junctions and cell-cell actin-based adherens junctions (e.g. ectoplasmic specialization (ES)) were formed within 1-2 days. This event was marked by the induction of several protein kinases such as phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (PKB; also known as Akt), p21-activated kinase-2 (PAK-2), and their downstream effector (ERK) as well as an increase in PKB intrinsic activity. PI3K, phospho (p)-PKB, and PAK were co-localized to the site of apical ES in the seminiferous epithelium of the rat testis in immunohistochemistry studies. Furthermore, PI3K also co-localized with p-PKB to the same site in the epithelium as determined by fluorescence microscopy, consistent with their localization at the ES. These kinases were shown to associate with ES-associated proteins such as beta1-integrin, phosphorylated focal adhesion kinase, and c-Src by co-immunoprecipitation, suggesting that the integrin.laminin protein complex at the apical ES likely utilizes these protein kinases as regulatory proteins to modulate Sertoli-germ cell adherens junction dynamics via the ERK signaling pathway. To validate this hypothesis further, an in vivo model using AF-2364 (1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide) to perturb Sertoli-germ cell anchoring junction function, inducing germ cell loss from the epithelium in adult rats, was used in conjunction with specific inhibitors. Interestingly, the event of germ cell loss induced by AF-2364 in vivo was also associated with induction of PI3K, p-PKB, PAK-2, and p-ERK as well as a surge in intrinsic PKB activity. Perhaps the most important of all, pretreatment of rats with wortmannin (a PI3K inhibitor) or anti-beta1-integrin antibody via intratesticular injection indeed delayed AF-2364-induced spermatid loss from the epithelium. In summary, these results illustrate that Sertoli-germ cell anchoring junction dynamics in the testis are regulated, at least in part, via the beta1-integrin/PI3K/PKB/ERK signaling pathway.  相似文献   

4.
Cdc42 and Rac1 Rho family GTPases, and their interacting protein IQGAP1 are the key regulators of cell polarity. We examined the role of Cdc42 and IQGAP1 in establishing the polarity of mouse oocyte and regulation of meiotic and mitotic divisions. We showed that Cdc42 was localized on the microtubules of meiotic and mitotic spindle and in the cortex of mouse oocytes and cleaving embryos. IQGAP1 was present in the cytoplasm and cortex of growing and fully-grown oocytes. During maturation it disappeared from the cortex and during meiotic and mitotic cytokinesis it concentrated in the contractile ring. Toxin B inhibition of the binding activity of Cdc42 changed the localization of IQGAP1, inhibited emission of the first polar body, and caused disappearance of the cortical actin without affecting the migration of meiotic spindle. This indicates, that in maturing oocytes accumulation of cortical actin is not indispensable for spindle migration. In zygotes treated with toxin B actin cytoskeleton was rearranged and the first and/or subsequent cytokinesis were inhibited. Our results indicate that Cdc42 acts upstream of IQGAP1 and is involved in regulation of cytokinesis in mouse oocytes and cleaving embryos, rather than in establishing the polarity of the oocyte.  相似文献   

5.
Human IQGAP1 is a widely expressed 190-kDa Cdc42-, Rac1-, and calmodulin-binding protein that interacts with F-actin in vivo and that can cross-link F-actin microfilaments in vitro. Recent results have implicated IQGAP1 as a component of pathways via which Cdc42 or Rac1 modulates cadherin-based cell adhesion (S. Kuroda et al., Science 281:832-835, 1998), whereas yeast IQGAP-related proteins have been found to play essential roles during cytokinesis. To identify critical in vivo functions of IQGAP1, we generated deficient mice by gene targeting. We demonstrate that IQGAP1 null mutants arise at normal frequency and show no obvious defects during development or for most of their adult life. Loss of IQGAP1 also does not affect tumor development or tumor progression, but mutant mice exhibit a significant (P < 0.0001) increase in late-onset gastric hyperplasia relative to wild-type animals of the same genetic background. While we cannot exclude that functional redundancy with IQGAP2 contributes to the lack of developmental phenotypes, the restricted expression pattern of IQGAP2 is not obviously altered in adult IQGAP1 mutant mice. Thus, IQGAP1 does not serve any essential nonredundant functions during murine development but may serve to maintain the integrity of the gastric mucosa in older animals.  相似文献   

