首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cloning of several plant genes directly involved in triggering a disease resistance response has shown that numerous resistance genes in the nucleotide binding site (NBS)/leucine-rich repeat (LRR) class have similar conserved amino acid sequences. In this study, we used a short soybean DNA sequence, previously cloned based on its conserved NBS, as a probe to identify full-length resistance gene candidates. Two homologous, but genetically independent genes were identified. One gene maps to the soybean molecular linkage group (MLG) F and a second is coded on MLG E. The first gene contains a 3,279 nucleotide open reading frame (ORF) sequence and possesses all the functional motifs characteristic of previously cloned NBS/LRR resistance genes. The N-terminal sequence of the deduced gene product is highly characteristic of other resistance genes in the subgroup of NBS/LRR genes which show homology to the Toll/Interleukin-1 receptor genes. The C-terminal region is somewhat more divergent as seen in other cloned disease resistance genes. This region of the F-linked gene contains an LRR region that is characterized by two alternatively spliced products which produce gene products with either a four-repeat or a ten-repeat LRR. The second cloned gene that maps to soybean MLG E contains 1,565 nucleotides of ORF in the N-terminal domain. Despite strong homology, however, the 3′ region of this gene contains several in-frame stop codons and apparent frame shifts compared to the F-linked gene, suggesting that its functionality as a disease resistance gene is questionable. These two disease resistance gene candidates are shown to be closely related to one another and to the members of the NBS/LRR class of disease resistance genes. Received: 29 November 1999 / Accepted: 22 December 1999  相似文献   

2.
Twenty three DNA fragments with a size of about 520 bp have been cloned from rice genome by PCR amplification using primers designed according to the conserved region of most plant resistance (R) genes which have Nucleotide Binding Site (NBS) and Leucine-Rich Repeat (LRR) domains. Homologous comparison showed that these fragments contained typical motifs of the NBS-LRR resistance gene class, kinase 1a, kinase 2a, kinase 3a and domain 2. Thus they were named R gene homologous sequences (RS). These RS were divided into 4 groups by clustering analysis and mapped onto chromosomes 1, 3, 4, 7, 8, 9, 10 and 11, respectively, by genetic mapping. Ten RS were located in the chromosomal intervals where known R genes had been mapped. Further RFLP analysis of an RS, RS13, near the bacterial blight resistance gene Xa4 locus on chromosome 11 among near isogenic lines and pyramiding lines of Xa4 showed that RS13 was possibly amplified from the gene family of Xa4.  相似文献   

3.
Twenty three DNA fragments with a size of about 520 bp have been cloned from rice genome by PCR amplification using primers designed according to the conserved region of most plant resistance (R) genes which have Nucleotide Binding Site (NBS) and Leucine-Rich Repeat (LRR) domains. Homologous comparison showed that these fragments contained typical motifs of the NBS-LRR resistance gene class, kinase 1a, kinase 2a, kinase 3a and domain 2. Thus they were named R gene homologous sequences (RS). These RS were divided into 4 groups by clustering analysis and mapped onto chromosomes 1, 3, 4, 7, 8, 9, 10 and 11, respectively, by genetic mapping. Ten RS were located in the chromosomal intervals where known R genes had been mapped. Further RFLP analysis of an RS, RS13, near the bacterial blight resistance geneXa4 locus on chromosome 11 among near isogenic lines and pyramiding lines ofXa4 showed that RS13 was possibly amplified from the gene family ofXa4.  相似文献   

4.
Most known plant disease-resistance genes (R genes) include in their encoded products domains such as a nucleotide-binding site (NBS) or leucine-rich repeats (LRRs). Sequences with unknown function, but encoding these conserved domains, have been defined as resistance gene analogues (RGAs). The conserved motifs within plant NBS domains make it possible to use degenerate primers and PCR to isolate RGAs. We used degenerate primers deduced from conserved motifs in the NBS domain of NBS-LRR resistance proteins to amplify genomic sequences from Lens species. Fragments from approximately 500-850 bp were obtained. The nucleotide sequence analysis of these fragments revealed 32 different RGA sequences in Lens species with a high similarity (up to 91%) to RGAs from other plants. The predicted amino acid sequences showed that lentil sequences contain all the conserved motifs (P-loop, kinase-2, kinase-3a, GLPL, and MHD) present in the majority of other known plant NBS-LRR resistance genes. Phylogenetic analyses grouped the Lens NBS sequences with the Toll and interleukin-1 receptor (TIR) subclass of NBS-LRR genes, as well as with RGA sequences isolated from other legume species. Using inverse PCR on one putative RGA of lentil, we were able to amplify the flanking regions of this sequence, which contained features found in R proteins.  相似文献   

