共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression in recombinant vaccinia virus of the equine herpesvirus 1 gene encoding glycoprotein gp13 and protection of immunized animals. 总被引:2,自引:3,他引:2 下载免费PDF全文
P X Guo S Goebel S Davis M E Perkus B Languet P Desmettre G Allen E Paoletti 《Journal of virology》1989,63(10):4189-4198
The equine herpesvirus 1 (EHV-1) gene encoding glycoprotein 13 (gp13) was cloned into the hemagglutinin (HA) locus of vaccinia virus (Copenhagen strain). Expression of the gp13 gene was driven by the early/late vaccinia virus H6 promoter. Metabolically radiolabeled polypeptides of approximately 47 and 44 kilodaltons and 90 kilodaltons (glycosylated form) were precipitated with both polyclonal and gp13-specific monoclonal antibodies. Presentation of gp13 on the cytoplasmic membrane of cells infected with the recombinant gp13 vaccinia virus was demonstrated by immunofluorescence of unfixed cells. Inoculation of the recombinant gp13 vaccinia virus into guinea pigs induced neutralizing antibodies to both EHV-1 and vaccinia virus. Hamsters vaccinated with the recombinant gp13 vaccinia virus survived a lethal challenge with the hamster-adapted Kentucky strain of EHV-1. These results indicate that expression in vaccinia virus vectors of EHV-1 gp13, the glycoprotein homolog of herpes simplex virus gC-1 and gC-2, pseudorabies virus gIII, and the varicella-zoster virus gpV may provide useful vaccine candidates for equine herpesvirus infections. 相似文献
2.
3.
Synthesis, cellular location, and immunogenicity of bovine herpesvirus 1 glycoproteins gI and gIII expressed by recombinant vaccinia virus. 总被引:9,自引:8,他引:1
Two of the major glycoproteins of bovine herpesvirus 1 (BHV-1) are gI, a polypeptide complex with apparent molecular weights of 130,000, 74,000, and 55,000, and gIII (a 91,000-molecular-weight [91K] glycoprotein), which also exists as a 180K dimer. Vaccinia virus (VAC) recombinants were constructed which carry full-length gI (VAC-I) or gIII (VAC-III) genes. The genes for gI and gIII were each placed under the control of the early VAC 7.5K gene promoter and inserted within the VAC gene for thymidine kinase. The recombinant viruses VAC-I and VAC-III retained infectivity and expressed both precursor and mature forms of glycoproteins gI and gIII. The polypeptide backbones, partially glycosylated precursors, and mature gI and gIII glycoproteins were indistinguishable from those produced in BHV-1-infected cells. Consequently, they were apparently cleaved, glycosylated, and transported in a manner similar to that seen during authentic BHV-1 infection, although the processing efficiencies of both gI and gIII were generally higher in recombinant-infected cells than in BHV-1-infected cells. Immunofluorescence studies further demonstrated that the mature gI and gIII glycoproteins were transported to and expressed on the surface of cells infected with the respective recombinants. Immunization of cattle with recombinant viruses VAC-I and VAC-III resulted in the induction of neutralizing antibodies to BHV-1, which were reactive with authentic gI and gIII. These data demonstrate the immunogenicity of VAC-expressed gI and gIII and indicate the potential of these recombinant glycoproteins as a vaccine against BHV-1. 相似文献
4.
Antigenic subunits of Hantaan virus expressed by baculovirus and vaccinia virus recombinants. 总被引:10,自引:7,他引:10 下载免费PDF全文
Baculovirus and vaccinia virus vectors were used to express the small (S) and medium (M) genome segments of Hantaan virus. Expression of the complete S or M segments yielded proteins electrophoretically indistinguishable from Hantaan virus nucleocapsid protein or envelope glycoproteins (G1 and G2), and expression of portions of the M segment, encoding either G1 or G2 alone, similarly yielded proteins which closely resembled authentic Hantaan virus proteins. The expressed envelope proteins retained all antigenic sites defined by a panel of monoclonal antibodies to Hantaan virus G1 and G2 and elicited antibodies in animals which reacted with authentic viral proteins. A Hantaan virus infectivity challenge model in hamsters was used to assay induction of protective immunity by the recombinant-expressed proteins. Recombinants expressing both G1 and G2 induced higher titer antibody responses than those expressing only G1 or G2 and protected most animals from infection with Hantaan virus. Baculovirus recombinants expressing only nucleocapsid protein also appeared to protect some animals from challenge. Passively transferred neutralizing monoclonal antibodies similarly prevented infection, suggesting that an antibody response alone is sufficient for immunity to Hantaan virus. 相似文献
5.
