首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Owing to a great progress in studying the human genome, its euchromatic portion is almost completely sequenced; the complete sequence is still unknown only for pericentric and telomeric regions and short arms of acrocentric chromosomes. Extended satellite blocks and segment duplications located in these regions substantially hinder the joining of the sequenced fragments and construction of the full-length genome map. The sequence was established for a 1.5-kb human chromosome 13 subtelomeric region, which is about 10 kb away from the rDNA cluster, and deposited in GenBank under accession no. AF478540. The region showed 83-84% homology to the pericentric region of human chromosome 19, and contained short fragments homologous to the pericentric region of human chromosome 13. The results may contribute to the current revision of genome evolution concepts in view of numerous segment duplications revealed.  相似文献   

2.
The human and chimpanzee genomes are distinguishable in terms of ten gross karyotypic differences including nine pericentric inversions and a chromosomal fusion. Seven of these large pericentric inversions are chimpanzee-specific whereas two of them, involving human chromosomes 1 and 18, were fixed in the human lineage after the divergence of humans and chimpanzees. We have performed detailed molecular and computational characterization of the breakpoint regions of the human-specific inversion of chromosome 1. FISH analysis and sequence comparisons together revealed that the pericentromeric region of HSA 1 contains numerous segmental duplications that display a high degree of sequence similarity between both chromosomal arms. Detailed analysis of these regions has allowed us to refine the p-arm breakpoint region to a 154.2 kb interval at 1p11.2 and the q-arm breakpoint region to a 562.6 kb interval at 1q21.1. Both breakpoint regions contain human-specific segmental duplications arranged in inverted orientation. We therefore propose that the pericentric inversion of HSA 1 was mediated by intra-chromosomal non-homologous recombination between these highly homologous segmental duplications that had themselves arisen only recently in the human lineage by duplicative transposition.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .Justyna M. Szamalek and Violaine Goidts are contributed equally to the paper.  相似文献   

3.
Oparina  N. Yu.  Lacroix  M.-H.  Rychkov  A. A.  Mashkova  T. D. 《Molecular Biology》2003,37(2):200-204
Intrachromosomal and interchromosomal segmental duplications account for more than 5% of the human genome. To analyze the processes resulting in the complex mosaic structure of duplicons, a draft human genome sequence was searched for duplicated segments of a genomic fragment of the pericentric region of the chromosome 21 short arm. The duplicons found consist of modules having paralogs in various genome regions. Module ends are flanked with various tandem or interspersed repeats, which are more unstable as compared with unique sequences. In most cases, the boundaries of duplicated segments exactly coincide with or are in close proximity to hot spots of various rearrangements within repeats or boundaries between repeats and unique sequences or between two different repeats. Homologous recombination between repetitive elements was assumed to be the major mechanism contributing to the mosaic structure of duplicons.  相似文献   

4.
Intrachromosomal and interchromosomal segmental duplications account for more than 5% of the human genome. To analyze the processes resulting in the complex mosaic structure of duplicons, a draft human genome sequence was searched for duplicated segments of a genomic fragment of the pericentric region of the chromosome 21 short arm. The duplicons found consist of modules having paralogs in various genome regions. Module ends are flanked with various tandem or interspersed repeats, which are more unstable as compared with unique sequences. In most cases, the boundaries of duplicated segments exactly coincide with or are in close proximity to hot spots of various rearrangements within repeats or boundaries between repeats and unique sequences or between two different repeats. Homologous recombination between repetitive elements was assumed to be the major mechanism contributing to the mosaic structure of duplicons.  相似文献   

5.
Lacroix  M.-H.  Oparina  N. Yu.  Mashkova  T. D. 《Molecular Biology》2003,37(2):186-193
The review considers the structure, evolution, and possible mechanisms of formation and spreading of intrachromosomal and interchromosomal segmental duplications (SD), which account for more than 5% of the human genome. Most SD consist of multiple modules, which occur in several copies in different genome regions. SD are preferentially located in pericentric and subtelomeric regions, which are least studied on the human chromosomes. Homologous recombination between SD results in various chromosome rearrangements, contributing to the genome instability and the origin of several human hereditary disorders.  相似文献   

6.