6.
Identification and characterization of the Cdc42-binding site of IQGAP1   总被引:2,自引:0,他引:2  
IQGAP1 is a multi-domained protein that integrates signaling of the Rho family GTPase Cdc42 with regulation of the cytoskeleton. Using SPOT analysis and in vitro peptide competition assays we have identified a 24 amino acid region of IQGAP1 that is necessary for Cdc42 binding. Both in vitro and in vivo analyses reveal that deletion of this sequence abolishes binding of IQGAP1 to Cdc42. In addition, the ability of IQGAP1 to increase the amount of active Cdc42 in cells is abrogated upon removal of this region. An IQGAP1 mutant lacking the Cdc42 binding site mislocalizes to the cell periphery. These observations specifically define a short sequence of IQGAP1 that is required for its interaction with Cdc42 and demonstrate that Cdc42 binding is necessary for the normal subcellular distribution of IQGAP1.  相似文献   

7.
Earlier studies in multiple epithelia have shown that cell-cell actin-based adherens junction (AJ) dynamics are regulated, at least in part, by the interplay of kinases and phosphatases that determines the intracellular phosphoprotein content. Yet it is virtually unknown regarding the role of protein kinases in Sertoli-germ cell AJ dynamics in the seminiferous epithelium of the testis. To address this issue, an in vitro coculture system utilizing Sertoli and germ cells was used to study the regulation of several protein kinases, including c-Src (the cellular form of the v-src transforming gene of Rous Sarcoma virus, RSV), carboxyl-terminal Src kinase (Csk), and casein kinase 2 (CK2), during AJ assembly. Both Sertoli and germ cells were shown to express c-Src, Csk, and CK2 with a relative Sertoli:germ cell ratio of approximately 1:1, suggesting both cell types contributed equally to the pool of these kinases in the epithelium. c-Src and Csk were shown to be stage-specific proteins during the epithelial cycle, being highest at stages VII-VIII. Studies using immunoprecipitation have illustrated that these kinases were structurally associated with the N-cadherin/beta-catenin, but not the nectin/afadin, protein complex, implicating that the cadherin/catenin protein complex is their likely putative substrate. An induction in c-Src, Csk, and CK2 were detected during Sertoli-germ cell AJ assembly in vitro but not when Sertoli cells were cultured alone. When adult rats were treated with 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide (AF-2364), a compound known to induce germ cell loss from the seminiferous epithelium, in particular elongating/elongate and round spermatids, by disrupting Sertoli-germ cell AJs, an induction of c-Src and Csk, but not CK2, was detected. Furthermore, a transient increase in the intrinsic kinase activities of c-Src, but not CK2, was also detected. This event was also associated with a loss of protein-protein association of N-cadherin and beta-catenin from the cadherin/catenin/c-Src/Csk/CK2 protein complex. Administration of PP1, a c-Src inhibitor, into adult rats via the jugular vein could induce the loss of spermatocytes and round spermatids, but not elongating/elongate spermatids, from the seminiferous epithelium. This result thus implicates the importance of c-Src in maintaining the integrity of AJs and possibly desmosome-like junctions between Sertoli cells and spermatocytes/round spermatids. In short, the data reported herein have shown that c-Src, Csk, and CK2 are novel protein kinases in AJ dynamics in the testis.  相似文献   

8.
Invadopodia are actin-based membrane protrusions formed at contact sites between invasive tumor cells and the extracellular matrix with matrix proteolytic activity. Actin regulatory proteins participate in invadopodia formation, whereas matrix degradation requires metalloproteinases (MMPs) targeted to invadopodia. In this study, we show that the vesicle-tethering exocyst complex is required for matrix proteolysis and invasion of breast carcinoma cells. We demonstrate that the exocyst subunits Sec3 and Sec8 interact with the polarity protein IQGAP1 and that this interaction is triggered by active Cdc42 and RhoA, which are essential for matrix degradation. Interaction between IQGAP1 and the exocyst is necessary for invadopodia activity because enhancement of matrix degradation induced by the expression of IQGAP1 is lost upon deletion of the exocyst-binding site. We further show that the exocyst and IQGAP1 are required for the accumulation of cell surface membrane type 1 MMP at invadopodia. Based on these results, we propose that invadopodia function in tumor cells relies on the coordination of cytoskeletal assembly and exocytosis downstream of Rho guanosine triphosphatases.  相似文献   

