首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S A Huber  A Moraska    M Choate 《Journal of virology》1992,66(11):6541-6546
Initial studies determined whether intraperitoneal (i.p.) injection of BALB/c mice with 0.1, 1.0, and 10 mg of adriamycin (a cardiotoxic anthracycline antibiotic) for times ranging between 1 and 9 weeks prior to i.p. injection of 10(5) PFU of coxsackievirus B3 (CVB3) would alter the severity of virus-induced myocarditis. Prior adriamycin exposure enhanced pathogenicity of a poorly pathogenic CVB3 variant (H310A1) but had no effect on myocarditis produced by the pathogenic variant (H3). Cardiac virus concentrations were equivalent in H3- and H310A1-infected mice irrespective of adriamycin treatment. BALB/c mice treated with either 0.1 ml of complete Freund's adjuvant (CFA), 10 mg of adriamycin, or 10(5) PFU of H3 and H310A1 i.p. developed cytolytic Thy 1.2+ lymphocytes (CTL) to H3-infected myocytes 7 days later. CFA-, adriamycin-, and H3-treated mice developed CTL expressing the gamma delta+ T-cell receptors, while H310A1-infected animals did not. Only H3- and H310A1-infected mice developed alpha beta+ CTL. Treatment of BALB/c mice with 0.1 ml of CFA 5 days prior to H310A1 infection dramatically increased myocarditis. Selective depletion of gamma delta+ T cells abrogated this effect. The ability of gamma delta+ T cells to augment the pathogenicity of H310A1 infection was confirmed by adoptive transfer of CFA-stimulated T cells depleted of either gamma delta- or gamma delta+ cells into H310A1-infected recipients.  相似文献   

2.
Previously, we described a heart-reactive monoclonal antibody (MAb), 10A1, derived from a coxsackievirus B3 (CVB3)-infected mouse. This MAb selectively inhibits infection of HeLa cells and myocytes with the myocarditic virus variant (CVB3W). A plaque-purified variant (H3) of CVB3W was isolated from the heart of an infected animal, and a second virus (H3-10A1) was obtained by growing H3 in HeLa cells in the presence of MAb 10A1. As with the parental CVB3W virus, H3 infection of HeLa cells can be inhibited by MAb 10A1, but the antibody-selected H3-10A1 variant is resistant to MAb inhibition (presumably an escape mutant). BALB/c mice infected with 10(6) PFU of CVB3W, H3, or H3-10A1 resulted in approximately 90% animal mortality with CVB3W or H3 and less than 10% mortality with H3-10A1, suggesting that the escape mutant is less pathogenic. Additionally, hearts from animals infected with H3-10A1 demonstrated only half the amount of myocarditis observed in either CVB3W- or H3-infected mice. Cardiac virus titers were also reduced approximately 200-fold in H3-10A1-infected animals compared with those in mice given the pathogenic variants. In vitro studies indicate that H3-10A1 is less effective in inhibiting cellular RNA and protein synthesis and show reduced virus replication compared with that of pathogenic viruses in cultured myocytes.  相似文献   

3.
The myocarditic (H3) variant of Coxsackievirus B3 (CVB3) causes severe myocarditis in BALB/c mice and BALB/c mice lacking the invariant J alpha 281 gene, but minimal disease in BALB/c CD1d(-/-) animals. This indicates that CD1d expression is important in this disease but does not involve the invariant NKT cell often associated with CD1d-restricted immunity. The H3 variant of the virus increases CD1d expression in vitro in neonatal cardiac myocytes whereas a nonmyocarditic (H310A1) variant does not. V gamma 4(+) T cells show increased activation in both H3-infected BALB/c and J alpha 281(-/-) mice compared with CD1d(-/-) animals. The activated BALB/c V gamma 4(+) T cells from H3-infected mice kill H3-infected BALB/c myocytes and cytotoxicity is blocked with anti-CD1d but not with anti-MHC class I (K(d)/D(d)) or class II (IA/IE) mAbs. In contrast, H3 virus-infected CD1d(-/-) myocytes are not killed. These studies demonstrate that CD1d expression is essential for pathogenicity of CVB3-induced myocarditis, that CD1d expression is increased early after infection in vivo in CD1d(+) mice infected with the myocarditic but not with the nonmyocarditic CVB3 variant, and that V gamma 4(+) T cells, which are known to promote myocarditis susceptibility, appear to recognize CD1d expressed by CVB3-infected myocytes.  相似文献   