5.
The resistance (R) proteins of the TIR- and non-TIR (or CC-) superfamilies possess a nucleotide binding site (NBS) domain. Within an R gene, the NBS is the region of highest conservation, suggesting an essential role in triggering R protein activity. We compared the NBS domain of functional R genes and resistance gene analogs (RGA) amplified from S. caripense genomic DNA via PCR using specific and degenerate primers with its counterpart from other plants. An overall high degree of sequence conservation was apparent throughout the P-loop, kinase-2 and kinase-3a motifs of NBS fragments from all plants. Within the non-TIR class of R genes a prominent sub-class similar to the potato R1 gene conferring resistance to late blight, was detected. All non-TIR-R1-like R gene fragments that were sequenced possessed an intact open reading frame, whereas 22% of all non-TIR-non-R1-like fragments and 59% of all TIR-NBS RGA fragments had an interrupted reading frame or contained transposon-specific sequence. The non-TIR-R1-like fragments had high similarity to Solanaceae R genes and low similarity to RGAs of other plant species including A. thaliana and the cereals. It is concluded that appearance of the non-TIR-R1-like NBS domain represents a relatively recent evolutionary development. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

6.
Sequence analysis of plant disease resistance genes shows similarity among themselves, with the presence of conserved motifs common to the nucleotide‐binding site (NBS). Oligonucleotide degenerate primers designed from the conserved NBS motifs encoded by several plant disease resistance genes were used to amplify resistance gene analogues (RGAs) corresponding to the NBS sequences from the genomic DNA of various plant species. Using specific primers designed from the conserved NBS regions, 22 RGAs were cloned and sequenced from pearl millet (Pennisetum glaucum L. Br.). Phylogenetic analysis of the predicted amino acid sequences grouped the RGAs into nine distinct classes. GenBank database searches with the consensus protein sequences of each of the nine classes revealed their conserved NBS domains and similarity to other known R genes of various crop species. One RGA 213 was mapped onto LG1 and LG7 in the pearl millet linkage map. This is the first report of the isolation and characterization of RGAs from pearl millet, which will facilitate the improvement of marker‐assisted breeding strategies.  相似文献   

7.
Nucleotide-binding site (NBS) disease resistance genes play an important role in defending plants from a range of pathogens and insect pests. Consequently, NBS-encoding genes have been the focus of a number of recent studies in molecular disease resistance breeding programs. However, little is known about NBS-encoding genes in Lotus japonicus. In this study, a full set of disease resistance (R) candidate genes encoding NBS from the complete genome of L. japonicus was identified and characterized using structural diversity, chromosomal locations, conserved protein motifs, gene duplications, and phylogenetic relationships. Distinguished by N-terminal motifs and leucine-rich repeat motifs (LRRs), 92 regular NBS genes of 158 NBS-coding sequences were classified into seven types: CC-NBS-LRR, TIR-NBS-LRR, NBS-LRR, CC-NBS, TIR-NBS, NBS, and NBS-TIR. Phylogenetic reconstruction of NBS-coding sequences revealed many NBS gene lineages, dissimilar from results for Arabidopsis but similar to results from research on rice. Conserved motif structures were also analyzed to clarify their distribution in NBS-encoding gene sequences. Moreover, analysis of the physical locations and duplications of NBS genes showed that gene duplication events of disease resistance genes were lower in L. japonicus than in rice and Arabidopsis, which may contribute to the relatively fewer NBS genes in L. japonicus. Sixty-three NBS-encoding genes with clear conserved domain character were selected to check their gene expression levels by semi-quantitative RT-PCR. The results indicated that 53 of the genes were most likely to be acting as the active genes, and exogenous application of salicylic acid improved expression of most of the R genes.  相似文献   

