首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
生物传感器在环境分析中的研究现状与前景   总被引:3,自引:0,他引:3  
论述生物传感器的发展现状与前景。在环境控制中,生物传感器作为广谱装置应用于废水或生化需氧量的检测以及特异性地对农药、重金属、硝酸盐、亚硝酸盐、除草剂和次氮基乙酸等环境污染物进行检测。讨论了各类生物传感器(如酶生物传感器、全细胞生物传感器、受体传感器和免疫传感器)在环境分析中的应用实例及其优缺点,并指出了急需解决的问题以阐明其应用趋势,以期在这一跨学科领域进行更多的研究。  相似文献   

2.
DNA生物传感器在环境污染监测中的应用   总被引:10,自引:0,他引:10  
基于生物催化和免疫原理的生物传感器在环境领域中获得了广泛应用.近年来,随着分子生物学和生物技术的发展,人们开发了以核酸探针为识别元件,基于核酸相互作用原理的DNA生物传感器.该传感器可用于受感染微生物的核酸序列分析、优先控制污染物的检测以及污染物与DNA之间相互作用的研究,在环境污染监测中具有潜在的巨大应用前景.简要介绍了核酸杂交生物传感器的基本原理及其在环境微生物和优先控制污染物(priority pollutant)检测中的应用研究进展.  相似文献   

3.
光纤倏逝波生物传感器及其应用   总被引:2,自引:0,他引:2  
介绍光纤倏逝波生物传感器的基本原理、常用试验方法、基本仪器构建及应用进展。光纤倏逝波生物传感器是基于光波在光纤内以全反射方式传输时产生倏逝波的原理,以生物分子作为敏感元件进行检测的一类新兴传感器。光纤倏逝波生物传感器有望应用于环境监控、食品卫生监控、临床疾病监测、DNA检测和生物战剂检测。  相似文献   

4.
用于环境监测的生物传感器   总被引:4,自引:0,他引:4  
生物传感器是一项综合了多门学科的高新技术,具有特异性好、灵敏度高、分析速度快、能在复杂体系中在线连续监测等特点,被广泛用于生命科学、医学检验、食品安全及环境监测等多个领域。其中,在环境检测中的应用尤为令人瞩目。该文概括了生物传感器的原理、发展以及分类。并以各类生物学识别元件为依据将生物传感器分为酶传感器、微生物传感器、组织器官传感器、细胞器传感器、免疫传感器、DNA传感器等几种基本类型,分别回顾了各类生物传感器在环境监测中的应用情况,并对其应用前景进行了展望。  相似文献   

5.
气体生物传感器是基于生物识别、生物转化及气体信号输出的传感器。近年来,由于气体生物传感器具有操作简单、灵敏度高、特异性好等特点,被应用于生物标志物、细胞、蛋白等靶物质的检测中。介绍了气体生物传感器的性质和分类,并分别阐述了蛋白酶介导的气体生物传感器、核酸酶介导的气体生物传感器、模拟酶介导的气体生物传感器和其他气体生物传感器的原理和应用,展望了气体生物传感器的检测手段和应用前景,为气体生物传感器的研究提供了参考。  相似文献   

6.
经过筛选、驯化而来的降解微生物菌株以及与之相应的生物修复技术被广泛用于去除环境污染物.该类微生物经过改造还可以成为有效的生物传感器,实现环境污染物的灵敏和原位检测.研究者发现,许多天然状态下的生物资源在环境修复与检测应用中并不能达到预期,但经过对生物降解资源的挖掘与机理研究积累,合成生物学大大推动了环境生物传感器开发以...  相似文献   

7.
简要概述了生物电化学的研究领域,包括生物体系和生物界面模拟、生物分子的电化学、生物电催化、光合作用模拟和活组织电化学;总结了生物电化学传感器、生物芯片和生物电化学反应器在环境监测中的应用现状,并提出了其发展趋势,即不断向商品化方向发展,实现环境污染物的在线检测;利用基因技术,创造出检测能力更强的生物传感器和生物芯片;与其他精密分析仪器相结合,向多功能、集成化、智能化、微型化方向发展。  相似文献   

8.
荧光纳米生物传感器检测物质具有灵敏度高、响应迅速、抗干扰性强、无需参比电极等特点而被广泛地运用于生物传感技术领域。本文综述了荧光纳米生物传感器种类和特点,介绍了国内外近期在荧光纳米生物传感器及在生物检测方面的一些研究成果及进展,并作了分析比较。着重讨论了纳米粒子荧光生物传感器和光纤纳米荧光生物传感器的特性及其在生物分析中的应用。  相似文献   

9.
信号放大技术因其能实现低浓度分子检测,灵敏度高而在多个研究领域发展非常迅速。而适体作为识别分子已成功应用于多种生物传感器平台,在医疗诊断、环境检测、生化分析中显示出良好的应用前景。近年来,以适体为识别元件的生物传感器越来越受到人们的关注。综述了近3年来基于信号放大技术的适体生物传感器研究新发展。  相似文献   

