首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parvalbumin (PV) is found in the olfactory system, including the main olfactory bulb, and is thought to be one of the neuroactive substances in olfaction. Changes in PV immunoreactivity in the olfactory system during aging have not been examined. We investigated such changes in the main olfactory bulb (MOB) of the rat at postnatal month 1 (PM 1), PM 3, PM 6, PM 12 and PM 24. PV-IR neurons were almost completely restricted to the external plexiform layer. At PM 1 there were only a few PV-IR neurons; at PM 3, the number of PV-IR neurons was at its greatest but they were not well developed morphologically. At PM 6, the number of PV-IR neurons was similar to that at PM 3 and they had satellite somata with well-developed processes with many varicosities. By PM 12 the number of neurons and processes had declined, and by PM 24, they had fallen even further and the remaining processes had lost most of their varicosities. We conclude that age-related degeneration of PV-IR neurons in the MOB may reduce calcium buffering and affect olfactory function in senile species.  相似文献   

2.
Hippocampal interneurons are local circuit neurons which are responsible for inhibitory activity in the hippocampus. Parvalbumin (PV) is one of useful markers for GABAergic interneurons, not for principle cells, in the hippocampus. In the present study, we investigated age-related changes in PV immunoreactive neurons and protein levels in the gerbil hippocampus during normal aging. PV immunoreactive neurons were detected in all hippocampal subregions of all groups. PV immunoreactive neurons, which innervated principal neurons, were non-pyramidal neurons in the hippocampal CA1-3 regions, and were polymorphic neurons in the dentate gyrus. In the hippocampal CA1 region, the number of PV immunoreactive neurons was significantly reduced in the postnatal month 3 (PM 3) group, which was sustained by PM 18, and, at PM 24, the number of PV immunoreactive neurons was significantly decreased. In the CA2/3 region and dentate gyrus, the number of PV immunoreactive neurons was significantly decreased at PM 6: Thereafter, the number of PV immunoreactive neurons was sustained until PM 24. In addition, changes in PV protein levels in the gerbil hippocampus were similar to immunohistochemical changes during normal aging: PV protein levels were significantly decreased with age by PM 6: Thereafter, PV protein levels were sustained by PM 24. These results suggest that PV immunoreactive interneurons were decreased in the hippocampus with age in gerbils.  相似文献   

3.
In the present study, we investigated age-related differences in neuronal progenitors in the gerbil main olfactory bulb (MOB) using doublecortin (DCX), a marker for neuronal progenitors which differentiate into neurons in the brain. No difference in the number of neuronal nuclei (NeuN)-immunoreactive neurons was found in the MOB at variously aged gerbils. At postnatal month (PM) 1, DCX immunoreaction was detected in all layers of the MOB except for the olfactory nerve layer. At this time point, DCX-immunoreactive cells (neuronal progenitors) were very abundant; however, they did not have fully developed-processes. From PM 3, the number of DCX-immunoreactive neuronal progenitors was decreased with age. At PM 6, DCX-immunoreactive cells showed very well-developed processes. In western blot analysis, DCX protein level in the MOB was highest at PM 1. Thereafter, levels of DCX protein were decreased with age. In the subventricular zone of the lateral ventricle, the number of Ki-67-immunoractive cells (proliferating cells) was also significantly decreased with age. In addition, increases of α-synuclein-immunoreactive structures were observed in the MOB with age. These results suggest that decrease in DCX-immunoreactive neuronal progenitors and its protein levels in the MOB with age may be associated with reduction of cell proliferation in the SVZ and with an increase in α-synuclein in the MOB.  相似文献   