8.
Western white pine ( Pinus monticola Dougl. ex. D. Don., WWP) shows genetic variation in disease resistance to white pine blister rust ( Cronartium ribicola). Most plant disease resistance (R) genes encode proteins that belong to a superfamily with nucleotide-binding site domains (NBS) and C-terminal leucine-rich repeats (LRR). In this work a PCR strategy was used to clone R gene analogs (RGAs) from WWP using oligonucleotide primers based on the conserved sequence motifs in the NBS domain of angiosperm NBS-LRR genes. Sixty-seven NBS sequences were cloned from disease-resistant trees. BLAST searches in GenBank revealed that they shared significant identity to well-characterized R genes from angiosperms, including L and M genes from flax, the tobacco N gene and the soybean gene LM6. Sequence alignments revealed that the RGAs from WWP contained the conserved motifs identified in angiosperm NBS domains, especially those motifs specific for TIR-NBS-LRR proteins. Phylogenic analysis of plant R genes and RGAs indicated that all cloned WWP RGAs can be grouped into one major branch together with well-known R proteins carrying a TIR domain, suggesting they belong to the subfamily of TIR-NBS-LRR genes. In one phylogenic tree, WWP RGAs were further subdivided into fourteen clusters with an amino acid sequence identity threshold of 75%. cDNA cloning and RT-PCR analysis with gene-specific primers demonstrated that members of 10 of the 14 RGA classes were expressed in foliage tissues, suggesting that a large and diverse NBS-LRR gene family may be functional in conifers. These results provide evidence for the hypothesis that conifer RGAs share a common origin with R genes from angiosperms, and some of them may play important roles in defense mechanisms that confer disease resistance in western white pine. Ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) in the WWP NBS domains were greater than 1 or close to 1, indicating that diversifying selection and/or neutral selection operate on the NBS domains of the WWP RGA family.  相似文献   

9.
Recently, a number of disease-resistance genes related to a diverse range of pathogens were isolated from a wide variety of plant species. The majority of plant disease-resistance genes encoded a nucleotide-binding site (NBS) domain. According to the comparisons of the NBS domain of cloned R -genes, it has shown highly conserved amino acid motifs in this structure, which made it possible to isolate resistance gene analogs (RGAs) by PCR using degenerate primers. We have designed three pairs of degenerate primers based on two conserved motifs in the NBS domain of resistance proteins encoded by R -genes to amplify genomic sequences from ryegrass ( Lolium sp.). Sixteen NBS-like RGAs were isolated from turf and forage type grasses. The sequence analysis of these RGAs revealed that there existed a high similarity (up to 85%) between RGA sequences among ryegrass species and other plants. The alignment of the predicted amino acid sequences of RGAs showed that ryegrass RGAs contained four conserved motifs (P-Loop, kinase-2, kinase-3a, GLPL) present in other known plant NBS-leucine rich repeat resistance genes. These ryegrass RGAs all belonged to non-toll and interleukin-1 receptor subclass. Phylogenetic analysis of ryegrass RGAs and other cloned R -genes indicated that gene mutation was the predominant source of gene variations, and the sequence polymorphism was due to purifying selection rather than diversifying selection. We further analyzed the source of gene variation in other monocots, rice, barley, wheat, and maize based on the data published before. Our analysis indicated that the source of RGA diversity in these monocots was the same as in ryegrass. Thus, monocots were probably the same as dicots in the source of RGA diversity. Ryegrass RGAs in the present paper represented a large group of resistance gene homologs in monocots. We discussed the origin and the evolution of R -genes in grass species.  相似文献   

