首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the main purposes leading botanists to investigate the effects of ionizing radiations is to understand plant behaviour in space, where vegetal systems play an important role for nourishment, psychological support and functioning of life support systems. Ground-based experiments have been performed with particles of different charge and energy. Samples exposed to X- or γ-rays are often used as reference to derive the biological efficiency of different radiation qualities. Studies where biological samples are exposed directly to the space radiation environment have also been performed. The comparison of different studies has clarified how the effects observed after exposure are deeply influenced by several factors, some related to plant characteristics (e.g. species, cultivar, stage of development, tissue architecture and genome organization) and some related to radiation features (e.g. quality, dose, duration of exposure). In this review, we report main results from studies on the effect of ionizing radiations, including cosmic rays, on plants, focusing on genetic alterations, modifications of growth and reproduction and changes in biochemical pathways especially photosynthetic behaviour. Most of the data confirm what is known from animal studies: densely ionizing radiations are more efficient in inducing damages at several different levels, in comparison with sparsely ionizing radiation.  相似文献   

2.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p<0.001). In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

3.
The widespread use of mobile phones has led to public concerns about the health effects associated with exposure to radiofrequency (RF) fields. The paramount concern of most persons relates to the potential of these fields to cause cancer. Unlike ionizing radiation, RF fields used for mobile telecommunications (800-1900 MHz) do not possess sufficient energy to directly damage DNA. Most rodent bioassay and in vitro genotoxicity/mutation studies have reported that RF fields at non-thermal levels have no direct mutagenic, genotoxic or carcinogenic effects. However, some evidence has suggested that RF fields may cause detectable postexposure changes in gene expression. Therefore, the purpose of this study was to assess the ability of exposure to a 1.9 GHz pulse-modulated RF field for 4 h at specific absorption rates (SARs) of 0.1, 1.0 and 10.0 W/kg to affect global gene expression in U87MG glioblastoma cells. We found no evidence that non-thermal RF fields can affect gene expression in cultured U87MG cells relative to the nonirradiated control groups, whereas exposure to heat shock at 43 degrees C for 1 h up-regulated a number of typical stress-responsive genes in the positive control group. Future studies will assess the effect of RF fields on other cell lines and on gene expression in the mouse brain after in vivo exposure.  相似文献   

4.
Effects of nonionizing radiation on birds   总被引:1,自引:0,他引:1  
1. With the ability to fly comes a greater probability of direct irradiation by nonionizing radiation. The effect of nonionizing radiation on birds is, therefore, of environmental significance. 2. Most biological effects of exposure to nonionizing radiation in avian species are a result of radiation-induced temperature increases. 3. The incubating avian egg provides a model to study nonthermal effects of microwave exposure since ambient incubation temperature can be adjusted to compensate for absorbed thermal energy. 4. Some studies have shown that exposure to nonthermal levels of nonionizing radiation affect a bird's ability to recover from acute physiological stressors. 5. Although earlier research indicated that modulated radiofrequency radiation increased calcium-ion efflux in chick forebrain tissue, criticism of experimental techniques and contradictory results between related studies have made final conclusions elusive. 6. Birds have been shown to be able to reliably detect magnetic fields in both the field and laboratory. Some researchers have reported malformations in chicken embryos exposed to a sinusoidal bipolar oscillating magnetic field.  相似文献   

5.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p < 0.001).

In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

6.
During the last century, mankind has introduced electricity and during the very last decades, the microwaves of the modern communication society have spread a totally new entity--the radiofrequency fields--around the world. How does this affect biology on Earth? The mammalian brain is protected by the blood-brain barrier, which prevents harmful substances from reaching the brain tissue. There is evidence that exposure to electromagnetic fields at non thermal levels disrupts this barrier. In this review, the scientific findings in this field are presented. The result is a complex picture, where some studies show effects on the blood-brain barrier, whereas others do not. Possible mechanisms for the interactions between electromagnetic fields and the living organisms are discussed. Demonstrated effects on the blood-brain barrier, as well as a series of other effects upon biology, have caused societal anxiety. Continued research is needed to come to an understanding of how these possible effects can be neutralized, or at least reduced. Furthermore, it should be kept in mind that proven effects on biology also should have positive potentials, e.g., for medical use.  相似文献   