4.
Melatonin exerts many physiological functions via its G protein-coupled receptors. In the present study, we investigated age-related changes in MT2 melatonin receptor immunoreactivity and its levels in the gerbil hippocampus during normal aging. In the postnatal month 1 (PM 1) group, MT2 immunoreaction was well observed in neurons in all subregions of the gerbil hippocampus. In the PM 3 and 6 groups, MT2 immunoreactivity in neurons was decreased compared to that in the PM 1 group. Thereafter, MT2 immunoreactivity in neurons was increased. In the PM 18 and 24 groups, MT2 immunoreactivity in neurons was strong in all subregions of the gerbil hippocampus. In addition, the number of MT2 immunoreactive cells was lowest at PM 3 and highest at PM 24. From western blot analysis, age-dependent change pattern in MT2 level in the gerbil hippocampus was similar to the immunohistochemical result. These results indicate that MT2 immunoreactivity and levels are altered in the gerbil hippocampus during normal aging; lowest at young adult stage and highest at aged stage.  相似文献   

5.
The hippocampus is associated with learning and memory function and shows neurochemical changes in aging processes. Calbindin D-28k (CB) binds calcium ion with a fast association rate. We examined age-related changes in CB immunoreactivity and its protein level in the gerbil hippocampus during normal aging. In the hippocampal CA1 region (CA1) and CA2, CB immunoreaction was found in some neurons in the stratum pyramidale (SP) at postnatal month 1 (PM 1). CB immunoreactivity in neurons was markedly increased at PM 3. Thereafter, CB immunoreactivity was decreased with time: CB-immunoreactive (+) neurons were fewest at PM 24. In the CA3, a few CB+ neurons were found only in the SP at PM 1 and in the stratum radiatum at PM 18 and 24. In addition, mossy fibers were stained with CB at PM 1. CB immunoreactivity in mossy fibers was markedly increased at PM 3, thereafter it was decreased with time. In the dentate gyrus, many granule cells (GC) in the granule cell layer were stained with CB at PM 1. CB immunoreactivity in GC was markedly increased at PM 3, thereafter CB immunoreactivity was decreased with time. In Western blot analysis, CB protein level in the gerbil hippocampus was highest at PM 3, thereafter CB protein levels were decreased with time. This result indicates that CB in the gerbil hippocampus is abundant at PM 3 and is decreased with age.  相似文献   

6.
In this study, we investigated age-related changes in glucagon-like peptide-1 receptor (GLP-1R) immunoreactivity and its protein levels in the gerbil hippocampus during normal aging. In the postnatal month 3 (PM 3) group, GLP-1R immunoreaction was well observed in neurons, especially pyramidal and non-pyramidal cells in the hippocampus proper, and granule and polymorphic cells in the dentate gyrus. In the hippocampus proper, GLP-1R immunoreactivity in neurons was maintained until PM 24. In the dentate gyrus, however, GLP-1R immunoreactivity in granule cells, not polymorphic cells, was hardly detected from PM 6. Western blot analysis also showed that age-dependent change patterns in GLP-1R protein levels in the gerbil hippocampus were similar to the immunohistochemical changes. These results indicate that GLP-1R immunoreactivity was markedly decreased in dentate granule cells from PM 6, showing that GLP-1R immunoreactivity and its protein levels were decreased in the adult and aged gerbil hippocampus.  相似文献   

7.
In the present study, we investigated age-related changes of newborn neurons in the gerbil dentate gyrus using doublecortin (DCX), a marker of neuronal progenitors which differentiate into neurons in the brain. In the postnatal month 1 (PM 1) group, DCX immunoreactivity was detected in the subgranular zone of the dentate gyrus, but DCX immunoreactive neurons did not have fully developed processes. Thereafter, DCX immunoreactivity and its protein levels in the dentate gyrus were found to decrease with age. Between PM 3 and PM 18, DCX immunoreactive neuronal progenitors showed well-developed processes which projected to the granular layer of the dentate gyrus, but at PM 24, a few DCX immunoreactive neuronal progenitors were detected in the subgranular zone of the dentate gyrus. DCX protein level in the dentate gyrus at PM 1 was high, thereafter levels of DCX were decreased with time. The authors suggest that a decrease of DCX immunoreactivity and its protein level with age may be associated with aging processes in the hippocampal dentate gyrus.  相似文献   

