首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
植物细胞的全能性   总被引:1,自引:0,他引:1  
简述了植物细胞全能性理论的创立和实验论证,介绍了近年来植物细胞全能性在细胞学和分子生物学方面的研究,对植物组织培养有一定的参考作用。  相似文献   

2.
本文阐述了植物组织切片的三维计算机重建技术研究现状,分析了它在植物体细胞胚发生专题中的应用。  相似文献   

3.
目的:研究植物细胞响应机械应力的形态学变化;初步探讨壁膜连接对于植物细胞响应机械应力的意义,及其是否参与机械应力响应过程。方法:将植物单细胞包埋后进行精确机械力加载并培养数日,每天抽样进行显微观测和图像分析监测其形态变化;在此基础上进行质壁分离,并采用RGD多肽处理中断细胞壁膜连接后进行应力加载,监测其形态变化。结果:植物细胞经机械应力加载后,其分裂方向趋于垂直应力加载方向。经壁膜连接中断处理后进行加载的植物细胞失去沿主应力线垂直方向分裂的能力,细胞分裂方向呈无序状态。结论:壁膜连接特别是以RGD序列识别为基础的细胞连接参与了植物细胞对机械应力的响应过程。  相似文献   

4.
水分亏缺下细胞延伸生长与细胞膨压和细胞壁特性的关系   总被引:17,自引:1,他引:16  
在简要介绍植物细胞延伸生长的生物物理模型的基础上,综述了水分亏缺下植物细胞延伸生长与细胞膨压、细胞壁伸展性和细胞壁塑变阈值的关系,阐述了植物细胞壁调节在作物抗旱性中的作用。  相似文献   

5.
高赟  琴英玉  李绍波 《生物磁学》2011,(6):1178-1180
细胞发生程序性死亡(Programmed cell death,PCD)是多细胞生物用以消除多余的或有害的细胞的一种重要方式。对于植物个体来说,细胞发生程序性死亡(PCD)是抵抗逆境的一种十分有效的途径。因此,揭示环境因子诱导的植物PCD现象的分子本质就具有十分重要的现实意义。近十年来,有关环境因子诱导的植物PCD研究报道逐年增加。本文重点综述了环境因子与植物PCD相关的研究进展,并对植物PCD的主要生物学意义和研究展望进行了讨论。  相似文献   

6.
细胞发生程序性死亡(Programmed cell death,PCD)是多细胞生物用以消除多余的或有害的细胞的一种重要方式。对于植物个体来说,细胞发生程序性死亡(PCD)是抵抗逆境的一种十分有效的途径。因此,揭示环境因子诱导的植物PCD现象的分子本质就具有十分重要的现实意义。近十年来,有关环境因子诱导的植物PCD研究报道逐年增加。本文重点综述了环境因子与植物PCD相关的研究进展,并对植物PCD的主要生物学意义和研究展望进行了讨论。  相似文献   

7.
姜黄素诱导肿瘤细胞凋亡的研究进展   总被引:1,自引:0,他引:1  
姜黄素是从姜科植物的根茎姜黄中提取的一种植物多酚,具有抗炎、抗氧化、抗凝、抗动脉粥样硬化、抗肿瘤等药理作用。本文综述了姜黄素诱导肿瘤细胞凋亡的分子生物学机制研究进展。  相似文献   

8.
周晓舟  陈国平   《广西植物》2007,27(3):522-526
植物细胞程序化死亡(PCD)是一种由基因控制的、主动的细胞死亡过程,它在植物正常生长发育过程中起着重要作用。发生程序化死亡的植物细胞在形态、生理生化方面表现出一些共性特点和个性特点,该文对这些特点进行了综述。  相似文献   

9.
李明银  何云晓 《植物学报》2005,22(6):641-647
植物嵌合体是由2种或者2种以上遗传型细胞组成的特殊的植物结构, 它在西欧国家观赏植物产业中发挥着非常重要的作用。本文根据有关资料及作者在德国柏林洪堡大学园艺科学所多年的研究结果,着重介绍了植物嵌合体的概念及形成机理、植物嵌合体的分类以及植物嵌合体繁殖中的特点,植物嵌合体的作用, 并简要地讨论了其在植物育种中的生产开发和利用问题。  相似文献   

10.
本文介绍了植物细胞培养的特点及其生物反应器的设计原理,概述了植物细胞悬浮培养和固定化细胞系统中各类生物反应器的传氧、混合和流体力学特性与植物细胞生长和次生代谢物生产的关系。  相似文献   