7.
The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be unaffected by microwave irradiation. Thus this study does not provide evidence for any effect of the microwave radiation used on damage-related factors in glial cells in culture.  相似文献   

8.
Anatomic variability in the deposition of radiofrequency electromagnetic energy in mammals has been well documented. A recent study [D'Andrea et al., 1985] reported specific absorption rate (SAR) hotspots in the brain, rectum and tail of rat carcasses exposed to 360- and to 2,450-MHz microwave radiation. Regions of intense energy absorption are generally thought to be of little consequence when predicting thermal effects of microwave irradiation because it is presumed that heat transfer via the circulatory system promptly redistributes localized heat to equilibrate tissue temperature within the body. Experiments on anesthetized, male Long-Evans rats (200-260 g) irradiated for 10 or 16 min with 2,450, 700, or 360 MHz radiation at SARs of 2 W/kg, 6 W/kg, or 10 W/kg indicated that postirradiation localized temperatures in regions previously shown to exhibit high SARs were appreciably above temperatures at body sites with lower SARs. The postirradiation temperatures in the rectum and tail were significantly higher in rats irradiated at 360 MHz and higher in the tail at 2,450 MHz than temperatures resulting from exposure to 700 MHz. This effect was found for whole-body-averaged SARs as low as 6 W/kg at 360 MHz and 10 W/kg at 2,450 MHz. In contrast, brain temperatures in the anesthetized rats were not different from those measured in the rest of the body following microwave exposure.  相似文献   

9.
Despite many research efforts and public debate there is still great concern about the possible adverse effects of radiofrequency (RF) radiation on human health. This is especially due to the enormous increase of wireless mobile telephones and other telecommunication devices throughout the world. The possible genetic effects of mobile phone radiation and other sources of radiofrequencies constitute one of the major points of concern. In the past several review papers were published on laboratory investigations that were devoted to in vitro and in vivo animal (cyto)genetic studies. However, it may be assumed that some of the most important observations are those obtained from studies with individuals that were exposed to relatively high levels of radiofrequency radiation, either as a result of their occupational activity or as frequent users of radiofrequency emitting tools. In this paper the cytogenetic biomonitoring studies of RF-exposed humans are reviewed. A majority of these studies do show that RF-exposed individuals have increased frequencies of genetic damage (e.g., chromosomal aberrations) in their lymphocytes or exfoliated buccal cells. However, most of the studies, if not all, have a number of shortcomings that actually prevents any firm conclusion. Radiation dosimetry was lacking in all papers, but some of the investigations were flawed by much more severe imperfections. Large well-coordinated multidisciplinary investigations are needed in order to reach any robust conclusion.  相似文献   

10.
During recent years, an increasing percentage of male infertility has to be attributed to an array of environmental, health and lifestyle factors. Male infertility is likely to be affected by the intense exposure to heat and extreme exposure to pesticides, radiations, radioactivity and other hazardous substances. We are surrounded by several types of ionizing and non-ionizing radiations and both have recognized causative effects on spermatogenesis. Since it is impossible to cover all types of radiation sources and their biological effects under a single title, this review is focusing on radiation deriving from cell phones, laptops, Wi-Fi and microwave ovens, as these are the most common sources of non-ionizing radiations, which may contribute to the cause of infertility by exploring the effect of exposure to radiofrequency radiations on the male fertility pattern. From currently available studies it is clear that radiofrequency electromagnetic fields (RF-EMF) have deleterious effects on sperm parameters (like sperm count, morphology, motility), affects the role of kinases in cellular metabolism and the endocrine system, and produces genotoxicity, genomic instability and oxidative stress. This is followed with protective measures for these radiations and future recommendations. The study concludes that the RF-EMF may induce oxidative stress with an increased level of reactive oxygen species, which may lead to infertility. This has been concluded based on available evidences from in vitro and in vivo studies suggesting that RF-EMF exposure negatively affects sperm quality.  相似文献   