Antigenic and protein sequence homology between VP13/14, a herpes simplex virus type 1 tegument protein, and gp10, a glycoprotein of equine herpesvirus 1 and 4. 总被引:3,自引:7,他引:3 下载免费PDF全文
G R Whittaker M P Riggio I W Halliburton R A Killington G P Allen D M Meredith 《Journal of virology》1991,65(5):2320-2326
Monospecific polyclonal antisera raised against VP13/14, a major tegument protein of herpes simplex virus type 1 cross-reacted with structural equine herpesvirus 1 and 4 proteins of Mr 120,000 and 123,000, respectively; these proteins are identical in molecular weight to the corresponding glycoprotein 10 (gp10) of each virus. Using a combination of immune precipitation and Western immunoblotting techniques, we confirmed that anti-VP13/14 and a monoclonal antibody to gp10 reacted with the same protein. Sequence analysis of a lambda gt11 insert of equine herpesvirus 1 gp10 identified an open reading frame in equine herpesvirus 4 with which it showed strong homology; this open reading frame also shared homology with gene UL47 of herpes simplex virus type 1 and gene 11 of varicella-zoster virus. This showed that, in addition to immunological cross-reactivity, VP13/14 and gp10 have protein sequence homology; it also allowed identification of VP13/14 as the gene product of UL47. 相似文献
6.
7.
J E Wellington G P Allen A A Gooley D N Love N H Packer J X Yan J M Whalley 《Journal of virology》1996,70(11):8195-8198
There have been conflicting reports regarding the gene assignment of the high-molecular-mass envelope glycoprotein gp2 (gp300) of equine herpesvirus 1. Here, we provide an unequivocal demonstration that gp2 is encoded by gene 71. gp2 that was purified with a defining monoclonal antibody was cleaved internally to yield a 42-kDa protein encoded by gene 71. Amino acid composition data and N-terminal sequence analysis of a tryptic peptide identified gp2 as the product of equine herpesvirus 1 gene 71 with the SWISS-PROT database. Analysis of gp2's monosaccharide composition and the 42-kDa subunit showed that the high level of O glycosylation occurs on the serine/threonine-rich region upstream of the cleavage site. 相似文献
8.
Protection of mice and swine from pseudorabies virus conferred by vaccinia virus-based recombinants. 下载免费PDF全文
M Riviere J Tartaglia M E Perkus E K Norton C M Bongermino F Lacoste C Duret P Desmettre E Paoletti 《Journal of virology》1992,66(6):3424-3434
Glycoproteins gp50, gII, and gIII of pseudorabies virus (PRV) were expressed either individually or in combination by vaccinia virus recombinants. In vitro analysis by immunoprecipitation and immunofluorescence demonstrated the expression of a gII protein of approximately 120 kDa that was proteolytically processed to the gIIb (67- to 74-kDa) and gIIc (58-kDa) mature protein species similar to those observed in PRV-infected cells. Additionally, the proper expression of the 90-kDa gIII and 50-kDa gp50 was observed. All three of these PRV-derived glycoproteins were detectable on the surface of vaccinia virus-PRV recombinant-infected cells. In vivo, mice were protected against a virulent PRV challenge after immunization with the PRV glycoprotein-expressing vaccinia virus recombinants. The coexpression of gII and gIII by a single vaccinia virus recombinant resulted in a significantly reduced vaccination dose required to protect mice against PRV challenge. Inoculation of piglets with the various vaccinia virus-PRV glycoprotein recombinants also resulted in protection against virulent PRV challenge as measured by weight gain. The simultaneous expression of gII and gp50 in swine resulted in a significantly enhanced level of protection as evaluated by weight evolution following challenge with live PRV. 相似文献
9.