9.
We have previously proposed that IQGAP1, an effector of Rac1 and Cdc42, negatively regulates cadherin-mediated cell-cell adhesion by interacting with beta-catenin and by causing the dissociation of alpha-catenin from cadherin-beta-catenin-alpha-catenin complexes and that activated Rac1 and Cdc42 positively regulate cadherin-mediated cell-cell adhesion by inhibiting the interaction of IQGAP1 with beta-catenin. However, it remains to be clarified in which physiological processes the Rac1-Cdc42-IQGAP1 system is involved. We here examined whether the Rac1-IQGAP1 system is involved in the cell-cell dissociation of Madin-Darby canine kidney II cells during 12-O-tetradecanoylphorbol-13-acetate (TPA)- or hepatocyte growth factor (HGF)-induced cell scattering. By using enhanced green fluorescent protein (EGFP)-tagged alpha-catenin, we found that EGFP-alpha-catenin decreased prior to cell-cell dissociation during cell scattering. We also found that the Rac1-GTP level decreased after stimulation with TPA and that the Rac1-IQGAP1 complexes decreased, while the IQGAP1-beta-catenin complexes increased during action of TPA. Constitutively active Rac1 and IQGAP1 carboxyl terminus, a putative dominant-negative mutant of IQGAP1, inhibited the disappearance of alpha-catenin from sites of cell-cell contact induced by TPA. Taken together, these results indicate that alpha-catenin is delocalized from cell-cell contact sites prior to cell-cell dissociation induced by TPA or HGF and suggest that the Rac1-IQGAP1 system is involved in cell-cell dissociation through alpha-catenin relocalization.  相似文献   

10.
To infect host cells, Salmonella utilizes an intricate system to manipulate the actin cytoskeleton and promote bacterial uptake. Proteins injected into the host cell by Salmonella activate the Rho GTPases, Rac1 and Cdc42, to induce actin polymerization. Following uptake, a different set of proteins inactivates Rac1 and Cdc42, returning the cytoskeleton to normal. Although the signaling pathways allowing Salmonella to invade host cells are beginning to be understood, many of the contributing factors remain to be elucidated. IQGAP1 is a multidomain protein that influences numerous cellular functions, including modulation of Rac1/Cdc42 signaling and actin polymerization. Here, we report that IQGAP1 regulates Salmonella invasion. Through its interaction with actin, IQGAP1 co-localizes with Rac1, Cdc42, and actin at sites of bacterial uptake, whereas infection promotes the interaction of IQGAP1 with both Rac1 and Cdc42. Knockdown of IQGAP1 significantly reduces Salmonella invasion and abrogates activation of Cdc42 and Rac1 by Salmonella. Overexpression of IQGAP1 significantly increases the ability of Salmonella to enter host cells and required interaction with both actin and Cdc42/Rac1. Together, these data identify IQGAP1 as a novel regulator of Salmonella invasion.  相似文献   

11.
Rho family GTPases, particularly Rac1 and Cdc42, are key regulators of cell polarization and directional migration. Adenomatous polyposis coli (APC) is also thought to play a pivotal role in polarized cell migration. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts directly with APC. IQGAP1 and APC localize interdependently to the leading edge in migrating Vero cells, and activated Rac1/Cdc42 form a ternary complex with IQGAP1 and APC. Depletion of either IQGAP1 or APC inhibits actin meshwork formation and polarized migration. Depletion of IQGAP1 or APC also disrupts localization of CLIP-170, a microtubule-stabilizing protein that interacts with IQGAP1. Taken together, these results suggest a model in which activation of Rac1 and Cdc42 in response to migration signals leads to recruitment of IQGAP1 and APC which, together with CLIP-170, form a complex that links the actin cytoskeleton and microtubule dynamics during cell polarization and directional migration.  相似文献   