4.
Male Balb/c mice inoculated with a heart-adapted variant of Coxsackievirus, group B, type 3 (CVB3) develop severe myocarditis 7 days later. The lesions are characterized by mononuclear cell inflammation and myocyte necrosis. Infected T-lymphocyte-deficient mice show either minimal or no cardiac injury, although virus concentrations in the hearts of T-cell-deficient and -sufficient animals are similar. Adoptive transfer of 2 X 10(6) CVB3 immune Thy 1+ cells into CVB3-infected T-cell-deficient mice effectively restored myocarditis to levels observed in intact animals. Similar reconstitution with immune Ig+ cells or serum resulted in only a minimal increase in cardiac injury. To determine whether T-lymphocyte-dependent humoral or cellular immunity was responsible for myocarditis. T lymphocytes were obtained from Balb/c mice 6 days after infection with CVB3, separated into Lyt 1+2- (helper) and Lyt 1-2+ (cytolytic/suppressor) cell populations, and 2 X 10(6) of the enriched helper and cytolytic cells were adoptively transfused into infected T-cell-deficient recipients. Animals receiving the immune Lyt2+ cells developed severe myocarditis, had cytolytic T lymphocytes to both CVB3-infected and uninfected myocytes, but lacked a detectable IgG antibody response. Recipients of the Lyt 1+ cells failed to develop either myocarditis or cytolytic T cells but had normal serum IgG antibody titers to the virus. These results demonstrate that cardiac myocarditis is the product of cellular immune mechanisms.  相似文献   

5.
Coxsackievirus group B type 3 (CVB3) induces myocarditis in male Balb/c mice but produces little cardiac injury in females. Males develop cytolytic T lymphocytes (CTL) reactive to heart antigens which primarily cause the inflammation and cardiac injury observed in the disease. Infected female mice lack this CTL response because they rapidly produce suppressor cells inhibiting both cellular immunity and cardiac inflammation. Four lines of evidence demonstrate suppressor cells in females. First, females develop myocarditis when treated with low-dose cyclophosphamide under conditions known to preferentially eliminate suppressor cells but not other immune cells. Second, lymphocytes obtained from females at various times after infection prevent myocarditis when adoptively transferred into CVB3-infected males. Virus concentrations in the hearts of males receiving immune female cells and control males were equivalent. Thus protection did not result from accelerated virus elimination in recipient males. Third, CTL from CVB3 infected male mice could induce myocarditis in infected T-lymphocyte depleted but not in intact females suggesting the presence of an inhibitory T cell in the intact animals. Finally, male lymphocytes cultured on heart cell monolayers for 5 days generate significant cytolytic activity to myocyte targets. CTL generation could be inhibited by co-culture of the male cells with immune female lymphocytes. Nonimmune female cells were not inhibitory.  相似文献   