11.
Studies conducted by the authors and their coworkers on the mechanisms and physiologic significance of radiofrequency hearing effects are reviewed. Results of these studies demonstrate that 1) thermoelastic expansion of fluids and structures within the inner ear is the main mechanism by which auditory stimuli are produced by microwave pulses; 2) the frequency spectra of these stimuli are indistinguishable from the spectra of rectangular pulses with the same durations as the microwave pulses; 3) exposure to continuous-wave (CW) microwave radiation evokes an increase in the metsbolic activities of nuclei in the ascending auditory pathway and also decreases the latency and increases the magnitude of brainstem-evoked responses produced by acoustic clicks; and 4) the mechanism of the effects of CW microwave radiation on the auditory system is intracochlear heating. The significance of these findings is discussed in terras of potential applications of microwave stimuli in basic research on the auditory system and in terms of interpreting the results of past studies that demonstrate behavioral sensitivity to CW microwave fields.  相似文献   

12.
Patched1 heterozygous knockout mice (Ptc1+/-), an animal model of multiorgan tumorigenesis in which ionizing radiation dramatically accelerates tumor development, were used to study the potential tumorigenic effects of electromagnetic fields (EMFs) on neonatal mice. Two hundred Ptc1+/- mice and their wild-type siblings were enrolled in this study. Newborn mice were exposed to 900 MHz radiofrequency radiation (average SAR: 0.4 W/kg for 5 days, 0.5 h twice a day) or were sham exposed. We found that RF EMFs simulating the Global System for Mobile Communications (GSM) did not affect the survival of the mice, because no statistically significant differences in survival were found between exposed and sham-exposed animals. Also, no effects attributable to radiofrequency radiation were observed on the incidence and histology of Ptc1-associated cerebellar tumors. Moreover, the skin phenotype was analyzed to look for proliferative effects of RF EMFs on the epidermal basal layer and for acceleration of preneoplastic lesions typical of the basal cell carcinoma phenotype of this model. We found no evidence of proliferative or promotional effects in the skin from neonatal exposure to radiofrequency radiation. Furthermore, no difference in Ptc1-associated rhabdomyosarcomas was detected between sham-exposed and exposed mice. Thus, under the experimental conditions tested, there was no evidence of life shortening or tumorigenic effects of neonatal exposure to GSM RF radiation in a highly tumor-susceptible mouse model.  相似文献   

13.
In order to assess the effects of time requirements of different tissue inactivation methods, concentrations of cyclic adenosine monophosphate in rat brain were determined. Fixation of tissues was obtained by the following methods: decapitation with removal of brain and freezing in liquid nitrogen; decapitation into liquid nitrogen; whole animal immersion in liquid nitrogen; 1.5 kW maximal field strength microwave irradiation for 8 seconds; and, 5 kW maximal field strength microwave irradiation for 2 seconds. Results of these studies indicate that as the time is reduced for inactivation of brain adenyl cyclase and phosphodiesterase, levels of cyclic adenosine monophosphate become progressively lower. This same correlation is also evident in studies of regional brain concentrations of cyclic adenosine monophosphate after 1.5 kW and 5 kW microwave inactivation. It is concluded that 5 kW maximal field strength microwave exposure is the most rapid means of enzyme inactivation permitting a more accurate estimation of endogenous cyclic adenosine monophosphate concentrations. Its use offers rapid inactivation with minimization of trauma and facilities the study of regional metabolites through ease of dissection.  相似文献   