11.
The plant CDK inhibitor ICK1 was identified previously from Arabidopis thaliana with its inhibitory activity characterized in vitro. ICK1 displayed several structural and functional features that are distinct from known animal CDK inhibitors. Despite the initial characterization, there is no information on the functions of any plant CDK inhibitor in plants. To gain insight into ICK1 functions in vivo and the role of cell division during plant growth and development, transgenic plants were generated expressing ICK1 driven by the cauliflower mosaic virus 35S promoter. In comparison to control plants, growth was significantly inhibited in transgenic 35S-ICK1 plants, with some plants weighing <10% of wild-type plants at the 3 week stage. Most organs of 35S-ICK1 plants were smaller. There were also modifications in plant morphology such as shape and serration of leaves and petals. The changes were so drastic that 35S-ICK1 plants with strong phenotype no longer resembled wild-type plants morphologically. Analyses showed that increased ICK1 expression resulted in reduced CDK activity and reduced the number of cells in these plants. Cells in 35S-ICK1 plants were larger than corresponding cells in control plants. These results demonstrate that ICK1 acts as a CDK inhibitor in the plant, and the inhibition of cell division by ICK1 expression has profound effects on plant growth and development. They also suggest that alterations of plant organ shape can be achieved by restriction of cell division.  相似文献   

12.
高等植物细胞周期调控研究进展   总被引:2,自引:0,他引:2  
余龙江  蔡永君  兰文智 《生命科学》2001,13(4):154-158,166
高等植物的细胞周期(cell cycle)在其生长发育过程中受严格调控的,细胞周期的运转是基因有序表达的结果,并受的因素的影响,植物细胞周期研究近年来已取得的较大的进展,本文综述了近几年与植物细胞周期调控相关的细胞周期蛋白(cyclins),细胞周期蛋白依赖性激酶(CDKs)等内部调控因子及外源影响因素的研究进展。  相似文献   

13.
Cell cycle activation by plant parasitic nematodes   总被引:6,自引:0,他引:6  
Sedentary nematodes are important pests of crop plants. They are biotrophic parasites that can induce the (re)differentiation of either differentiated or undifferentiated plant cells into specialized feeding cells. This (re)differentiation includes the reactivation of the cell cycle in specific plant cells finally resulting in a transfer cell-like feeding site. For growth and development the nematodes fully depend on these cells. The mechanisms underlying the ability of these nematodes to manipulate a plant for its own benefit are unknown. Nematode secretions are thought to play a key role both in plant penetration and feeding cell induction. Research on plant-nematode interactions is hampered by the minute size of cyst and root knot nematodes, their obligatory biotrophic nature and their relatively long life cycle. Recently, insights into cell cycle control in Arabidopsis thaliana in combination with reporter gene technologies showed the differential activation of cell cycle gene promoters upon infection with cyst or root knot nematodes. In this review, we integrate the current views of plant cell fate manipulation by these sedentary nematodes and made an inventory of possible links between cell cycle activation and local, nematode-induced changes in auxin levels.  相似文献   

14.
The plant cell cycle   总被引:1,自引:0,他引:1  
The first aim of this paper is to review recent progress in identifying genes in plants homologous to cell division cycle (cdc) genes of fission yeast. In the latter, cdc genes are well-characterised. Arguably, most is known about cdc2 which encodes a 34 kDa protein kinase (p34cdc2) that functions at the G2-M and G1-S transition points of the cell cycle. At G2-M, the p34cdc2 protein kinase is regulated by a number of gene products that function in independent regulatory pathways. The cdc2 kinase is switched on by a phosphatase encoded by cdc25, and switched off by a protein kinase encoded by weel. p34 Must also bind with a cyclin protein to form maturation promoting factor before exhibiting protein kinase activity. In plants, homologues to p34cdc2 have been identified in pea, wheat, Arabidopsis, alfalfa, maize and Chlamydomonas. They all exhibit the PSTAIRE motif, an absolutely conserved amino acid sequence in all functional homologues sequenced so far. As in animals, some plant species contain more than one cdc2 protein kinase gene. but in contrast to animals where one functions at G2-M and the other (CDK2 in humans and Egl in Xenopus) at G1-S, it is still unclear whether there are functional differences between the plant p34cdc2 protein kinases. Again, whereas in animals cyclins are well characterised on the basis of sequence analysis, into class A, class B (G2-M) and CLN (G1 cyclins), cyclins isolated from several plant species cannot be so clearly characterised. The differences between plant and animal homologues to p34cdc2 and cyclins raises the possibility that some of the regulatory controls of the plant genes may be different from those of their animal counterparts. The second aim of the paper is to review how planes of cell division and cell size are regulated at the molecular level. We focus on reports showing that p34cdc2 binds to the preprophase band (ppb) in late G2 of the cell cycle. The binding of p34cdc2 to ppbs may be important in regulating changes in directional growth but, more importantly, there is a requirement to understand what controls the positioning of ppbs. Thus, we highlight work resolving proteins such as the microtubule associated proteins (MAPs) and those mitogen activated protein kinases (MAP kinases), which act on, or bind to, mitotic microtubules. Plant homologues to MAP kinases have been identified in alfalfa. Finally, some consideration is given to cell size at division and how alterations in cell size can alter plant development. Transgenic tobacco plants expressing the fission yeast gene, cdc25, exhibited various perturbations of development and a reduced cell size at division. Hence, cdc25 affected the cell cycle (and as a consequence, cell size at division) and cdc25 expression was correlated with various alterations to development including precocious flowering and altered floral morphogenesis. Our view is that the cell cycle is a growth cycle in which a cell achieves an optimal size for division and that this size control has an important bearing on differentiation and development. Understanding how cell size is controlled, and how plant cdc genes are regulated, will be essential keys to ‘the cell cycle locks’, which when ‘opened’, will provide further clues about how the cell cycle is linked to plant development.  相似文献   