10.
The purified 14-kilodalton envelope protein of vaccinia virus produced in Escherichia coli induces virus immunity in animals. 下载免费PDF全文
Vaccinia virus (VV) was successfully used as a live vaccine to eradicate smallpox, but the nature of viral proteins involved in eliciting viral immunity has not yet been identified. A potential candidate is a 14-kDa VV envelope protein that is involved in virus penetration at the level of virus-cell fusion, in cell-cell fusion late in infection, and in virus dissemination. The 14-kDa envelope protein has been produced in Escherichia coli, with properties similar to those of the native protein found in the virus particle and in infected cells (C. Lai, S. Gong, and M. Esteban, J. Biol. Chem. 256:22174-22180, 1990). In this investigation, we showed that mice immunized with purified VV 14-kDa protein synthesized in E. coli in the form of a monomer or a trimer develop high-titer neutralizing antibodies and are protected when challenged with lethal doses of wild-type VV. Our findings demonstrate that it is possible to confer protection against VV through immunization with the 14-kDa envelope protein. 相似文献
11.
M. Wachsman L. Aurelian J. C. R. Hunter M. E. Perkus E. Paoletti 《Bioscience reports》1988,8(4):323-334
We studied the effect of the temporal regulation of herpes simplex virus (HSV) type 1 glycoprotein D (gD-1) expression in Ia+ epidermal cells (EC) and macrophages on virus specific immunity and protection from HSV-2 challenge. gD-1 was expressed on the surface of cells infected with a vaccinia recombinant containing gD-1 under the control of an early vaccinia virus promoter (VP176). It was not expressed in cells infected with a recombinant (VP254) in which gD-1 is controlled by a late vaccinia virus promoter. BALB/c mice immunized with both recombinants seroconverted to HSV-2 as determined by neutralization. However, HSV specific delayed type hypersensitivity (DTH) responses were significantly (p<0.025) higher in VP176 than VP254 immunized animals. Both VP176 and VP254 immunized mice were protected from severe neurological disease due to HSV-2 challenge at 14 days post immunization, but long term protection was observed only in VP176 immunized mice. 相似文献
12.
After cell infection with the equine herpesvirus 1 (EHV-1), the termini of the linear double-stranded DNA genome fuse to form circular forms. To investigate the mechanisms in the generation and cleavage of such replicative-form DNAs, the genomic termini, the fusion of termini from replicative-form molecules, and the junction between the short and long genome segments have been analyzed by restriction mapping, blot hybridizations, cloning, and sequencing. The data suggest that the genome ends are not redundant and that the genomic termini are fused in replicative intermediates via 3' single-base extensions at the termini of the unique long segment (UL) and terminal repeat (TR). Adjacent to the EHV-1 termini are AT and gamma sequence elements highly conserved among different herpesviruses. We propose that both of these sequence elements are important for the cleavage of EHV-1 replicative forms. 相似文献
13.
Four unique glycoproteins or glycoprotein complexes were recognized by a panel of monoclonal antibodies to bovine herpesvirus 1 (BHV-1), i.e., GVP 6/11a/16 (130,000-molecular-weight glycoprotein [130K glycoprotein]/74K/55K), GVP 7 (108K), GVP 3/9 (180K/91K), and GVP 11b (71K). The absence of any antigenic or structural relationship between GVP 11a and GVP 11b, which were previously identified as one glycoprotein, GVP 11, demonstrated that these two GVP 11 species are unique glycoproteins. GVP 3 and GVP 9 showed complete sequence homology, as shown by the identity of their antigenic determinants and by partial peptide mapping. This observation, as well as the ratio of their apparent molecular weights, indicated that GVP 3 (180K) is a dimeric form of GVP 9 (91K). GVP 6 and GVP 11a, as well as GVP 6 and GVP 16, showed at least partial sequence homology, since they shared several antigenic determinants and peptides. In addition, GVP 6, GVP 11a, and GVP 16 were derived from one primary precursor. These results, as well as the ratio of their apparent molecular weights, indicated that the GVP 6/11a/16 complex consists of two forms: one in which GVP 6 (130K) is uncleaved and the other one in which GVP 6 is cleaved and composed of GVP 11a (74K) and GVP 16 (55K), linked by disulfide bridges. An antigenically distinct precursor to each of the four BHV-1 glycoproteins or glycoprotein complexes was identified by monoclonal antibodies. These precursors, pGVP 6 (117K), pGVP 11a (62K), pGVP 7 (100K), pGVP 9 (69K), and pGVP 11b (63K) were sensitive to endo-beta-N-acetylglucosaminidase H treatment, indicating that they represent the partially glycosylated high-mannose-type intermediate forms generated by cotranslational glycosylation of the primary, unglycosylated precursors to GVP 6/11a/16, GVP 7, GVP 3/9, and GVP 11b, which were identified as having apparent molecular weights of 105,000, 90,000, 61,000, and 58,000, respectively. A new nomenclature for the BHV-1 glycoproteins, based on roman numerals, is proposed. 相似文献
14.