14.
The effects of hyperthermia, alone and in conjunction with microwave exposure, on brain energetics were studied in anesthetized male Sprague-Dawley rats. The effect of temperature on adenosine triphosphate concentration [ATP] and creatine phosphate concentration [CP] was determined in the brains of rats that were maintained at 35.6, 37.0, 39.0, and 41.0 degrees C. At 37, 39, and 41 degrees C brain [ATP] and [CP] were down 6.0, 10.8, and 29.2%, and 19.6, 28.7, and 44%, respectively, from the 35.6 degrees C control concentrations. Exposure of the brain to 591-MHz radiation at 13.8 mW/cm2 for 0.5, 1.0, 3.0, and 5.0 min caused further decreases (below those observed for 30 degrees C hyperthermia only) of 16.0, 29.8, 22.5, and 12.3% in brain [ATP], and of 15.6, 25.1, 21.4, and 25.9% in brain [CP] after 0.5, 1.0, 3.0, and 5.0 min, respectively. Recording of brain reduced nicotinamide adenine dinucleotide (NADH) fluorescence before, during, and after microwave exposure showed an increase in NADH fluorescence during microwave exposure that returned to preexposure levels within 1 min postexposure. Continuous recording of brain temperatures during microwave exposures showed that brain temperature varied between -0.1 and +0.05 degrees C. Since the microwave exposures did not induce tissue hyperthermia, it is concluded that direct microwave interaction at the subcellular level is responsible for the observed decrease in [ATP] and [CP].  相似文献   

15.
A comparative analysis and mathematical modeling of laboratory animal sensitivity (mice, rats, rabbits and dogs) to microwave exposure in the dependence of the power flux density (PFD) and the specific absorption rate (SAR) were carried out. The results obtained in our laboratory and some data published by other authors were presented as the dependence of the survival time of various animals during exposure both on PFD and SAR of microwave radiation (0.46; 2.4 and 7 GHz). It is shown that if PFD is used as a dosimetric parameter, the animal sensitivity to nonionizing electromagnetic ultrahigh frequency radiation increased with animal mass. If SAR was used as a dosimetric parameter, the arrangement of animals in accordance with their sensitivity to microwave became quite opposite. Mathematical equations describing the dependence of the survival time of laboratory animals on the duration and the intensity of microwave radiation were obtained. These equations describe the published experimental data and can be used to predict the animal death during the process of microwave irradiation.  相似文献   

16.
Steadily growing use of electromagnetic fields, especially in conjunction with wireless communication systems, has led to increasing public concern about possible health effects of electromagnetic radiation. However, besides the well-known thermal effect of electromagnetic fields on biological tissue, there is no clear evidence of further athermal interaction mechanisms with biological systems. The present study was designed to determine the changes in bilayer permeability in egg lecithin multilamellar vesicles after exposure to 900 MHz microwave radiation for a period of 5 h. Specific absorption rate (SAR) of the radiation for the investigated liposome sample was found to be 12 +/- 1 W/kg. Liposomal changes in permeability were monitored using a light scattering technique. Optical anisotropy of the liposome sample decreased dramatically upon exposure to microwave radiation, indicating structural changes in acyl chain packing. IR and NMR ((1)H NMR) studies, which have been employed to reveal structural alterations in microwave, exposed vesicles showed an increased damage upon exposure to microwave. The changes observed in the (1)H NMR spectrum of the microwave exposed sample indicated hydrolysis of carboxylic and phosphoric esters. IR study showed conformational changes in the acyl chains of the lipids upon microwave exposure. However, both IR and (31)P NMR did not show any appreciable changes in the head group part of the lipids.  相似文献   

17.
Three key compounds in brain energy metabolism have been measured during and after exposure to continuous wave radiofrequency radiation at 200, 591, and 2,450 MHz. Frequency-dependent changes have been found for all three compounds. Changes in NADH fluorescence have been measured on the surface of a surgically uncovered rat brain during exposure. At 200 and 591 MHz, NADH fluorescence increased in a dose-dependent manner between approximately 1 and 10 mW/cm2, then became constant at higher exposures. There was no effect at 2,450 MHz. Levels of ATP and CP were measured in whole brain after exposure. The ATP levels were decreased at 200 and 591 MHz but not at 2,450 MHz. The CP levels decreased only at 591 MHz. The effect of duration of exposure (up to 5 min) was investigated for all compounds at 200 MHz and 2,450 MHz, and exposures to 20 minutes were examined at 591 MHz. Temperature in the rat brain was essentially constant for all exposures. A general mechanism for inhibition of the mitochondrial electron transport chain and the CP-kinase reaction pathway by radiofrequency radiation has been proposed.  相似文献   