8.
Calretinin (CR)-immunoreactive interneurons are well known as the interneuron specific interneurons in the hippocampus. CR-immunoreactive neurons form cellular network and regulate the activity of other GABAergic inhibitory interneurons in the hippocampus. In the present study, we investigated age-related changes in CR-immunoreactive neurons and protein levels in the gerbil hippocampus during normal aging. In all subregions of the gerbil hippocampus, the number of CR-immunoreactive neurons was significantly decreased in the postnatal month 6 (PM 6) group compared to that in the PM 1 group. Thereafter, CR-immunoreactive neurons were decreased with age. In addition, the number of CR-immunoreactive cells in the subgranular zone were significantly decreased in the PM 6 group. We also observed that CR protein levels were decreased gradually with age. These results indicate that both CR immunoreactivity and its protein level were decreased with age in the gerbil hippocampus during normal aging.  相似文献   

9.
Cyclooxygenases-2 (COX-2) is not only related to inflammation but also plays critical roles in brain development and synaptic signaling. In the present study, we investigated age-related changes in COX-2 immunoreactivity and protein levels in the gerbil hippocampus. In the hippocampal CA1 region (CA1) and dentate gyrus (DG), weak COX-2 immunoreactivity was observed at postnatal month 1 (PM 1), and COX-2 immunoreactivity was markedly increased at PM 18 and 24. In the CA2/3, COX-2 immunoreactivity was strong at PM 1. COX-2 immunoreactivities in the PM 3, 6 and 12 groups were decreased compared to that in the PM 1 group, and it was increased at PM 18 and 24. In addition, age-related changes in COX-2 levels were similar with immunohistochemical results in the CA2/3. These results suggest that COX-2 immunoreactivity and levels were high in the hippocampus of aged gerbils.  相似文献   

10.
The insulin receptor has been reported to be associated with memory formation via the hippocampus. In this study, we observed age-related changes in the insulin receptor β immunoreactivity and its protein levels in the hippocampus of gerbils of various ages in order to identify the correlation between the insulin receptor β and aging processes in the hippocampus. Insulin receptor β immunoreactivity was mainly detected in the molecular and polymorphic layers of the dentate gyrus, and in mossy fibers, Schaffer collaterals, alveus and stratum lacunosum-moleculare of the hippocampus proper (CA1-3) of gerbils at postnatal month 1 (PM 1). Insulin receptor β immunoreactivity decreased with age in all of these structures, except for the alveus. Reduction of the insulin receptor β immunoreactivity was prominent in the molecular layer of the dentate gyrus at PM 6 and in the stratum lacunosum-moleculare of the CA1 region at PM 12, while insulin receptor β immunoreactivity was decreased in other regions in the PM 18 groups. In addition, insulin receptor β protein level in the whole hippocampus was slightly increased at PM 3, and it decreased in an age-dependent manner from PM 6 to PM 24. These reductions of the insulin receptor β in the hippocampus may be associated with age-related memory deficits in gerbils.  相似文献   

11.
X L Dai  J Triepel  C Heym 《Histochemistry》1986,85(4):327-334
The immunohistochemical localization of neuropeptide Y (NPY) was correlated with those of dopamine-beta-hydroxylase (DBH) and vasoactive intestinal polypeptide (VIP) by mapping serial 7 micron paraffin sections at three levels of the guinea pig lower brainstem: a) area postrema, b) dorsal motor nucleus of the vagus, and c) nucleus prepositus of the hypoglossal nerve. Based on differences in transmitter expression, three populations of NPY-immunoreactive (IR) neurons were distinguished: NPY-IR catecholaminergic cells (NPY/CA), NPY-IR VIP-ergic cells (NPY/VIP), and NYP-IR cells which were not reactive to either DBH or VIP. Within these populations, size differences among neurons in characteristic locations allowed differentiation among the following subpopulations: NPY/CA neurons in the lateral reticular nucleus--magnocellular part (mean neuronal size 538 micron2) and parvocellular part (318 micron2)-, in the vagus-solitarius complex (433 micron2), and in the dorsal strip (348 micron2); NPY/VIP neurons in the vagus-solitarius complex (368 micron2) and in the nucleus ovalis (236 micron2). Apart from scattered NPY-IR cell bodies in the regions listed above, NPY-IR cell bodies in the lateral portion of the nucleus solitarius and in the caudal part of the spinal nucleus of the trigeminal nerve did not exhibit IR to either DBH or VIP. NPY-IR neurons in the area postrema occurred too infrequently for co-localization studies. The differential distribution of heterogeneous NPY-IR cell subpopulations may reflect the involvement of NPY in a variety of neuronal functions.  相似文献   