12.
《The Journal of cell biology》1994,125(6):1327-1340
Calcium-dependent cell-cell adhesion is mediated by the cadherin family of cell adhesion proteins. Transduction of cadherin adhesion into cellular reorganization is regulated by cytosolic proteins, termed alpha-, beta-, and gamma-catenin (plakoglobin), that bind to the cytoplasmic domain of cadherins and link them to the cytoskeleton. Previous studies of cadherin/catenin complex assembly and organization relied on the coimmunoprecipitation of the complex with cadherin antibodies, and were limited to the analysis of the Triton X-100 (TX- 100)-soluble fraction of these proteins. These studies concluded that only one complex exists which contains cadherin and all of the catenins. We raised antibodies specific for each catenin to analyze each protein independent of its association with E-cadherin. Extracts of Madin-Darby canine kidney epithelial cells were sequentially immunoprecipitated and immunoblotted with each antibody, and the results showed that there were complexes of E-cadherin/alpha-catenin, and either beta-catenin or plakoglobin in the TX-100-soluble fraction. We analyzed the assembly of cadherin/catenin complexes in the TX-100- soluble fraction by [35S]methionine pulse-chase labeling, followed by sucrose density gradient fractionation of proteins. Immediately after synthesis, E-cadherin, beta-catenin, and plakoglobin cosedimented as complexes. alpha-Catenin was not associated with these complexes after synthesis, but a subpopulation of alpha-catenin joined the complex at a time coincident with the arrival of E-cadherin at the plasma membrane. The arrival of E-cadherin at the plasma membrane coincided with an increase in its insolubility in TX-100, but extraction of this insoluble pool with 1% SDS disrupted the cadherin/catenin complex. Therefore, to examine protein complex assembly in both the TX-100- soluble and -insoluble fractions, we used [35S]methionine labeling followed by chemical cross-linking before cell extraction. Analysis of cross-linked complexes from cells labeled to steady state indicates that, in addition to cadherin/catenin complexes, there were cadherin- independent pools of catenins present in both the TX-100-soluble and - insoluble fractions. Metabolic labeling followed by chase showed that immediately after synthesis, cadherin/beta-catenin, and cadherin/plakoglobin complexes were present in the TX-100-soluble fraction. Approximately 50% of complexes were titrated into the TX-100- insoluble fraction coincident with the arrival of the complexes at the plasma membrane and the assembly of alpha-catenin. Subsequently, > 90% of labeled cadherin, but no additional labeled catenin complexes, entered the TX-100-insoluble fraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The Rho family small GTPase Cdc42 transmits divergent intracellular signals through multiple effector proteins to elicit cellular responses such as cytoskeletal reorganization. Potential effectors of Cdc42 implicated in mediating its cytoskeletal effect in mammalian cells include PAK1, WASP, and IQGAP1. To investigate the determinants of Cdc42-effector specificity, we utilized recombinant Cdc42 mutants and chimeras made between Cdc42 and RhoA to map the regions of Cdc42 contributing to specific effector p21-binding domain (PBD) interaction. Site-directed mutants of the switch I domain and neighboring regions of Cdc42 demonstrated differential binding patterns toward the PBDs of PAK1, WASP, and IQGAP1, suggesting that switch I provides essential determinants for the effector binding, but recognition of each effector by Cdc42 involves a distinct mechanism. Differing from Rac1, the switch I domain and the surrounding region (amino acids 29 to 55) of Cdc42 appeared to be sufficient for specific binding to PAK1, whereas determinants outside the switch I domain, residues 157-191 and 84-120 in particular, were necessary and sufficient to confer specificity to WASP and IQGAP1, respectively. In addition, IQGAP1, but not PAK1 nor WASP, required the unique "insert region," residues 122-134, of Cdc42 to achieve high affinity binding. Microinjection of the constitutively active Cdc42/RhoA chimeras into serum-starved Swiss 3T3 cells showed that although preserving PAK1- and WASP-binding activity could retain the peripheral actin microspike (PAM)-inducing activity of Cdc42, interaction with PAK1 or WASP was not required for this activity. Moreover, IQGAP1-binding alone by Cdc42 was insufficient for PAM-induction. Thus, Cdc42 utilizes multiple distinct structural determinants to specify different effector recognition and to elicit PAM-inducing effect.  相似文献   