6.
Huber SA  Sartini D  Exley M 《Journal of virology》2002,76(21):10785-10790
T cells expressing the Vgamma4 T-cell receptor (TCR) promote myocarditis in coxsackievirus B3 (CVB3)-infected BALB/c mice. CD1, a major histocompatibility complex (MHC) class I-like molecule, is required for activation of Vgamma4(+) cells. Once activated, Vgamma4(+) cells initiate myocarditis through gamma interferon (IFN-gamma)-mediated induction of CD4(+) T helper type 1 (Th1) cells in the infected animal. These CD4(+) Th1 cells are required for activation of an autoimmune CD8(+) alphabeta TCR(+) effector, which is the predominant pathogenic agent in this model of CVB3-induced myocarditis. Activated Vgamma4(+) cells can adoptively transfer myocarditis into BALB/c mice infected with a nonmyocarditic variant of CVB3 (H310A1) but cannot transfer myocarditis into either uninfected or CD1(-/-) recipients, demonstrating the need for both infection and CD1 expression for Vgamma4(+) cell function. In contrast, CD8(+) alphabeta TCR(+) cells transfer myocarditis into either infected CD1(-/-) or uninfected recipients, showing that once activated, the CD8(+) alphabeta TCR(+) effectors function independently of both virus and CD1. Vgamma4(+) cells given to mice lacking CD4(+) T cells minimally activate the CD8(+) alphabeta TCR(+) cells. These studies show that Vgamma4(+) cells determine CVB3 pathogenicity by their ability to influence both the CD4(+) and CD8(+) adaptive immune response. Vgamma4(+) cells enhance CD4(+) Th1 (IFN-gamma(+)) cell activation through IFN-gamma- and CD1-dependent mechanisms. CD4(+) Th1 cells promote activation of the autoimmune CD8(+) alphabeta TCR(+) effectors.  相似文献   

7.
Susceptibility to autoimmune myocarditis has been associated with histamine release by mast cells during the innate immune response to coxsackievirus B3 (CVB3) infection. To investigate the contribution of histamine H(1) receptor (H(1)R) signaling to CVB3-induced myocarditis, we assessed susceptibility to the disease in C57BL/6J (B6) H(1)R(-/-) mice. No difference was observed in mortality between CVB3-infected B6 and H(1)R(-/-) mice. However, analysis of their hearts revealed a significant increase in myocarditis in H(1)R(-/-) mice that is not attributed to increased virus replication. Enhanced myocarditis susceptibility correlated with a significant expansion in pathogenic Th1 and Vγ4(+) γδ T cells in the periphery of these animals. Furthermore, an increase in regulatory T cells was observed, yet these cells were incapable of controlling myocarditis in H(1)R(-/-) mice. These data establish a critical role for histamine and H(1)R signaling in regulating T cell responses and susceptibility to CVB3-induced myocarditis in B6 mice.  相似文献   

8.
Clinical and laboratory investigations have demonstrated the involvement of viruses and bacteria as potential causative agents in cardiovascular disease and have specifically found coxsackievirus B3 (CVB3) to be a leading cause. Experimental data indicate that cytokines are involved in controlling CVB3 replication. Therefore, recombinant CVB3 (CVB3rec) variants expressing the T-helper-1 (T(H)1)-specific gamma interferon (IFN-gamma) or the T(H)2-specific interleukin-10 (IL-10) as well as the control virus CVB3(muIL-10), which produce only biologically inactive IL-10, were established. Coding regions of murine cytokines were cloned into the 5' end of the CVB3 wild type (CVB3wt) open reading frame and were supplied with an artificial viral 3Cpro-specific Q-G cleavage site. Correct processing releases active cytokines, and the concentration of IFN-gamma and IL-10 was analyzed by enzyme-linked immunosorbent assay and bioassays. In mice, CVB3wt was detectable in pancreas and heart tissue, causing massive destruction of the exocrine pancreas as well as myocardial inflammation and heart cell lysis. Most of the CVB3wt-infected mice revealed virus-associated symptoms, and some died within 28 days postinfection. In contrast, CVB3rec variants were present only in the pancreas of infected mice, causing local inflammation with subsequent healing. Four weeks after the first infection, surviving mice were challenged with the lethal CVB3H3 variant, causing casualties in the CVB3wt- and CVB3(muIL-10)-infected groups, whereas almost none of the CVB3(IFN-gamma)- and CVB3(IL-10)-infected mice died and no pathological disorders were detectable. This study demonstrates that expression of immunoregulatory cytokines during CVB3 replication simultaneously protects mice against a lethal disease and prevents virus-caused tissue destruction.  相似文献   