12.
The effect of reserpine on neuropeptide Y immunoreactive (NPY-IR) neurons in the rat hypothalamic arcuate nucleus was examined by immunocytochemical techniques. Although only NPY-IR fibers and terminals were distributed in this nucleus in untreated and saline treated rats, single treatment of reserpine (10 mg/kg, i.p.) visualized abundant NPY-IR neuronal cell bodies: the increase began at 12 h of postinjection, reached its maximal level at 48 h, and returned to its normal level at 96 h. Pretreatment of nialamide, a monoamine oxidase inhibitor, prevented these acute reserpine-induced changes, suggesting reserpine acts on NPY neurons through monoaminergic mechanism. Chronic treatment of haloperidol (5 mg/kg, once daily for 5 days) a dopamine receptor antagonist, could induce the similar increase of NPY immunoreactivity. However, interruption of adrenergic and serotonergic neurotransmissions by chronic treatment of propranorol and methysergide, or chemical lesions of ascending noradrenergic and serotononergic pathways by 6-hydroxydopamine and 5,6-dihydroxytryptamine, could not induce any immunoreactive increase of NPY in arcuate neurons. These findings strongly suggest that reserpine-induced NPY increase occurs through dopaminergic afferents in hypothalamic arcuate neurons. Special issue dedicated to Dr. Kinya Kuriyama.  相似文献   

13.
The distribution of neuropeptide Y (NPY)-like immunoreactivity and its colocalization with FMRFamide were investigated in the optic lobe and peduncle complex of the octopus ( Octopus vulgaris) by using immunohistochemical techniques. In the optic lobe cortex, NPY-immunoreactive (NPY-IR) fibers were observed in the plexiform layer, although no NPY-IR somata were observed in the outer or inner granular cell layers. In the optic lobe medulla, NPY-IR somata were seen in the cell islands, and abundant NPY-IR varicose fibers were observed in the neuropil. Most of the NPY-IR structures in the medulla showed FMRFamide-like immunoreactivity. In the peduncle lobe, abundant NPY-IR and FMRFamide-IR (NPY/FMRF-IR) varicose fibers were seen in the basal zone neuropil of the peduncle lobe. In the olfactory lobe, NPY/FMRF-IR varicose fibers were also abundant in the neuropil of the three lobules. NPY/FMRF-IR somata, with processes running to various neuropils, were scattered in the median and posterior lobules. In the optic gland, many NPY/FMRF-IR varicose fibers formed a honeycomb pattern. These observations suggest that NPY/FMRF-IR neurons in the optic lobes participate in the modulation of visual information and that those in the optic gland are involved in the regulation of endocrine function.  相似文献   

14.
Neuropeptide S (NPS) is a newly identified neuromodulator located in the brainstem and regulates various biological functions by selectively activating the NPS receptors (NPSR). High level expression of NPSR mRNA in the olfactory cortex suggests that NPS-NPSR system might be involved in the regulation of olfactory function. The present study was undertaken to investigate the effects of intracerebroventricular (i.c.v.) injection of NPS or co-injection of NPSR antagonist on the olfactory behaviors, food intake, and c-Fos expression in olfactory cortex in mice. In addition, dual-immunofluorescence was employed to identify NPS-induced Fos immunereactive (-ir) neurons that also bear NPSR. NPS (0.1–1 nmol) i.c.v. injection significantly reduced the latency to find the buried food, and increased olfactory differentiation of different odors and the total sniffing time spent in olfactory habituation/dishabituation tasks. NPS facilitated olfactory ability most at the dose of 0.5 nmol, which could be blocked by co-injection of 40 nmol NPSR antagonist [D-Val5]NPS. NPS administration dose-dependently inhibited food intake in fasted mice. Ex-vivo c-Fos and NPSR immunohistochemistry in the olfactory cortex revealed that, as compared with vehicle-treated mice, NPS markedly enhanced c-Fos expression in the anterior olfactory nucleus (AON), piriform cortex (Pir), ventral tenia tecta (VTT), the anterior cortical amygdaloid nucleus (ACo) and lateral entorhinal cortex (LEnt). The percentage of Fos-ir neurons that also express NPSR were 88.5% and 98.1% in the AON and Pir, respectively. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the olfactory cortex, facilitates olfactory function in mice.  相似文献   