Background  

Previous studies have suggested that recent segmental duplications, which are often involved in chromosome rearrangements underlying genomic disease, account for some 5% of the human genome. We have developed rapid computational heuristics based on BLAST analysis to detect segmental duplications, as well as regions containing potential sequence misassignments in the human genome assemblies.  相似文献   

7.
Relative to genomes of other sequenced organisms, the human genome appears particularly enriched for large, highly homologous segmental duplications (> or =90% sequence identity and > or =10 kbp in length). The molecular basis for this enrichment is unknown. We sought to gain insight into the mechanism of origin, by systematically examining sequence features at the junctions of duplications. We analyzed 9,464 junctions within regions of high-quality finished sequence from a genomewide set of 2,366 duplication alignments. We observed a highly significant (P<.0001) enrichment of Alu short interspersed element (SINE) sequences near or within the junction. Twenty-seven percent of all segmental duplications terminated within an Alu repeat. The Alu junction enrichment was most pronounced for interspersed segmental duplications separated by > or =1 Mb of intervening sequence. Alu elements at the junctions showed higher levels of divergence, consistent with Alu-Alu-mediated recombination events. When we classified Alu elements into major subfamilies, younger elements (AluY and AluS) accounted for the enrichment, whereas the oldest primate family (AluJ) showed no enrichment. We propose that the primate-specific burst of Alu retroposition activity (which occurred 35-40 million years ago) sensitized the ancestral human genome for Alu-Alu-mediated recombination events, which, in turn, initiated the expansion of gene-rich segmental duplications and their subsequent role in nonallelic homologous recombination.  相似文献   

8.
A physical map including four pseudogenes and 10 gene fragments and spanning 500 kb in the juxta-centromeric region of the long arm of human chromosome 21 is presented. cDNA fragments isolated from a selected cDNA library were characterized and mapped to the 831B6 YAC and to two BAC contigs that cover 250 kb of the region. An 85 kb genomic sequence located in the proximal region of the map was analyzed for putative exons. Four pseudogenes were found, including psiIGSF3, psiEIF3, psiGCT-rel whose functional copies map to chromosome 1p13, chromosome 2 and chromosome 22q11, respectively. The TTLL1 pseudogene corresponds to a new gene whose functional copy maps to chromosome 22q13. Ten gene fragments represent novel sequences that have related sequences on different human chromosomes and show 97-100% nucleotide identity to chromosome 21. These may correspond to pseudogenes on chromosome 21 and to functional genes in other chromosomes. The 85 kb genomic sequence was analyzed also for GC content, CpG islands, and repetitive sequence distribution. A GC-poor L isochore spanning 40 kb from satellite 1 was observed in the most centromeric region, next to a GC-rich H isochore that is a candidate region for the presence of functional genes. The pericentric duplication of a 7.8 kb region that is derived from the 22q13 chromosome band is described. We showed that the juxta-centromeric region of human chromosome 21 is enriched for retrotransposed pseudogenes and gene fragments transferred by interchromosome duplications, but we do not rule out the possibility that the region harbors functional genes also.  相似文献   

9.
In addition to the fusion of human chromosome 2, nine pericentric inversions are the most conspicuous karyotype differences between humans and chimpanzees. In this study we identified the breakpoint regions of the pericentric inversion of chimpanzee chromosome 11 (PTR 11) homologous to human chromosome 9 (HSA 9). The break in homology between PTR 11p and HSA 9p12 maps to pericentromeric segmental duplications, whereas the breakpoint region orthologous to 9q21.33 is located in intergenic single-copy sequences. Close to the inversion breakpoint in PTR 11q, large blocks of alpha satellites are located, which indicate the presence of the centromere. Since G-banding analysis and the comparative BAC analyses performed in this study imply that the inversion breaks occurred in the region homologous to HSA 9q21.33 and 9p12, but not within the centromere, the structure of PTR 11 cannot be explained by a single pericentric inversion. In addition to this pericentric inversion of PTR 11, further events like centromere repositioning or a second smaller inversion must be assumed to explain the structure of PTR 11 compared with HSA 9.  相似文献   

10.
11.