14.
The Drosophila gene mushroom bodies tiny (mbt) encodes a putative p21-activated kinase (PAK), a family of proteins that has been implicated in a multitude of cellular processes including regulation of the cytoskeleton, cell polarisation, control of MAPK signalling cascades and apoptosis. The mutant phenotype of mbt is characterised by fewer neurones in the brain and the eye, indicating a role of the protein in cell proliferation, differentiation or survival. We show that mutations in mbt interfere with photoreceptor cell morphogenesis. Mbt specifically localises at adherens junctions of the developing photoreceptor cells. A structure-function analysis of the Mbt protein in vitro and in vivo revealed that the Mbt kinase domain and the GTPase binding domain, which specifically interacts with GTP-loaded Cdc42, are important for Mbt function. Besides regulation of kinase activity, another important function of Cdc42 is to recruit Mbt to adherens junctions. We propose a role for Mbt as a downstream effector of Cdc42 in photoreceptor cell morphogenesis.  相似文献   

15.
16.
Activated forms of the GTPases, Rac and Cdc42, are known to stimulate formation of microfilament-rich lamellipodia and filopodia, respectively, but the underlying mechanisms have remained obscure. We now report the purification and characterization of a protein, IQGAP1, which is likely to mediate effects of these GTPases on microfilaments. Native IQGAP1 purified from bovine adrenal comprises two ~190-kD subunits per molecule plus substoichiometric calmodulin. Purified IQGAP1 bound directly to F-actin and cross-linked the actin filaments into irregular, interconnected bundles that exhibited gel-like properties. Exogenous calmodulin partially inhibited binding of IQGAP1 to F-actin, and was more effective in the absence, than in the presence of calcium. Immunofluorescence microscopy demonstrated cytochalasin D–sensitive colocalization of IQGAP1 with cortical microfilaments. These results, in conjunction with prior evidence that IQGAP1 binds directly to activated Rac and Cdc42, suggest that IQGAP1 serves as a direct molecular link between these GTPases and the actin cytoskeleton, and that the actin-binding activity of IQGAP1 is regulated by calmodulin.  相似文献   

17.
RhoGTPases regulate actin‐based signaling cascades and cellular contacts. In neurogenesis, their action modulates cell migration, neuritogenesis, and synaptogenesis. Murine P19 embryonal stem cells differentiate to neurons upon aggregation in the presence of retinoic acid, and we previously showed that RhoA and Cdc42 RhoGTPases are sequentially up‐regulated during neuroinduction, suggesting a role at this very early developmental stage. In this work, incubation of differentiating P19 cells with C3 toxin resulted in decreased aggregate cohesion and cadherin protein level. In contrast, C3 effects were not observed in cells overexpressing recombinant dominant active RhoA. On the other hand, C3 did not affect cadherin in uninduced cells and their postmitotic neuronal derivatives, respectively expressing E‐ and N‐cadherin. RhoA is thus influential on cell aggregation and cadherin expression during a sensitive time window that corresponds to the switch of E‐ to N‐cadherin. Cell treatment with Y27632 inhibitor of Rho‐associated‐kinase ROCK, or advanced overexpression of Cdc42 by gene transfer of a constitutively active form of the protein reproduced C3 effects. RhoA‐antisense RNA also reduced cadherin level and the size of cell aggregates, and increased the generation of fibroblast‐like cells relative to neurons following neuroinduction. Colchicin, a microtubule disrupter, but not cytochalasin B actin poison, importantly decreased cadherin in neurodifferentiating cells. Overall, our results indicate that the RhoA/ROCK pathway regulates cadherin protein level and cell‐cell interactions during neurodetermination, with an impact on the efficiency of the process. The effect on cadherin seems to involve microtubules. The importance of correct timing of RhoA and Cdc42 functional expression in neurogenesis is also raised. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 289–307, 2004  相似文献   