15.
本文用免疫细胞化学ABC法,研究15—38周龄人胎视网膜神经肽Y免疫反应(NeuropeptideYimmunorective,NPY-IR)神经元(以下称NPY-IR细胞)的发育。结果表明:①胎龄15周视网膜中央部已出现不同类型的NPY-IR细胞:位于黄斑及其周围外核层的为NPY-IR视锥细胞;位于内核层最内一列的为NPY-IR无长突细胞位于节细胞层的可能为NPY-IR移位无长突细胞或节细胞;内核层和节细胞层的NPY-IR细胞的突起均分布在内网层的第1亚层。②胎龄24周后,NPY-IR视锥细胞完全消失。③随着视网膜的发育,内核层和节细胞层的NPY-IR细胞数量增多,突起增粗增长,胞体分布由中央部扩展到周边部,其中内核层NPY-IR细胞的密度呈现从中央部向周边部逐渐降低的分布方式,节细胞层NPY-IR细胞则多数集中分布在视网膜的边缘和黄斑之间,形成较高密度的环状区。  相似文献   

16.
The medial preoptic nucleus (MPN) plays an essential role in the coordination of behaviours and physiological responses necessary for reproduction. Since ageing is associated with a progressive deterioration of reproductive functions we have explored the possibility that changes in the structural organization of the MPN might be implicated in this process. Thus, we have estimated the volume of the MPN, and the total number and size of its neurons, using stereological methods, and quantitatively evaluated the dendritic trees of MPN neurons in Golgi-impregnated material. Male and female rats, aged 6, 24 and 30 months, were independently analysed. No cell loss was observed in aged rats of both sexes. However, the volume of the MPN and the somatic size of its neurons were remarkably enlarged in aged rats. No significant age-related changes in the size or shape of the dendritic trees or in dendritic spine density were found. To evaluate whether the changes observed in aged rats could be ascribed to an altered interaction between gonadal steroids and steroid-sensitive neurons, we have additionally estimated the to tal number of MPN neurons immunoreactive for the estrogen receptor-α. No significant age-related variations were detected. The age effects upon the MPN were more marked in females than in males and, consequently, the sexual dimorphisms in neuronal size and in the number of estrogen receptor-immunoreactive neurons were blunted in aged rats.  相似文献   

17.
Light and electron microscopy and morphometry revealed an age-related increase in the average size of hepatocytes and their nuclei in 24- and 30-month-old rats compared to 8-month-old animals, the density of hepatocytes distribution per area unit being decreased. In 24-month-old rats the number of binuclear hepatocytes increased with a subsequent decrease in their number in 30-month-old animals, which accounted for the shift in regeneration processes during ageing to predominantly intracellular one. The number of sinusoidal cells per area unit in three age groups was statistically similar. The results of morphometry and electron microscopy suggest that the compensatory-adaptive processes during hepatocyte ageing were mediated by intracellular regeneration, which led to cellular and nuclear hypertrophy similar to that observed in cells of static population (neurons, cardiomyocytes).  相似文献   