10.
Western white pine (Pinus monticola Dougl. ex. D. Don., WWP) shows genetic variation in disease resistance to white pine blister rust (Cronartium ribicola). Most plant disease resistance (R) genes encode proteins that belong to a superfamily with nucleotide-binding site domains (NBS) and C-terminal leucine-rich repeats (LRR). In this work a PCR strategy was used to clone R gene analogs (RGAs) from WWP using oligonucleotide primers based on the conserved sequence motifs in the NBS domain of angiosperm NBS-LRR genes. Sixty-seven NBS sequences were cloned from disease-resistant trees. BLAST searches in GenBank revealed that they shared significant identity to well-characterized R genes from angiosperms, including L and M genes from flax, the tobacco N gene and the soybean gene LM6. Sequence alignments revealed that the RGAs from WWP contained the conserved motifs identified in angiosperm NBS domains, especially those motifs specific for TIR-NBS-LRR proteins. Phylogenic analysis of plant R genes and RGAs indicated that all cloned WWP RGAs can be grouped into one major branch together with well-known R proteins carrying a TIR domain, suggesting they belong to the subfamily of TIR-NBS-LRR genes. In one phylogenic tree, WWP RGAs were further subdivided into fourteen clusters with an amino acid sequence identity threshold of 75%. cDNA cloning and RT-PCR analysis with gene-specific primers demonstrated that members of 10 of the 14 RGA classes were expressed in foliage tissues, suggesting that a large and diverse NBS-LRR gene family may be functional in conifers. These results provide evidence for the hypothesis that conifer RGAs share a common origin with R genes from angiosperms, and some of them may play important roles in defense mechanisms that confer disease resistance in western white pine. Ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) in the WWP NBS domains were greater than 1 or close to 1, indicating that diversifying selection and/or neutral selection operate on the NBS domains of the WWP RGA family.Communicated by R. Hagemann  相似文献   

11.
为研究云南野生蔷薇属中的NBS类抗病基因,根据已知抗病基因NBS LRR序列中的保守区域设计简并引物,利用RT PCR技术从云南悬钩子蔷薇中进行体外扩增,获得了对应区域的cDNA片段,回收、克隆这些特异片段,测序分析,共得到4个含有NBS LRR保守结构域的抗病基因同源序列(RGAs),分别命名为AC9、AC39、AC50和AC68。它们与已报道的11个NBS类抗病基因相应区段的氨基酸序列相似性为5.4%~79.2%,其中这4个RGAs片段与Mi、RPS2、Pib和RPM1基因聚为一类。表明这4条RGAs序列可进一步用作悬钩子蔷薇抗病候选基因的分子筛选及遗传图谱的构建。  相似文献   

12.
为了挖掘野生稻中的抗病资源,根据已克隆的植物抗病基因核苷酸结合位点序列中的保守结构域设计3对简并引物,从疣粒、药用、高秆、宽叶和斑点野生稻基因组DNA中分离出13条NBS类抗病基因类似物,其中11条具有连续的ORF,具有NBS类R基因的保守基元P-loop、kinas-2、kinas-3a和GLPL。在NCBI上进行同源性搜索发现,其中12条RGAs的核苷酸序列与水稻已知的NBS类R基因具有66%~94%的同源性,与其他植物已知R基因具有67%~84%的同源性;其对应的氨基酸序列与水稻已知的NBS类R基因具有43%~93%的同源性,与其他植物已知R基因具有37%~79%的同源性。另外1条的核苷酸序列与水稻假定的NBS类R基因具有76%的同源性,其氨基酸序列与水稻假定的NBS类R基因具有74%的同源性。根据序列分析结果设计6对不同基因特异性引物,并利用RT-PCR技术进行表达分析,结果表明,RN1BD5、RN1BD10、RN1GG2和RN1YY6均能表达,说明这些片段可能是功能性抗病基因的部分序列;而RN1KY9和RN1GG5没有表达,可能是假基因。  相似文献   