9.
Huber S  Shi C  Budd RC 《Journal of virology》2002,76(13):6487-6494
Fas/Fas ligand (FasL) interactions regulate disease outcome in coxsackievirus B3 (CVB3)-induced myocarditis. MRL(+/+) mice infected with CVB3 develop severe myocarditis, a dominant CD4(+) Th1 (gamma interferon [IFN-gamma(+)]) response to the virus, and a predominance of gammadelta T cells in the myocardial infiltrates. MRL lpr/lpr and MRL gld/gld mice, which lack normal expression of Fas and express a mutated FasL, respectively, have minimal myocarditis and show a dominant CD4(+) Th2 (interleukin-4 [IL-4(+)]) phenotype to CVB3. Spleen cells from virus-infected wild-type, lpr, and gld animals proliferate equally to virus in vitro. Adoptive transfer of gammadelta T cells from hearts of CVB3-infected MRL(+/+) mice (FasL(+)) into infected MRL gld/gld recipients (FasL(-)/Fas(+)) restores both disease susceptibility and Th1 cell phenotype. However, transfer of these cells into MRL lpr/lpr recipients (FasL(+)/Fas(-)) did not promote myocarditis and the viral response remained Th2 biased. This paralleled the expression of very high surface levels of FasL by myocardial gammadelta T cells, as well as their propensity to selectively lyse Th2 virus-specific CD4(+) T cells. These results demonstrate that Fas/FasL interactions conferred by gammadelta T cells on lymphocyte subpopulations may regulate the cytokine response to CVB3 infection and pathogenicity.  相似文献   

10.
Male and female BALB/c mice differ dramatically in susceptibility to myocarditis subsequent to coxsackievirus B3 (CVB3) infection. CVB3 infection of male mice results in substantial inflammatory cell infiltration of the myocardium, and virus-immune lymphocytes from these animals give predominantly a Th1 cell phenotypic response, as determined by predominant immunoglobulin G2a isotypic antibody production and elevated numbers of gamma interferon and interleukin-2 (IL-2)-producing CD4+ T lymphocytes. Females infected with the same virus give predominantly a Th2 cell phenotypic response, as determined by preferential immunoglobulin G1 antibody isotypic responses and increased precursor frequencies of IL-4- and IL-5-producing CD4+ T cells. Treatment of females with testosterone or males with estradiol prior to infection alters subsequent Th subset differentiation, suggesting that the sex-associated hormones have either a direct or indirect effect on CD4+ lymphocyte responses in this model. Treatment of females with 0.1 mg of monoclonal antibody to IL-4 reduces precursor frequencies of IL-4-producing CD4+ T cells and increases frequencies of gamma interferon-producing cells. This treatment also enhances myocardial inflammation, indicating a correlation between Th1-like cell responses and pathogenicity in CVB3 infection. The Th2-like cell may regulate Th1 cell activation. Adoptive transfer of T lymphocytes from CVB3-infected female mice into male animals suppresses the development of myocarditis in the recipients. Treatment of the female donors with monoclonal antibodies to either CD3, CD4, or IL-4 molecules abrogates suppression.  相似文献   

11.
Two variants of coxsackievirus group B, type 3 (CVB3) differ in ability to induce myocarditis in Balb/cCUM mice. Infection with the highly pathogenic variant (CVB3M) stimulates autoimmunity to normal cardiocyte antigens, and tissue injury results primarily from an autoreactive cytolytic T lymphocyte (ACTL). Animals infected with the less pathogenic CVB3o variant do not develop ACTL, although CVB3o replicates to high titers in the heart and polyclonal neutralizing antisera fail to distinguish between the two variant virions. The present study uses two IgM mAb derived by fusing spleen cells from CVB3M-infected mice with NS-1 cells. These mAb investigate important differences between the virus variants that may explain why only selected infections trigger autoimmunity. mAb 8A6 is a virus-neutralizing antibody that prevents infection of HeLa cells and cultured cardiocytes by attaching to the virus. mAb 10A1 also interferes with infection but presumably reacts to the virus receptor on the susceptible cells and shows little or no binding to the virions. While 8A6 is equally effective in neutralizing both CVB3o and CVB3M, suggesting that antigenic epitopes on both variants are either identical or highly cross-reactive, 10A1 distinguishes between the variants, suggesting that the pathogenic and less pathogenic viruses use distinct cell surface receptors. Competitive binding studies using radiolabeled CVB3M and either of the unlabeled variants confirm this hypothesis. Both mAb effectively prevent CVB3M-induced cardiac damage in vivo. mAb 10A1 also inhibits autoreactive ACTL lysis of cardiocytes, indicating that the autoimmune effectors may recognize the virus receptor, and that the receptor utilized by a virus may prove important in triggering auto-sensitization.  相似文献   