18.
Summary The immunohistochemical localization of neuropeptide Y (NPY) was correlated with those of dopamine--hydroxylase (DBH) and vasoactive intestinal polypeptide (VIP) by mapping serial 7 m paraffin sections at three levels of the guina pig lower brainstem: a) area postrema, b) dorsal motor nucleus of the vagus, and c) nucleus prepositus of the hypoglossal nerve. Based on differences in transmitter expression, three populations of NPY-immunoreactive (IR) neurons were distinguished: NPY-IR catecholaminergic cells (NPY/CA), NPY-IR VIP-ergic cells (NPY/VIP), and NPY-IR cells which were not reactive to either DBH or VIP. Within these populations, size differences among neurons in characteristic locations allowed differentiation among the following subpopulations: NPY/CA neurons in the lateral reticular nucleus — magnocellular part (mean neuronal size 538 m2) and parvocellular part (318 m2)-, in the vagus-solitarius complex (433 m2), and in the dorsal strip (348 m2); NPY/VIP neurons in the vagus-solitarius complex (368 m2) and in the nucleus ovalis (236 m2). Apart from scattered NPY-IR cell bodies in the regions listed above, NPY-IR cell bodies in the lateral portion of the nucleus solitarius and in the caudal part of the spinal nucleus of the trigeminal nerve did not exhibit IR to either DBH or VIP. NPY-IR neurons in the area postrema occurred too infrequently for co-localization studies. The differential distribution of heterogeneous NPY-IR cell subpopulations may reflect the involvement of NPY in a variety of neuronal functions.Supported by the Deutsche Forschungsgemeinschaft, grant He 919/6-1  相似文献   

19.
Lobster olfactory sensory neurons have contributed to a number of advances in our understanding of olfactory physiology. To facilitate further study of their function, we have developed conditions allowing primary culture of the olfactory sensory neurons in a defined medium. The most common cells in the culture were round cell bodies with diameters of 10-15 micro m that often extended fine processes, features resembling olfactory sensory neurons. We discovered that acetylcholinesterase acted as a growth factor for these cells, improving their survival in culture. We also confirmed previous evidence from spiny lobsters that poly-D-lysine was a superior substrate for olfactory cells of this size and morphology. We then identified olfactory sensory neurons in the culture in two ways. Almost half the cells tested responded to application of a complex odorant with an inward current. An even more rigorous test was made possible by the development of an antiserum to OET-07, an ionotropic glutamate receptor homolog specifically expressed by Homarus americanus olfactory sensory neurons. It labeled a majority of the round cells in the culture, unequivocally identifying them as olfactory sensory neurons.  相似文献   

20.
Oxidative stress is one of predisposing factors to age-related neurodegeneration in the brain. In particular, thiol-containing groups are susceptible to oxidative stress, which induces the formation of the disulfide bond and/or hyperoxidized form of thiol-containing proteins. We observed the protein thiol levels in the hippocampal homogenates and also investigated changes in hyperoxidized form of peroxiredoxin (Prx–SO3) immunoreactivity and proteins levels in the gerbil hippocampal subregions during normal aging. Levels of total thiol, non-protein thiol, and protein thiol were decreased in the hippocampal homogenates with age. At post-natal month 1 (PM 1), pyramidal and non-pyramidal cells in the hippocampal CA1 region (CA1) showed Prx–SO3 immunoreactivity. Prx–SO3 immunoreactivity in the cells was decreased by PM 12, thereafter, Prx–SO3 immunoreactivity in the cells increased again with age. In the CA2/3, Prx–SO3 immunoreactivity in pyramidal cells was not significantly changed; however, the immunoreactivity in pyramidal cells was very low at PM 12. Prx–SO3 immunoreactivity in the dentate gyrus (DG) was distinctly changed during aging. At PM 1, Prx–SO3 immunoreactivity in granule and polymorphic cells was weak and strong, respectively. The immunoreactivity in the neurons was decreased with age, not shown in any neurons at PM 12. Thereafter, Prx–SO3 immunoreactivity increased again with age. In addition, Prx–SO3 protein level in the hippocampus was lowest at PM 12. These results suggest that thiol-containing proteins are changed during aging and Prx–SO3 immunoreactivity was different according to cells in the hippocampal subregion during aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号