15.
The fiber (in terms of plant biology) is an individual cell characterized by spindle shape, length of up to several centimeters, well developed cell wall, and mechanical function. The review summarizes different, sometimes contradictory view points about duration, segregation and mechanisms of realization of individual stages of fiber biogenesis. Initiation and coordinated and intrusive growth are considered, as well as formation of secondary cell wall, including its gelatinous layers, and senescence. Biogenesis of fibers ontogenetically related to various tissues has been analyzed and the data about marker stage-specific characters of these cells. The data summarized in this review will allow not only deeper understanding the development of cells with such unique characters, but also interpret the growth mechanisms for much more cell types, in which it is more difficult to identify individual stages of biogenesis than in the sclerenchyma fibers.  相似文献   

16.
17.
Adenosine 5′‐triphosphate (ATP) has been regarded as an intracellular energy currency molecule for many years. In recent decades, it has been determined that ATP is released into the extracellular milieu by animal, plant and microbial cells. In animal cells, this extracellular ATP (eATP) functions as a signalling compound to mediate many cellular processes through its interaction with membrane‐associated receptor proteins. It has also been reported that eATP is a signalling molecule required for the regulation of plant growth, development and responses to environmental stimuli. Recently, the first plant receptor for eATP was identified in Arabidopsis thaliana. Interestingly, some studies have shown that eATP is of particular importance in the control of plant cell death. In this review article, we summarize and discuss the theoretical and experimental advances that have been made with regard to the roles and mechanisms of eATP in plant cell death. We also make an attempt to address some speculative aspects to help develop and expand future research in this area.  相似文献   

18.
GlsA has been identified in an asexual-reproductive-cell (gonidia)-deficient mutant of Volvox as a chaperone-like protein essential for gonidia production. In this study, we isolated an angiosperm glsA (LlglsA) gene expressed during Lilium longiflorum pollen development. Immunoblot analyses showed that the strong LlGlsA expression occurred in the generative cell and its pattern during pollen development corresponded to that of alpha-tubulin. Morphological analyses succeeded in visualizing the dispersion of the strong LlGlsA signal in developing generative cells. In addition, multiple-immunofluorescence staining of LlGlsA and alpha-tubulin revealed that some of the dot-like LlGlsA signals were co-localized with microtubule filaments. From those results, we suggest that angiosperm GlsA functions as a chaperone modifying various structures during male gametic cell formation.  相似文献   

19.
The architecture of the plant cell wall is highly dynamic, being substantially re‐modeled during growth and development. Cell walls determine the size and shape of cells and contribute to the functional specialization of tissues and organs. Beyond the physiological dynamics, the wall structure undergoes changes upon biotic or abiotic stresses. In this review several cell wall traits, mainly related to pectin, one of the major matrix components, will be discussed in relation to plant development, immunity and industrial bioconversion of biomass, especially for energy production. Plant cell walls are a source of oligosaccharide fragments with a signaling function for both development and immunity. Sensing cell wall damage, sometimes through the perception of released damage‐associated molecular patterns (DAMPs), is crucial for some developmental and immunity responses. Methodological advances that are expected to deepen our knowledge of cell wall (CW) biology will also be presented.  相似文献   

20.
It is generally believed that plants "evolved a strategy of defending themselves from a phytopathogen attack" during evolution. This metaphor is used frequently, but it does not facilitate understanding of the mechanisms providing plant resistance to the invasion of foreign organisms and to other unfavorable external factors, as well as the role of these mechanisms in plant growth and development. Information on processes involving one of the plant resistance factors--polygalacturonase-inhibiting protein (PGIP)--is considered in this review. The data presented here indicate that PGIP, being an extracellular leucine-rich repeat-containing protein, performs important functions in the structure of plant cell wall. Amino acid residues participating in PGIP binding to homogalacturonan in the cell wall have been determined. The degree of methylation and the mode of distribution of homogalacturonan methyl groups are responsible for the formation of a complex structure, which perhaps determines the specificity of PGIP binding to pectin. PGIP is apparently one of the components of plant cell wall determining some of its mechanical properties; it is involved in biochemical processes related to growth, expansion, and maceration, and it influences plant morphology. Polygalacturonase (PG) is present within practically all plant tissues, but the manifestation of its activity varies significantly depending on physiological conditions in the tissue. Apparently, the regulation of PG functioning in apoplast significantly affects the development of processes associated with the modification of the structure of plant cell wall. PGIP can regulate PG activity through binding to homogalacturonan. The genetically determined structure of PGIP in plants determines the mode of its interaction with an invader and perhaps is one of the factors responsible for the set of pathogens causing diseases in a given plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号