13.
The nucleotide binding site (NBS) is a characteristic domain of many plant resistance gene products. An increasing number of NBS-encoding sequences are being identified through gene cloning, PCR amplification with degenerate primers, and genome sequencing projects. The NBS domain was analyzed from 14 known plant resistance genes and more than 400 homologs, representing 26 genera of monocotyledonous, dicotyle-donous and one coniferous species. Two distinct groups of diverse sequences were identified, indicating divergence during evolution and an ancient origin for these sequences. One group was comprised of sequences encoding an N-terminal domain with Toll/Interleukin-1 receptor homology (TIR), including the known resistance genes, N, M, L6, RPP1 and RPP5. Surprisingly, this group was entirely absent from monocot species in searches of both random genomic sequences and large collections of ESTs. A second group contained monocot and dicot sequences, including the known resistance genes, RPS2, RPM1, I2, Mi, Dm3, Pi-B, Xa1, RPP8, RPS5 and Prf. Amino acid signatures in the conserved motifs comprising the NBS domain clearly distinguished these two groups. The Arabidopsis genome is estimated to contain approximately 200 genes that encode related NBS motifs; TIR sequences were more abundant and outnumber non-TIR sequences threefold. The Arabidopsis NBS sequences currently in the databases are located in approximately 21 genomic clusters and 14 isolated loci. NBS-encoding sequences may be more prevalent in rice. The wide distribution of these sequences in the plant kingdom and their prevalence in the Arabidopsis and rice genomes indicate that they are ancient, diverse and common in plants. Sequence inferences suggest that these genes encode a novel class of nucleotide-binding proteins.  相似文献   

14.
One of the important approaches for disease control in sugarcane is to develop a disease‐resistant variety; this may be accomplished through identification of resistance genes in sugarcane. In this study, PCR primers targeting the conserved motifs of the nucleotide‐binding site (NBS) class and kinase class of the resistance gene analogues (RGAs) were used to amplify the RGAs from a red rot‐resistant sugarcane cultivar (Saccharum spp. hybrid) HSF 240. Upon subcloning and sequencing, fifteen putative RGAs were identified. These RGAs shared 63–98% identity to the reported disease‐resistant genes in the NCBI GenBank database. Deduced amino acid sequences also showed the presence of expected conserved domains characteristic of RGAs. Phylogenetic analysis indicated that these RGAs clustered with R genes from other plant species. The findings will be useful for studying disease‐resistant genes in sugarcane.  相似文献   

15.
Budak H  Su S  Ergen N 《Genetical research》2006,88(3):165-175
Agrostis species are mainly used in athletic fields and golf courses. Their integrity is maintained by fungicides, which makes the development of disease-resistance varieties a high priority. However, there is a lack of knowledge about resistance (R) genes and their use for genetic improvement in Agrostis species. The objective of this study was to identify and clone constitutively expressed cDNAs encoding R gene-like (RGL) sequences from three Agrostis species (colonial bentgrass (A. capillaris L.), creeping bentgrass (A. stolonifera L.) and velvet bentgrass (A. canina L.)) by PCR-based motif-directed RNA fingerprinting towards relatively conserved nucleotide binding site (NBS) domains. Sixty-one constitutively expressed cDNA sequences were identified and characterized. Sequence analysis of ESTs and probable translation products revealed that RGLs are highly conserved among these three Agrostis species. Fifteen of them were shown to share conserved motifs found in other plant disease resistance genes such as MLA13, Xa1, YR6, YR23 and RPP5. The molecular evolutionary forces, analysed using the Ka/Ks ratio, reflected purifying selection both on NBS and leucine-rich repeat (LRR) intervening regions of discovered RGL sequences in these species. This study presents, for the first time, isolation and characterization of constitutively expressed RGL sequences from Agrostis species revealing the presence of TNL (TIR-NBS-LRR) type R genes in monocot plants. The characterized RGLs will further enhance knowledge on the molecular evolution of the R gene family in grasses.  相似文献   

16.
17.
为研究云南野生蔷薇属中的NBS类抗病基因,根据已知抗病基因NBSLRR序列中的保守区域设计简并引物,利用RTPCR技术从云南悬钩子蔷薇中进行体外扩增,获得了对应区域的cDNA片段,回收、克隆这些特异片段,测序分析,共得到4个含有NBSLRR保守结构域的抗病基因同源序列(RGAs),分别命名为AC9、AC39、AC50和AC68。它们与已报道的11个NBS类抗病基因相应区段的氨基酸序列相似性为5.4%~79.2%,其中这4个RGAs片段与Mi、RPS2、Pib和RPM1基因聚为一类。表明这4条RGAs序列可进一步用作悬钩子蔷薇抗病候选基因的分子筛选及遗传图谱的构建。  相似文献   