12.
Two variants of coxsackievirus B3 (CVB3) which differ dramatically in the ability to induce myocarditis in BALB/c mice were studied. H3 virus infection of murine monocytes in vitro resulted in release of concentrations of interleukin 1 (IL-1) and alpha/beta interferon that were high compared with those of cells infected with the H310A1 virus variant. In vivo, H3 virus infection caused substantial inflammatory cell infiltration of the myocardium, and lymphocytes from these animals gave predominantly Th1-cell responses to either whole H3 virus or overlapping peptides of the CVB3 vp1 capsid protein, as determined by IL-2 production. In contrast, H310A1 virus infection produced minimal myocarditis and Th1-cell responses, but Th2-cell activation was more pronounced than in H3 virus-infected mice (as determined by IL-4 concentrations). Exogenous treatment of H310A1 virus-infected mice with either IL-1 or IL-2 restored both myocarditis susceptibility and Th1-cell responses to whole virus and vp1 peptides. Furthermore, H310A1 virus-infected mice given exogenous IL-1 showed substantial in situ IL-2 deposition in the myocardium. These results indicate that CVB3-induced myocarditis may depend upon release of specific cytokines during infection and that activation of Th1 cells may be an important factor in pathogenesis.  相似文献   

13.
Two coxsackievirus B3 (CVB3) variants (H3 and H310A1) differ by a single amino acid mutation in the VP2 capsid protein. H3 induces severe myocarditis in BALB/c mice, but H310A1 is amyocarditic. Infection with H3, but not H310A1, preferentially activates Vgamma4 Vdelta4 cells, which are strongly positive for gamma interferon (IFN-gamma), whereas Vgamma1 Vdelta4 cells are increased in both H3 and H310A1 virus-infected animals. Depletion of Vgamma1(+) cells using monoclonal anti-Vgamma1 antibody enhanced myocarditis and CD4(+)-, IFN-gamma(+)-cell responses in both H3- and H310A1-infected mice yet decreased the CD4(+)-, IL-4(+)-cell response. Depleting Vgamma4(+) cells suppressed myocarditis and reduced CD4(+) IFN-gamma(+) cells but increased CD4(+) IL-4(+) T cells. The role of cytokine production by Vgamma1(+) and Vgamma4(+) T cells was investigated by adoptively transferring these cells isolated from H3-infected BALB/c Stat4 knockout (Stat4ko) (defective in IFN-gamma expression) or BALB/c Stat6ko (defective in IL-4 expression) mice into H3 virus-infected wild-type BALB/c recipients. Vgamma4 and Vgamma1(+) T cells from Stat4ko mice expressed IL-4 but no or minimal IFN-gamma, whereas these cell populations derived from Stat6ko mice expressed IFN-gamma but no IL-4. Stat4ko Vgamma1(+) cells (IL-4(+)) suppress myocarditis. Stat6ko Vgamma1(+) cells (IFN-gamma(+)) were not inhibitory. Stat6ko Vgamma4(+) cells (IFN-gamma(+)) significantly enhanced myocarditis. Stat4ko Vgamma4(+) cells (IL-4(+)) neither inhibited nor enhanced disease. These results show that distinct gammadelta-T-cell subsets control myocarditis susceptibility and bias the CD4(+)-Th-cell response. The cytokines produced by the Vgamma subpopulation have a significant influence on the CD4(+)-Th-cell phenotype.  相似文献   