Background

Although the reference human genome sequence was declared finished in 2003, some regions of the genome remain incomplete due to their complex architecture. One such region, 1q21.1-q21.2, is of increasing interest due to its relevance to human disease and evolution. Elucidation of the exact variants behind these associations has been hampered by the repetitive nature of the region and its incomplete assembly. This region also contains 238 of the 270 human DUF1220 protein domains, which are implicated in human brain evolution and neurodevelopment. Additionally, examinations of this protein domain have been challenging due to the incomplete 1q21 build. To address these problems, a single-haplotype hydatidiform mole BAC library (CHORI-17) was used to produce the first complete sequence of the 1q21.1-q21.2 region.

Results

We found and addressed several inaccuracies in the GRCh37sequence of the 1q21 region on large and small scales, including genomic rearrangements and inversions, and incorrect gene copy number estimates and assemblies. The DUF1220-encoding NBPF genes required the most corrections, with 3 genes removed, 2 genes reassigned to the 1p11.2 region, 8 genes requiring assembly corrections for DUF1220 domains (~91 DUF1220 domains were misassigned), and multiple instances of nucleotide changes that reassigned the domain to a different DUF1220 subtype. These corrections resulted in an overall increase in DUF1220 copy number, yielding a haploid total of 289 copies. Approximately 20 of these new DUF1220 copies were the result of a segmental duplication from 1q21.2 to 1p11.2 that included two NBPF genes. Interestingly, this duplication may have been the catalyst for the evolutionarily important human lineage-specific chromosome 1 pericentric inversion.

Conclusions

Through the hydatidiform mole genome sequencing effort, the 1q21.1-q21.2 region is complete and misassemblies involving inter- and intra-region duplications have been resolved. The availability of this single haploid sequence path will aid in the investigation of many genetic diseases linked to 1q21, including several associated with DUF1220 copy number variations. Finally, the corrected sequence identified a recent segmental duplication that added 20 additional DUF1220 copies to the human genome, and may have facilitated the chromosome 1 pericentric inversion that is among the most notable human-specific genomic landmarks.  相似文献   

12.

Background  

Chromosome 15 contains many segmental duplications, including some at 15q11-q13 that appear to be responsible for the deletions that cause Prader-Willi and Angelman syndromes and for other genomic disorders. The current version of the human genome sequence is incomplete, with seven gaps in the proximal region of 15q, some of which are flanked by duplicated sequence. We have investigated this region by conducting a detailed examination of the sequenced genomic clones in the public database, focusing on clones from the RP11 library that originates from one individual.  相似文献   

13.
Human and chimpanzee karyotypes differ by virtue of nine pericentric inversions that serve to distinguish human chromosomes 1, 4, 5, 9, 12, 15, 16, 17, and 18 from their chimpanzee orthologues. In this study, we have analysed the breakpoints of the pericentric inversion characteristic of chimpanzee chromosome 4, the homologue of human chromosome 5. Breakpoint-spanning BAC clones were identified from both the human and chimpanzee genomes by fluorescence in situ hybridisation, and the precise locations of the breakpoints were determined by sequence comparisons. In stark contrast to some other characterised evolutionary rearrangements in primates, this chimpanzee-specific inversion appears not to have been mediated by either gross segmental duplications or low-copy repeats, although micro-duplications were found adjacent to the breakpoints. However, alternating purine–pyrimidine (RY) tracts were detected at the breakpoints, and such sequences are known to adopt non-B DNA conformations that are capable of triggering DNA breakage and genomic rearrangements. Comparison of the breakpoint region of human chromosome 5q15 with the orthologous regions of the chicken, mouse, and rat genomes, revealed similar but non-identical syntenic disruptions in all three species. The clustering of evolutionary breakpoints within this chromosomal region, together with the presence of multiple pathological breakpoints in the vicinity of both 5p15 and 5q15, is consistent with the non-random model of chromosomal evolution and suggests that these regions may well possess intrinsic features that have served to mediate a variety of genomic rearrangements, including the pericentric inversion in chimpanzee chromosome 4.  相似文献   