10.
适配体生物传感器可利用适配体作为识别元件,将适配体的优良特性和目前先进的检测技术进行结合,例如光学、电化学纳米集成技术或生物膜干涉测量法,为其在有毒有害物质检测和环境实时监测领域构筑了良好应用前景。然而,适配体传感器的进一步应用仍有许多问题亟待解决,比如:环境的复杂性会对其应用产生限制;适配体固化到传感器表面的方式会影响适配体的结构和功能,从而影响检测效果。本文将主要研究适配体筛选策略的最新进展并对适配体传感器检测环境中小分子污染物的应用展开综述。  相似文献   

11.
The previous few decades have seen the development of biosensors and their use in monitoring of pesticides in food and environmental samples. Although inhibition‐based biosensors have been subject of several recent research works, their performance characteristics greatly depend on the type of immobilization and the presence of interfering compounds in the samples. Moreover, sensitivity, detection limits, and rapidity of the response are few of the other major features that need to be investigated further if they are to become operationally user‐friendly. This review will highlight research carried out in the past on biosensors that are based on enzyme inhibition for determination of organophosphorus compounds and carbamate pesticides.  相似文献   

12.
Pesticides released intentionally into the environment and through various processes contaminate the environment. Although pesticides are associated with many health hazards, there is a lack of monitoring of these contaminants. Traditional chromatographic methods-high-performance liquid chromatography, capillary electrophoresis, and mass spectrometry-are effective for the analysis of pesticides in the environment but have certain limitations such as complexity, time-consuming sample preparation, and the requirement of expensive apparatus and trained persons to operate. Over the past decades, acetylcholinesterase (AChE) inhibition-based biosensors have emerged as simple, rapid, and ultra-sensitive tools for pesticide analysis in environmental monitoring, food safety, and quality control. These biosensors have the potential to complement or replace the classical analytical methods by simplifying or eliminating sample preparation and making field-testing easier and faster with significant decrease in cost per analysis. This article reviews the recent developments in AChE inhibition-based biosensors, which include various immobilization methods, different strategies for biosensor construction, the advantages and roles of various matrices used, analytical performance, and application methods for constructing AChE biosensors. These AChE biosensors exhibited detection limits and linearity in the ranges of 1.0×10(-11) to 42.19 μM (detection limits) and 1.0×10(-11)-1.0×10(-2) to 74.5-9.9×10(3)μM (linearity). These biosensors were stable for a period of 2 to 120days. The future prospects for the development of better AChE biosensing systems are also discussed.  相似文献   

13.
Release of harmful pollutants such as heavy metals, pesticides, and pharmaceuticals to the environment is a global concern. Rapid and reproducible detection of these pollutants is thus necessary. Biosensors are the sensitive and high specific tools for detection of environmental pollutants. Broad range various types of biosensors have been fabricated for this purpose. This review focuses on the feature and application of biosensors developed for environmental and urban pollutants detection. J. Cell. Biochem. 119: 207–212, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

14.
Over the last decades, cholinesterase (ChE) biosensors have emerged as an ultra sensitive and rapid technique for toxicity analysis in environmental monitoring, food and quality control. These systems have the potential to complement or replace the classical analytical methods by simplifying or eliminating sample preparation protocols and making field testing easier and faster with significant decrease in costs per analysis. Over the years, engineering of more sensitive ChE enzymes, development of more reliable immobilization protocols and progress in the area of microelectronics could allow ChE biosensors to be competitive for field analysis and extend their applications to multianalyte screening, development of small, portable instrumentations for rapid toxicity testing, and detectors in chromatographic systems. In this paper, we will review the research efforts over the last 20 years in fabricating AChE biosensors and the recent trends and challenges encounter once the sensor is used outside research laboratory for in situ real sample applications. The review will discuss the generations of cholinesterase sensors with their advantages and limitations, the existing electrode configurations and fabrication techniques and their applications for toxicity monitoring. We will focus on low-cost electrochemical sensors and the approaches used for enzyme immobilization. Recent works for achieving high sensitivity and selectivity are also discussed.  相似文献   