14.
Cellular FLIP (c-FLIP) is an enzymatically inactive paralogue of caspase-8 and as such can block death receptor-induced apoptosis. However, independent of death receptors, c-FLIP-Long (c-FLIPL) can heterodimerize with and activate caspase-8. This is critical for promoting the growth and survival of T lymphocytes as well as the regulation of the RIG-I helicase pathway for type I interferon production in response to viral infections. Truncated forms of FLIP also exist in mammalian cells (c-FLIPS) and certain viruses (v-FLIP), which lack the C-terminal domain that activates caspase-8. Thus, the ratio of c-FLIPL to these short forms of FLIP may greatly influence the outcome of an immune response. We examined this model in mice transgenically expressing c-FLIPS in T cells during infection with Coxsackievirus B3 (CVB3). In contrast to our earlier findings of reduced myocarditis and mortality with CVB3 infection of c-FLIPL-transgenic mice, c-FLIPS-transgenic mice were highly sensitive to CVB3 infection as manifested by increased cardiac virus titers, myocarditis score, and mortality compared to wild-type C57BL/6 mice. This observation was paralleled by a reduction in serum levels of IL-10 and IFN-α in CVB3-infected c-FLIPS mice. In vitro infection of c-FLIPS T cells with CVB3 confirmed these results. Furthermore, molecular studies revealed that following infection of cells with CVB3, c-FLIPL associates with mitochondrial antiviral signaling protein (MAVS), increases caspase-8 activity and type I IFN production, and reduces viral replication, whereas c-FLIPS promotes the opposite phenotype.  相似文献   

15.
Th17 cells have been implicated in the pathogenesis of myocarditis. Interleukin (IL)-17A produced by Th17 cells is dispensable for viral myocarditis but essential for the progression to dilated cardiomyopathy (DCM). This study investigated whether the adenoviral transfer of the IL-17 receptor A reduces myocardial remodeling and dysfunction in viral myocarditis leading to DCM. In a mouse model of Coxsackievirus B3 (CVB3)-induced chronic myocarditis, the delivery of the adenovirus-containing IL-17 receptor A (Ad-IL17RA:Fc) reduced IL-17A production and decreased the number of Th17 cells in the spleen and heart, leading to the down-regulation of systemic TNF-α and IL-6 production. Cardiac function improved significantly in the Ad-IL17R:Fc- compared with the Ad-null-treated mice 3 months after the first CVB3 infection. Ad-IL17R:Fc reduced the left ventricle dilation and decreased the mortality in viral myocarditis, leading to DCM (56% in the Ad-IL17R:Fc versus 76% in the Ad-null group). The protective effects of Ad-IL17R-Fc on remodeling correlated with the attenuation of myocardial collagen deposition and the reduction of fibroblasts in CVB3-infected hearts, which was accompanied by the down-regulation of A distintegrin and metalloprotease with thrombospondin type 1 motifs (ADAMTS-1), Matrix metalloproteinase-2(MMP-2), and collagen subtypes I and III in the heart. Moreover, in cultured cardiac fibroblasts, IL-17A induced the expression of ADAMTS-1, MMP-2, and collagen subtypes I and III and increased the proliferation of fibroblasts. We determined that the delivery of IL-17-RA:Fc reduces cardiac remodeling, improves function, and decreases mortality in viral myocarditis leading to DCM, possibly by suppressing fibrosis. Therefore, the adenoviral transfer of the IL-17 receptor A may represent an alternative therapy for chronic viral myocarditis and its progression to DCM.  相似文献   

16.
The Th17/interleukin (IL)-17 axis controls inflammation and might be important in the pathogenesis of experimental autoimmune myocarditis (EAM) and other autoimmune diseases. However, the mechanism underlying the increased Th17 cell response in coxsackievirus-induced myocarditis remains unclear. This study aimed to elucidate the regulatory mechanisms affected by blocking IL-17A responses in acute virus-induced myocarditis (AVMC) mice. The results showed that IL-17A and COX-2 proteins were significantly increased in the cardiac tissue of acute myocarditis, as were Th17 cells in the spleen. Using anti-mouse IL-17Ab to block IL-17A on day 7 of the viral myocarditis led to decreased expressions of cardiac tumor-necrosis factor alpha, IL-17A and transforming growth factor beta in AVMC mice compared to isotype control mice. COX-2 and prostaglandin E2 proteins were dramatically elevated, followed by marked reductions in CVB3 replication and myocardial injury. These results hint that the Th17/IL-17 axis is intimately associated with viral replication in acute myocarditis via induction of COX-2 and prostaglandin E2.  相似文献   