18.
This study was conducted in an attempt to characterize some of the effects of sublethal microwave radiation on cells of Staphylococcus aureus. Cultures were exposed to microwave radiation for 10, 20, 30, and 40 s. The effects of a conventional heat treatment were also compared by placing flasks containing cultures in a boiling water bath for the amount of time required to reach temperatures equivalent to those found in cultures exposed to microwave radiation. Control, microwave-treated, and conventionally heat-treated cultures were centrifuged, pellets were resuspended in distilled water, and the resulting suspensions were passed through a French pressure cell. Cell lysates and walls were then isolated and assayed for enzymatic activity. Thermonuclease production was also determined at various levels of exposure of cells to microwave radiation. Activities of malate and α-ketoglutarate dehydrogenases, cytochrome oxidase, and cytoplasmic adenosine triphosphatase were higher in microwave-treated cells than in control cells. Membrane adenosine triphosphatase, alkaline phosphatase, and lactate dehydrogenase activities were unaffected when cells were exposed to microwave radiation. The activity of glucose-6-phosphate dehydrogenase was decreased by exposure of cells to microwave radiation. In conventionally heated cells, activities of glucose-6-phosphate and malate dehydrogenases and cytoplasmic adenosine triphosphatase increased activities of α-ketoglutarate and lactate dehydrogenases decreased, and alkaline phosphatase activity remained unaffected. Increased levels of thermonuclease activity were observed when cells were exposed to microwave radiation for 10 or 20 s. Data indicate that microwave radiation affects S. aureus in a manner which cannot be explained solely by thermal effects.  相似文献   

19.
We investigated the possible combined genotoxic effects of radiofrequency (RF) electromagnetic fields (900 MHz, amplitude modulated at 217 Hz, mobile phone signal) with the drinking water mutagen and carcinogen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Female rats were exposed to RF fields for a period of 2 years for 2 h per day, 5 days per week at average whole-body specific absorption rates of 0.3 or 0.9 W/kg. MX was given in the drinking water at a concentration of 19 microg/ml. Blood samples were taken at 3, 6 and 24 months of exposure and brain and liver samples were taken at the end of the study (24 months). DNA damage was assessed in all samples using the alkaline comet assay, and micronuclei were determined in erythrocytes. We did not find significant genotoxic activity of MX in blood and liver cells. However, MX induced DNA damage in rat brain. Co-exposures to MX and RF radiation did not significantly increase the response of blood, liver and brain cells compared to MX exposure only. In conclusion, this 2-year animal study involving long-term exposures to RF radiation and MX did not provide any evidence for enhanced genotoxicity in rats exposed to RF radiation.  相似文献   

20.
Man-made microwave and radiofrequency (RF) radiation technologies have been steadily increasing with the growing demand of electronic appliances such as microwave oven and cell phones. These appliances affect biological systems by increasing free radicals, thus leading to oxidative damage. The aim of this study was to explore the effect of 2.45 GHz microwave radiation on histology and the level of lipid peroxide (LPO) in Wistar rats. Sixty-day-old male Wistar rats with 180 ± 10 g body weight were used for this study. Animals were divided into two groups: sham exposed (control) and microwave exposed. These animals were exposed for 2 h a day for 35 d to 2.45 GHz microwave radiation (power density, 0.2 mW/cm2). The whole-body specific absorption rate (SAR) was estimated to be 0.14 W/kg. After completion of the exposure period, rats were sacrificed, and brain, liver, kidney, testis and spleen were stored/preserved for determination of LPO and histological parameters. Significantly high level of LPO was observed in the liver (p < 0.001), brain (p < 0.004) and spleen (p < 0.006) in samples from rats exposed to microwave radiation. Also histological changes were observed in the brain, liver, testis, kidney and spleen after whole-body microwave exposure, compared to the control group.

Based on the results obtained in this study, we conclude that exposure to microwave radiation 2 h a day for 35 d can potentially cause histopathology and oxidative changes in Wistar rats. These results indicate possible implications of such exposure on human health.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号