W N Wagner J Bogdan D Haines H G Townsend V Misra 《Canadian journal of microbiology》1992,38(11):1193-1196
Although both equine herpesvirus type 1 (EHV-1) and equine herpesvirus type 4 (EHV-4) can be associated with respiratory disease, epizootics caused by EHV-1 are much more serious because the virus can cause abortions and paralysis. It is, therefore, important to identify the type of EHV involved in an outbreak by a test that is quick, sensitive, and reliable. We have adapted the polymerase chain reaction (PCR) to detect and distinguish between EHV-1 and EHV-4 in the same reaction. Primers for PCR were designed from the sequences of the glycoprotein B genes of EHV-1 and EHV-4. The PCR products derived from EHV-1 and EHV-4 were 135 and 326 base pairs, respectively, and could be readily separated by electrophoresis. The identity of the PCR products was confirmed by determining their nucleotide sequence, which agreed with the published sequence of the gB genes. The test could be performed directly on virus pelleted from small volumes (300 microL) of medium in which nasal swabs were transported and did not rely on the presence of infectious virus. The PCR was unaffected by conditions that reduced the infectivity of a virus preparation by 99%. The PCR detected EHV-4 in 5 of 10 nasal mucous samples taken from an outbreak of respiratory disease in race horses. Virus isolation in indicator cells was successful in detecting virus in four of the five samples positive by PCR. 相似文献
15.
Pseudorabies virus (PrV) glycoproteins gII and gp50 are major constituents of the viral envelope and targets of neutralizing monoclonal antibodies. Both are homologs of essential glycoproteins found in herpes simplex virus, gB (gII) and gD (gp50). We recently isolated a gII-negative PrV deletion mutant on complementing cell lines and established the essential character of gII for PrV replication (I. Rauh, F. Weiland, F. Fehler, G. Keil, and T.C. Mettenleiter, J. Virol. 65: 621-631, 1991). In this report, we describe the isolation of a gp50-negative PrV mutant after constructing cell lines that constitutively express gp50 and phenotypically complement the gp50 defect. Analysis of the gp50- mutant proved that gp50 is essential for PrV replication. Further studies showed that both gII and gp50 are required for viral penetration into target cells. The penetration defect in the gII and gp50 deletion mutants could be overcome by experimental polyethylene glycol-induced membrane fusion. Surprisingly, whereas gII proved to be essential for both penetration and cell-cell spread of the virus, gp50 was required only for penetration and appeared dispensable for direct cell-cell spread. 相似文献
16.