15.
A conductometric biosensor using immobilised Chlorella vulgaris microalgae as bioreceptors was used as a bi-enzymatic biosensor. Algae were immobilised inside bovine serum albumin membranes reticulated with glutaraldehyde vapours deposited on interdigitated conductometric electrodes. Local conductivity variations caused by algae alkaline phosphatase and acetylcholinesterase activities could be detected. These two enzymes are known to be inhibited by distinct families of toxic compounds: heavy metals for alkaline phosphatase, carbamates and organophosphorous (OP) pesticides for acetylcholinesterase. The bi-enzymatic biosensors were tested to study the influence of heavy metal ions and pesticides on the corresponding enzyme. It has finally appeared that these biosensors are quite sensitive to Cd2+ and Zn2+ (limits of detection (LOD) = 10 ppb for a 30 min long exposure) while Pb2+ gives no significant inhibition as this ion seems to adsorb on albumin preferably. For pesticides, first experiments showed that paraoxon-methyl inhibits C. vulgaris AChE contrary to parathion-methyl and carbofuran. Biosensors were then exposed to different mixtures (Cd2+/Zn2+, Cd2+/paraoxon-methyl) but no synergetic or antagonist effect could be observed. A good repeatability could be achieve with biosensors since the relative standard deviation did not exceed 8% while response time was 5-7 min. A comparison between inhibition levels obtained with biosensors (after a 30 min long exposure) and bioassays (after a 240 min long exposure) has finally shown a similar LOD for both Cd and Zn (LOD = 10 ppb).  相似文献   

16.
Aptamers are single-stranded DNA or RNA oligonucleotides, which are able to bind with high affinity and specificity to their target. This property is used for a multitude of applications, for instance as molecular recognition elements in biosensors and other assays. Biosensor application of aptamers offers the possibility for fast and easy detection of environmental relevant substances. Pharmaceutical residues, deriving from human or animal medical treatment, are found in surface, ground, and drinking water. At least the whole range of frequently administered drugs can be detected in noticeable concentrations. Biosensors and assays based on aptamers as specific recognition elements are very convenient for this application because aptamer development is possible for toxic targets. Commonly used biological receptors for biosensors like enzymes or antibodies are mostly unavailable for the detection of pharmaceuticals. This review describes the research activities of aptamer and sensor developments for pharmaceutical detection, with focus on environmental applications.  相似文献   

17.
Electrochemical and nanogravimetric DNA-hybridization biosensors have been developed for sensing single mismatches in the probe-target ssDNA sequences. The voltammetric transduction was achieved by coupling ferrocene moiety to streptavidin linked to biotinylated tDNA. The mass-related frequency transduction was implemented by immobilizing the sensory pDNA on a gold-coated quartz crystal piezoresonators oscillating in the 10 MHz band. The high sensitivity of these sensors enabled us to study DNA damage caused by representative toxicants and environmental pollutants, including Cr(VI) species, common pesticides and herbicides. We have found that the sensor responds rapidly to any damage caused by Cr(VI) species, with more severe DNA damage observed for Cr2O72− and for CrO42− in the presence of H2O2 as compared to CrO42− alone. All herbicides and pesticides examined caused DNA damage or structural alterations leading to the double-helix unwinding. Among these compounds, paraoxon-ethyl and atrazine caused the fastest and most severe damage to DNA. The physico-chemical mechanism of damaging interactions between toxicants and DNA has been proposed. The methodology of testing voltammetric and nanogravimetric DNA-hybridization biosensors developed in this work can be employed as a simple protocol to obtain rapid comparative data concerning DNA damage caused by herbicide, pesticides and other toxic pollutants. The DNA-hybridization biosensor can, therefore, be utilized as a rapid screening device for classifying environmental pollutants and to evaluate DNA damage induced by these compounds.  相似文献   

18.
The optical transducer of CdTe semiconductor quantum dots (QDs) has been integrated with acetylcholinesterase enzyme (AChE) by the layer-by-layer (LbL) assembly technique, resulting in a highly sensitive biosensor for detection of organophosphorus pesticides (OPs) in vegetables and fruits based on enzyme inhibition mechanism. The detection limits of the proposed biosensors are as low as 1.05 × 10(-11) M for paraoxon and 4.47 × 10(-12) M for parathion, which are significantly better than those of the conventional GC/MS methods or amperometric biosensors (0.5 nM). These biosensors are used for quick determination of low concentrations of OPs in real vegetable and fruit samples and exhibit satisfactory reproducibility and accuracy. Moreover, the stock stability of the biosensors are very good due to the stabilizing environment for the enzyme in the nanostructures made by LbL technique. Many advantages provided by these biosensors, like fluorescent change recognized by naked eyes and mass production with low cost, will facilitate future development of rapid and high-throughput screening of OPs.  相似文献   

19.
Microbial biosensors are compact, portable, cost effective, and simple to use, making them seem eminently suitable for the in situ monitoring of environmental pollution. One promising approach for such applications is the fusion of reporter genes with regulatory genes that are dose-dependently responsive to the target chemicals or physiological signals. Their biosensor capabilities, such as target range and sensitivity, could be improved by modification of regulatory genes. Recent uses of such genetically engineered microbial biosensors include the development of portable biosensor kits and high-throughput cell arrays on chips, optic fibers, or other platforms for on-site and on-line monitoring of environmental pollution. This mini-review discusses recent advances in microbial biosensors and their future prospects, with a focus on the development and application of genetically modified microbial biosensors for in situ environmental monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号