17.
Giving C57BL/6 mice 10(4) PFU of coxsackievirus B3 (H3 variant) fails to induce myocarditis, but increasing the initial virus inoculum to 10(5) or 10(6) PFU causes significant cardiac disease. Virus titers in the heart were equivalent at days 3 and 7 in mice given all three virus doses, but day 3 titers in the pancreases of mice inoculated with 10(4) PFU were reduced. Tumor necrosis factor alpha (TNF-alpha) concentrations in the heart were increased in all infected mice, but cytokine levels were highest in mice given the larger virus inocula. TNF-alpha(-/-) and p55 TNF receptor-negative (TNFR(-/-)) mice developed minimal myocarditis compared to B6;129 or C57BL/6 control mice. p75 TNFR(-/-) mice were as disease susceptible as C57BL/6 animals. No significant differences in virus titers in heart or pancreas were observed between the groups, but C57BL/6 and p75 TNFR(-/-) animals showed 10-fold more inflammatory cells in the heart than p55 TNFR(-/-) mice, and the cell population was comprised of high concentrations of CD4(+) gamma interferon-positive and Vgamma4(+) cells. Cardiac endothelial cells isolated from C57BL/6 and p75 TNFR(-/-) mice upregulate CD1d, the molecule recognized by Vgamma4(+) cells, but infection of TNF(-/-) or p55 TNFR(-/-) endothelial cells failed to upregulate CD1d. Infection of C57BL/6 endothelial cells with a nonmyocarditic coxsackievirus B3 variant, H310A1, which is a poor inducer of TNF-alpha, failed to elicit CD1d expression, but TNF-alpha treatment of H310A1-infected endothelial cells increased CD1d levels to those seen in H3-infected cells. TNF-alpha treatment of uninfected endothelial cells had only a modest effect on CD1d expression, suggesting that optimal CD1d upregulation requires both infection and TNF-alpha signaling.  相似文献   

18.
A Henke  S Huber  A Stelzner    J L Whitton 《Journal of virology》1995,69(11):6720-6728
Coxsackievirus infections have previously been shown to cause acute or chronic myocarditis in humans, and several mouse models have been established to study the pathology of this disease. Myocardial injury may result from direct viral effects and/or may be immune mediated. To determine the relative roles of these processes in pathogenesis, we have compared coxsackievirus B3 (CVB3) infections of normal and immuno-compromised transgenic knockout (ko) mice. CVB3 was able to infect all strains used (C57BL/6, CD4ko, and beta-microglobulin ko [beta 2Mko]), and following intraperitoneal injection, two disease processes could be distinguished. First, the virus caused early (3 to 7 days postinfection) death in a viral dose-dependent manner. Immunocompetent C57BL/6 mice were highly susceptible (50% lethal dose = 70 PFU), while immunodeficient transgenic ko mice were less susceptible, showing 10- and 180-fold increases in the 50% lethal dose (for CD4ko and beta 2Mko mice, respectively). Second, a histologic examination of surviving CD4ko mice at 7 days postinfection revealed severe myocarditis; the inflammatory infiltrate comprised 40 to 50% macrophages, 30 to 40% NK cells, and 10 to 20% CD8+ T lymphocytes. The infiltration resolved over the following 2 to 3 weeks, with resultant myocardial fibrosis. In vivo depletion of CD8+ T lymphocytes from these CD4ko mice led to a marked reduction in myocarditis and an increase in myocardial virus titers. beta 2Mko mice, which lack antiviral CD8+ T cells, are much less susceptible to early death and to the development of myocarditis. We conclude that our data support a strong immunopathologic component in CVB3-induced disease and implicate both CD4+ and CD8+ T cells. Compared with immunocompetent animals, (i) mice lacking CD4+ T cells (CD4ko) were more resistant to virus challenge, and (ii) mice lacking CD8+ T cells (beta 2Mko and in vivo-depleted CD4ko) showed enhanced survival and a reduced incidence of the later myocarditis. Nevertheless, the picture is complex, since (iii) removal of the CD4+ component, while protecting against early death, greatly magnified the severity of myocarditis, and (iv) removal of the CD8+ cells from CD4ko mice, although protecting against early death and later myocarditis, led to markedly increased virus titers in the heart. These data underscore the complex balance between the costs and benefits of effective antiviral immune responses.  相似文献   