18.
During spermatogenesis, extensive restructuring of cell junctions takes place in the seminiferous epithelium to facilitate germ cell movement. However, the mechanism that regulates this event remains largely unknown. Recent studies have shown that nitric oxide (NO) likely regulates tight junction (TJ) dynamics in the testis via the cGMP/protein kinase G (cGMP-dependent protein kinase, PRKG) signaling pathway. Due to the proximity of TJ and adherens junctions (AJ) in the testis, in particular at the blood-testis barrier, it is of interest to investigate if NO can affect AJ dynamics. Studies using Sertoli-germ cell cocultures in vitro have shown that the levels of NOS (nitric oxide synthase), cGMP, and PRKG were induced when anchoring junctions were being established. Using an in vivo model in which adult rats were treated with adjudin [a molecule that induces adherens junction disruption, formerly called AF-2364, 1-(2,4-dichlorobenzyl)-IH-indazole-3-carbohydrazide], the event of AJ disruption was also associated with a transient iNOS (inducible nitric oxide synthase, NOS2) induction. Immunohistochemistry has illustrated that NOS2 was intensely accumulated in Sertoli and germ cells in the epithelium during adjudin-induced germ cell loss, with a concomitant accumulation of intracellular cGMP and an induction of PRKG but not cAMP or protein kinase A (cAMP-dependent protein kinase, PRKA). To identify the NOS-mediated downstream signaling partners, coimmunoprecipitation was used to demonstrate that NOS2 and eNOS (endothelial nitric oxide synthase, NOS3) were structurally associated with the N-cadherin (CDH2)/beta-catenin (CATNB)/actin complex but not the nectin-3 (poliovirus receptor-related 3, PVRL 3)/afadin (myeloid/lymphoid or mixed lineage-leukemia tranlocation to 4 homolog, MLLT4) nor the integrin beta1 (ITB1)-mediated protein complexes, illustrating the spatial vicinity of NOS with selected AJ-protein complexes. Interestingly, CDH2 and CATNB were shown to dissociate from NOS during the adjudin-mediated AJ disruption, implicating the CDH2/CATNB protein complex is the likely downstream target of the NO signaling. Furthermore, PRKG, the downstream signaling protein of NOS, was shown to interact with CATNB in the rat testis. Perhaps the most important of all, pretreatment of testes with KT5823, a specific PRKG inhibitor, can indeed delay the adjudin-induced germ cell loss, further validating NOS/NO regulates Sertoli-germ cell AJ dynamics via the cGMP/PRKG pathway. These results illustrate that the CDH2/CATNB-mediated adhesion function in the testis is regulated, at least in part, via the NOS/cGMP/PRKG/CATNB pathway.  相似文献   

19.
Briggs MW  Sacks DB 《FEBS letters》2003,542(1-3):7-11
A family of proteins known as IQGAPs have been identified in yeast, amebas and mammals. IQGAPs are multidomain molecules that contain several protein-interacting motifs which mediate binding to target proteins. Mammalian IQGAP1 is a component of signaling networks that are integral to maintaining cytoskeletal architecture and cell-cell adhesion. Published data suggest that IQGAP1 is a scaffolding protein that modulates cross-talk among diverse pathways in complex regulatory circuits. These pathways include modulating the actin cytoskeleton, mediating signaling by Rho family GTPases and calmodulin, regulating E-cadherin and beta-catenin function and organizing microtubules.  相似文献   

20.
Cadherins and catenins play an important role in cell-cell adhesion. Two of the catenins, beta and gamma, are members of a group of proteins that contains a repeating amino acid motif originally described for the Drosophila segment polarity gene armadillo. Another member of this group is a 120-kD protein termed p120, originally identified as a substrate of the tyrosine kinase pp60src. In this paper, we show that endothelial and epithelial cells express p120 and p100, a 100-kD, p120- related protein. Peptide sequencing of p100 establishes it as highly related to p120. p120 and p100 both appear associated with the cadherin/catenin complex, but independent p120/catenin and p100/catenin complexes can be isolated. This association is shown by coimmunoprecipitation of cadherins and catenins with an anti-p120/p100 antibody, and of p120/p100 with cadherin or catenin antibodies. Immunocytochemical analysis with a p120-specific antibody reveals junctional colocalization of p120 and beta-catenin in epithelial cells. Catenins and p120/p100 also colocalize in endothelial and epithelial cells in culture and in tissue sections. The cellular content of p120/p100 and beta-catenin is similar in MDCK cells, but only approximately 20% of the p120/p100 pool associates with the cadherin/catenin complex. Our data provide further evidence for interactions among the different arm proteins and suggest that p120/p100 may participate in regulating the function of cadherins and, thereby, other processes influenced by cell-cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号