The equine herpesvirus 1 glycoprotein gp21/22a, the herpes simplex virus type 1 gM homolog, is involved in virus penetration and cell-to-cell spread of virions. 下载免费PDF全文
N Osterrieder A Neubauer C Brandmuller B Braun O R Kaaden J D Baines 《Journal of virology》1996,70(6):4110-4115
Experiments to analyze the function of the equine herpesvirus 1 (EHV-1) glycoprotein gM homolog were conducted. To this end, an Rk13 cell line (TCgM) that stably expressed EHV-1 gM was constructed. Proteins with apparent M(r)s of 46,000 to 48,000 and 50,000 to 55,000 were detected in TCgM cells with specific anti-gM antibodies, and the gM protein pattern was indistinguishable from that in cells infected with EHV-1 strain RacL11. A viral mutant (L11deltagM) bearing an Escherichia coli lacZ gene inserted into the EHV-1 strain RacL11 gM gene (open reading frame 52) was purified, and cells infected with L11deltagM did not contain detectable gM. L11deltagM exhibited approximately 100-fold lower titers and a more than 2-fold reduction in plaque size relative to wild-type EHV-1 when grown and titrated on noncomplementing cells. Viral titers were reduced only 10-fold when L11deltagM was grown on the complementing cell line TCgM and titrated on noncomplementing cells. L11deltagM also exhibited slower penetration kinetics compared with those of the parental EHV-1 RacL11. It is concluded that EHV-1 gM plays important roles in the penetration of virus into the target cell and in spread of EHV-1 from cell to cell. 相似文献
17.
18.
Induction of protective immunity in animals vaccinated with recombinant vaccinia viruses that express PreM and E glycoproteins of Japanese encephalitis virus. 总被引:13,自引:3,他引:13 下载免费PDF全文
A Yasuda J Kimura-Kuroda M Ogimoto M Miyamoto T Sata T Sato C Takamura T Kurata A Kojima K Yasui 《Journal of virology》1990,64(6):2788-2795
A cDNA clone representing the genome of structural proteins of Japanese encephalitis virus (JEV) was inserted into the thymidine kinase gene of vaccinia virus strains LC16mO and WR under the control of a strong early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. Indirect immunofluorescence and fluorescence-activated flow cytometric analysis revealed that the recombinant vaccinia viruses expressed JEV E protein on the membrane surface, as well as in the cytoplasm, of recombinant-infected cells. In addition, the E protein expressed from the JEV recombinants reacted to nine different characteristic monoclonal antibodies, some of which have hemagglutination-inhibiting and JEV-neutralizing activities. Radioimmunoprecipitation analysis demonstrated that two major proteins expressed in recombinant-infected cells were processed and glycosylated as the authentic PreM and E glycoproteins of JEV. Inoculation of rabbits with the infectious recombinant vaccinia virus resulted in rapid production of antiserum specific for the PreM and E glycoproteins of JEV. This antiserum had both hemagglutination-inhibiting and virus-neutralizing activities against JEV. Furthermore, mice vaccinated with the recombinant also produced JEV-neutralizing antibodies and were resistant to challenge with JEV. 相似文献
19.
The genetic relatedness of two types of equine herpesviruses (EHVs), 1 (EHV-1) and 3 (EHV-3), was determined by DNA-DNA reassociation kinetics. Denatured, labeled viral DNA probe was allowed to reassociate in the presence or absence of the second unlabeled viral DNA. The initial rate of reassociation of either labeled viral DNA was increased by the presence of the heterologous viral DNA to an extent indicating only 2 to 5% homology between the two EHV genomes. Moreover, labeled RNA extracted from EHV-3-infected cells hybridized to filter-immobilized EHV-1 DNA only 2 to 3 percent as efficiently as to the homologous EHV-3 DNA. These results demonstrate that the genital (EHV-3) and nongenital (EHV-1) types of EHVs exhibit very little genetic homology. 相似文献
20.
Limited expression of poliovirus by vaccinia virus recombinants due to inhibition of the vector by proteinase 2A. 总被引:1,自引:3,他引:1 下载免费PDF全文
A recombinant vaccinia virus was constructed that expressed poliovirus coat precursor protein P1 fused to about two-thirds of the 2A proteinase. The truncated 2A segment could be cleaved away from the P1 region by coinfecting with poliovirus type 1, 2, or 3 or with human rhinovirus 14 but not with encephalomyocarditis virus. Further cleavage of the vector-derived P1 to yield mature poliovirus capsid proteins was not observed. Attempts to isolate vaccinia virus recombinants containing portions of the poliovirus genome that encompassed the complete gene for proteinase 2A were unsuccessful, unless expression of functional 2A was abolished by insertion of a frameshift mutation. We conclude that an activity of the 2A proteinase, probably its role in translational inhibition, prevented isolation of vaccinia virus recombinants that expressed 2A. 相似文献