19.
Yue Y  Gui J  Ai W  Xu W  Xiong S 《PloS one》2011,6(3):e18186

Background

Myocarditis is an inflammation of the myocardium that often follows the enterovirus infections, with coxsackievirus B3 (CVB3) being the most dominant etiologic agent. We and other groups previously reported that chemokine IP-10 was significantly induced in the heart tissue of CVB3-infected mice and contributed to the migration of massive inflammatory cells into the myocardium, which represents one of the most important mechanisms of viral myocarditis. To evaluate the direct effect of IP-10 on the inflammatory responses in CVB3 myocarditis, herein an IP-10 mutant deprived of chemo-attractant function was introduced into mice to antagonize the endogenous IP-10 activity, and its therapeutic effect on CVB3-induced myocarditis was evaluated.

Methodology/Principal Findings

The depletion mutant pIP-10-AT, with an additional methionine after removal of the 5 N-terminal amino acids, was genetically constructed and intramuscularly injected into BALB/c mice after CVB3 infection. Compared with vector or no treatment, pIP-10-AT treatment had significantly reduced heart/body weight ratio and serum CK-MB level, increased survival rate and improved heart histopathology, suggesting an ameliorated myocarditis. This therapeutic effect was not attributable to an enhanced viral clearance, but to a blunted Th1 immune response, as evidenced by significantly decreased splenic CD4+/CD8+IFN-γ+ T cell percentages and reduced myocardial Th1 cytokine levels.

Conclusion/Significance

Our findings constitute the first preclinical data indicating that interfering in vivo IP-10 activity could ameliorate CVB3 induced myocarditis. This strategy may represent as a new therapeutic approach in treating viral myocarditis.  相似文献   

20.
Coxsackievirus B3 (CVB3) infections induce myocarditis in humans and mice. Little is known about the molecular characteristics of CVB3 that activate the cellular immunity responsible for cardiac inflammation. Previous experiments have identified an antibody escape mutant (H310A1) of a myocarditic variant of CVB3 (H3) that attenuates the myocarditic potential of the virus in mice in spite of ongoing viral replication in the heart. We have cloned full-length infectious cDNA copies of the viral genome of both the wild-type myocarditic H3 variant of CVB3 and the antibody escape mutant H310A1. Progeny viruses maintained the myocarditic and attenuated myocarditic potential of the parent viruses, H3 and H310A1. The full sequence of the H3 viral cDNA is reported and compared with those of previously published CVB3 variants. Comparison of the full sequences of H3 and H310A1 viruses identified a single nonconserved mutation (A to G) in the P1 polyprotein region at nucleotide 1442 resulting in an asparagine-to-aspartate mutation in amino acid 165 of VP2. This mutation is in a region that corresponds to the puff region of VP2. Nucleotide 1442 of the H3 and H310A1 cDNA copies of the viral genome was mutated to change amino acid 165 of VP2 to aspartate and asparagine, respectively. The presence of asparagine at amino acid 165 of VP2 is associated with the myocarditic phenotype, while an aspartate at the same site reduces the myocarditic potential of the virus. In addition, high-level production of tumor necrosis factor alpha by infected BALB/c monocytes is associated with asparagine at amino acid 165 of VP2 as has been previously demonstrated for the H3 virus. These findings identify potentially important differences between the H3 variant of CVB3 and other previously published CVB3 variants. In addition, the data demonstrate that a point mutation in the puff region of VP2 can markedly alter the ability of CVB3 to induce myocarditis in mice and tumor necrosis factor alpha secretion from infected BALB/c monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号