18.
Proteins containing nucleotide binding sites (NBS) encoded by plant resistance genes play an important role in the response of plants to a wide array of pathogens. In this paper, an in silico search was conducted in order to identify and characterize members of NBS-encoding gene family in the tribe of Triticeae. A final dataset of 199 sequences was obtained by four search methods. Motif analysis confirmed the general structural organization of the NBS domain in cereals, characterized by the presence of the six commonly conserved motifs: P-loop, RNBS-A, Kinase-2, Kinase-3a, RNBS-C and GLPL. We revealed the existence of 11 distinct distribution patterns of these motifs along the NBS domain. Four additional conserved motifs were shown to be significantly present in all 199 sequences. Phylogenetic analyses, based on genetic distance and parsimony, revealed a significant overlap between Triticeae sequences and Coiled coil-Nucleotide binding site-Leucine rich repeat (CNL)-type functional genes from monocotyledons. Furthermore, several Triticeae sequences belonged to clades containing functional homologs from non Triticeae species, which has allowed for these sequences to be functionally assigned. The findings reported, in this study, will provide a strong groundwork for the isolation of candidate R-genes in Triticeae crops and the understanding of their evolution.  相似文献   

19.
Liao PC  Lin KH  Ko CL  Hwang SY 《Genetica》2011,139(10):1229-1240
Nucleotide-binding site-leucine-rich repeats (NBS-LRR) gene families are one of the major plant resistance genes. Genomic NBS evolution was studied in many plant species for diverse arrays of NBS gene families. In this study, we focused on one family of NBS sequences in an attempt to understand how closely related NBS sequences evolved in the light of selection in domesticated plant species. A phylogenetic analysis revealed five major clades (A–E) and five subclades (A1–A5) within clade A of cloned NBS sequences. Positive selection was only detected in newly evolved NBS lineages in subclades of clade A. Positively selected codon sites were found among NBS sequences of clade A. A sliding-window analysis revealed that regions with Ka/Ks ratios of >1 were in the inter-motifs when paired clades were compared, but regions with Ka/Ks ratios of >1 were found across NBS sequences when subclades of clade A were compared. Our results based on a family of closely related NBS sequences showed that positive selection was first exerted on specific lineages across all NBS sequences after selective constraints. Subsequently, sequences with mutations in commonly conserved motifs were scrutinized by purifying selection. In the long term, conserved high frequency alleles in commonly conserved motifs and changes in inter-motifs were maintained in the investigated family of NBS sequences. Moreover, codons identified to be under positive selection in the inter-motifs were mainly located in regions involved in functions of ATP binding or hydrolysis.  相似文献   

20.
The well-conserved NBS domain of resistance (R) genes cloned from many plants allows the use of a PCR-based approach to isolate resistance gene analogs (RGAs). In this study, we isolated an RGA (CapRGC) from Capsicum annuum “CM334” using a PCR-based approach. This sequence encodes a protein with very high similarity to Rx genes, the Potato Virus X (PVX) R genes from potato. An evolutionary analysis of the CapRGC gene and its homologs retrieved by an extensive search of a Solanaceae database provided evidence that Rx-like genes (eight ESTs or genes that show very high similarity to Rx) appear to have diverged from R1 [an NBS-LRR R gene against late blight (Phytophthora infestans) from potato]-like genes. Structural comparison of the NBS domains of all the homologs in Solanaceae revealed that one novel motif, 14, is specific to the Rx-like genes, and also indicated that several other novel motifs are characteristic of the R1-like genes. Our results suggest that Rx-like genes are ancient but conserved. Furthermore, the novel conserved motifs can provide a basis for biochemical structural–function analysis and be used for degenerate primer design for the isolation of Rx-like sequences in other plant species. Comparative mapping study revealed that the position of CapRGC is syntenic to the locations of Rx and its homolog genes in the potato and tomato, but cosegregation analysis showed that CapRGC may not be the R gene against PVX in pepper. Our results confirm previous observations that the specificity of R genes is not conserved, while the structure and function of R genes are conserved. It appears that CapRGC may function as a resistance gene to another pathogen, such as the nematode to which the structure of CapRGC is most similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号