14.
The aims of the study were to outline the sequence of eventsthat gave rise to the vertebrate insulin-relaxin gene familyand the chromosomal regions in which they reside. We analyzedthe gene content surrounding the human insulin/relaxin geneswith respect to what family they belonged to and if the duplicationhistory of investigated families parallels the evolution ofthe insulin-relaxin family members. Markov Clustering and phylogeneticanalysis were used to determine family identity. More than 15%of the genes belonged to families that have paralogs in theregions, defining two sets of quadruplicate paralogy regions.Thereby, the localization of insulin/relaxin genes in humansis in accordance with those regions on human chromosomes 1,11, 12, 19q (insulin/insulin-like growth factors) and 1, 6p/15q,9/5, 19p (insulin-like factors/relaxins) were formed duringtwo genome duplications. We compared the human genome with thatof Ciona intestinalis, a species that split from the vertebratelineage before the two suggested genome duplications. Two insulin-likeorthologs were discovered in addition to the already describedCi-insulin gene. Conserved synteny between the Ciona regionshosting the insulin-like genes and the two sets of human paralogonsimplies their common origin. Linkage of the two human paralogons,as seen in human chromosome 1, as well as the two regions hostingthe Ciona insulin-like genes suggests that a segmental duplicationgave rise to the region prior to the genome doublings. Thus,preserved gene content provides support that genome duplication(s)in addition to segmental and single-gene duplications shapedthe genomes of extant vertebrates.  相似文献   

15.
Segmental duplications and copy-number variation in the human genome   总被引:33,自引:0,他引:33       下载免费PDF全文
The human genome contains numerous blocks of highly homologous duplicated sequence. This higher-order architecture provides a substrate for recombination and recurrent chromosomal rearrangement associated with genomic disease. However, an assessment of the role of segmental duplications in normal variation has not yet been made. On the basis of the duplication architecture of the human genome, we defined a set of 130 potential rearrangement hotspots and constructed a targeted bacterial artificial chromosome (BAC) microarray (with 2,194 BACs) to assess copy-number variation in these regions by array comparative genomic hybridization. Using our segmental duplication BAC microarray, we screened a panel of 47 normal individuals, who represented populations from four continents, and we identified 119 regions of copy-number polymorphism (CNP), 73 of which were previously unreported. We observed an equal frequency of duplications and deletions, as well as a 4-fold enrichment of CNPs within hotspot regions, compared with control BACs (P < .000001), which suggests that segmental duplications are a major catalyst of large-scale variation in the human genome. Importantly, segmental duplications themselves were also significantly enriched >4-fold within regions of CNP. Almost without exception, CNPs were not confined to a single population, suggesting that these either are recurrent events, having occurred independently in multiple founders, or were present in early human populations. Our study demonstrates that segmental duplications define hotspots of chromosomal rearrangement, likely acting as mediators of normal variation as well as genomic disease, and it suggests that the consideration of genomic architecture can significantly improve the ascertainment of large-scale rearrangements. Our specialized segmental duplication BAC microarray and associated database of structural polymorphisms will provide an important resource for the future characterization of human genomic disorders.  相似文献   

16.
An estimated 5% of the human genome consists of interspersed duplications that have arisen over the past 35 million years of evolution. Two categories of such recently duplicated segments can be distinguished: segmental duplications between nonhomologous chromosomes (transchromosomal duplications) and duplications mainly restricted to a particular chromosome (chromosome-specific duplications). Many of these duplications exhibit an extraordinarily high degree of sequence identity at the nucleotide level (>95%) and span large genomic distances (1-100 kb). Preliminary analyses indicate that these same regions are targets for rapid evolutionary turnover among the genomes of closely related primates. The dynamic nature of these regions because of recurrent chromosomal rearrangement, and their ability to create fusion genes from juxtaposed cassettes suggest that duplicative transposition was an important force in the evolution of our genome.  相似文献   

17.
Patterns of segmental duplication in the human genome   总被引:12,自引:0,他引:12  
We analyzed the completed human genome for recent segmental duplications (size > or = 1 kb and sequence similarity > or = 90%). We found that approximately 4% of the genome is covered by duplications and that the extent of segmental duplication varies from 1% to 14% among the 24 chromosomes. Intrachromosomal duplication is more frequent than interchromosomal duplication in 15 chromosomes. The duplication frequencies in pericentromeric and subtelomeric regions are greater than the genome average by approximately threefold and fourfold. We examined factors that may affect the frequency of duplication in a region. Within individual chromosomes, the duplication frequency shows little correlation with local gene density, repeat density, recombination rate, and GC content, except chromosomes 7 and Y. For the entire genome, the duplication frequency is correlated with each of the above factors. Based on known genes and Ensembl genes, the proportion of duplications containing complete genes is 3.4% and 10.7%, respectively. The proportion of duplications containing genes is higher in intrachromosomal than in interchromosomal duplications, and duplications containing genes have a higher sequence similarity and tend to be longer than duplications containing no genes. Our simulation suggests that many duplications containing genes have been selectively maintained in the genome.  相似文献   

18.
The diploid genome sequence of an individual human   总被引:4,自引:1,他引:3  
Presented here is a genome sequence of an individual human. It was produced from ∼32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel) included 3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block substitutions (2–206 bp), 292,102 heterozygous insertion/deletion events (indels)(1–571 bp), 559,473 homozygous indels (1–82,711 bp), 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.  相似文献   

19.
A comparison of the human genome with that of the chimpanzee is an attractive approach to attempts to understand the specificity of a certain phenotype's development. The two karyotypes differ by one chromosome fusion, nine pericentric inversions, and various additions of heterochromatin to chromosomal telomeres. Only the fusion, which gave rise to human chromosome 2, has been characterized at the sequence level. During the present study, we investigated the pericentric inversion by which chimpanzee chromosome 19 differs from human chromosome 17. Fluorescence in situ hybridization was used to identify breakpoint-spanning bacterial artificial chromosomes (BACs) and plasmid artificial chromosomes (PACs). By sequencing the junction fragments, we localized breakpoints in intergenic regions rich in repetitive elements. Our findings suggest that repeat-mediated nonhomologous recombination has facilitated inversion formation. No addition or deletion of any sequence element was detected at the breakpoints or in the surrounding sequences. Next to the break, at a distance of 10.2-39.1 kb, the following genes were found: NGFR and NXPH3 (on human chromosome 17q21.3) and GUC2D and ALOX15B (on human chromosome 17p13). The inversion affects neither the genomic structure nor the gene-activity state with regard to replication timing of these genes.  相似文献   

20.
The review considers the structure, evolution, and possible mechanisms of spreading of intrachromosomal and interchromosomal segment duplications (SD), which account for more than 5% of the human genome. Most SD are mosaic and consist of multiple modules, which occur in several copies in different genome regions. SD are preferentially located in pericentric and subtelomeric regions, which are least studied on the human chromosomes. Homologous recombination between SD results in various chromosome rearrangements, contributing to the genome instability and the origin of several human hereditary disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号