首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the molecular causes of Parkinson's disease   总被引:8,自引:0,他引:8  
Parkinson's disease (PD) is a neurodegenerative disease that is both common and incurable. The majority of cases are sporadic and of unknown origin but several genes have been identified that, when mutated, give rise to rare, familial forms of the disease. The principal genes that have been shown to cause PD are alpha-synuclein (SNCA), parkin, leucine-rich repeat kinase 2 (LRRK2), PTEN-induced putative kinase 1 (PINK1) and DJ-1. Here, we discuss what has been learnt from the study of these genes and what has been elucidated of the molecular pathways that lead to cell degeneration. Of importance is what these molecular events and pathways tell scientists of the common sporadic form of PD. Although complete knowledge of these genes' functions remains elusive, recent work implicates abnormal protein accumulation, protein phosphorylation, mitochondrial dysfunction and oxidative stress as common pathways to PD pathogenesis.  相似文献   

2.
The leucine rich repeat kinase 2 (LRRK2/dardarin) is implicated in autosomal dominant familial and sporadic Parkinson's disease (PD); mutations in LRRK2 account for up to 40% of PD cases in some populations. LRRK2 is a large protein with a kinase domain, a GTPase domain, and multiple potential protein interaction domains. As such, delineating the functional pathways for LRRK2 and mechanisms by which PD-linked variants contribute to age-related neurodegeneration could result in pharmaceutically tractable therapies. A growing number of recent studies implicate dysregulation of mitogen activated protein kinases 3 and 1 (also known as ERK1/2) as possible downstream mediators of mutant LRRK2 effects. As these master regulators of growth, differentiation, neuronal plasticity and cell survival have also been implicated in other PD models, a set of common cell biological pathways may contribute to neuronal susceptibility in PD. Here, we review the literature on several major cellular pathways impacted by LRRK2 mutations – autophagy, microtubule/cytoskeletal dynamics, and protein synthesis – in context of potential signaling crosstalk involving the ERK1/2 and Wnt signaling pathways. Emerging implications for calcium homeostasis, mitochondrial biology and synaptic dysregulation are discussed in relation to LRRK2 interactions with other PD gene products. It has been shown that substantia nigra neurons in human PD and Lewy body dementia patients exhibit cytoplasmic accumulations of ERK1/2 in mitochondria, autophagosomes and bundles of intracellular fibrils. Both experimental and human tissue data implicate pathogenic changes in ERK1/2 signaling in sporadic, toxin-based and mutant LRRK2 settings, suggesting engagement of common cell biological pathways by divergent PD etiologies. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

3.
Leucine‐rich repeat kinase 2 (LRRK2) is a large multidomain protein that is expressed in many tissues and participates in numerous biological pathways. Mutations in LRRK2 are recognized as genetic risk factors for familial Parkinson's disease (PD) and may also represent causal factors in the more common sporadic form of PD. The structure of LRRK2 comprises a combination of GTPase, kinase, and scaffolding domains. This functional diversity, combined with a potentially central role in genetic and idiopathic PD motivates significant effort to further credential LRRK2 as a therapeutic target. Here, we review the current understanding for LRRK2 function in normal physiology and PD, with emphasis on insight gained from proteomic approaches.  相似文献   

4.
Leucine-rich repeat kinase 2 (LRRK2) is a large, widely expressed protein of largely unknown function. Mutations in the gene encoding LRRK2 have been linked to multiple diseases, including a prominent association with familial and sporadic Parkinson’s disease (PD), as well as inflammatory bowel disorders such as Crohn’s disease. The LRRK2 protein possesses both kinase and GTPase signaling domains, as well as multiple protein interaction domains. Experimental studies in both cellular and in vivo models of mutant LRRK2-induced neurodegeneration have given clues to potential function(s) of LRRK2, yet much remains unknown. For example, while it is known that intact kinase and GTPase activity are required for mutant forms of the protein to trigger cell death, the specific targets of these enzymatic activities that mediate the death of neurons are not known. In this review, we discuss the evidence linking LRRK2 to various cellular/neuronal activities such as extrinsic death and inflammatory signaling, lysosomal protein degradation, the cytoskeletal system and neurite outgrowth, vesicle trafficking, mitochondrial dysfunction, as well as multiple points of interaction with several other genes linked to the pathogenesis of PD. In order for more effective therapeutic strategies to be envisioned and implemented, the mechanisms underlying LRRK2-mediated neurodegeneration need to be better characterized. Furthermore, insights into LRRK2-associated PD pathogenesis can potentially advance our understanding of the more common sporadic forms of PD.  相似文献   

5.
Interactions between genetic and environmental factors are thought to contribute to the pathogenesis of the majority of Parkinson’s disease (PD) cases. However, our understanding of these interactions is at an early stage. Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of hereditary PD. Penetrance of LRRK2 mutations is incomplete and variable, suggesting that other environmental or genetic factors may contribute to the development of the disorder. Recently, using animal models, several attempts have been made to understand if LRRK2 may mediate sensitivity to environmental neurotoxicants. Here, we critically review the most current data on how LRRK2 mutations influence neurotoxicity in PD models.  相似文献   

6.
Over the last few years, genetic findings have changed our views on Parkinson's disease (PD), as mutations in a growing number of genes are found to cause monogenic forms of the disorder. Point mutations in the gene for α-synuclein, as well as duplications and triplications of the wild-type gene cause a dominant form of PD in rare families, pointing towards mishandling of this protein as a crucial step in the molecular pathogenesis of the disorder. Mutations in the gene for leucine-rich repeat kinase 2 (LRRK2) have recently been identified as a much more common cause for dominant PD, while mutations in the parkin gene, in DJ-1, PINK1 and ATP13A2 all cause autosomal-recessive parkinsonism of early onset. Mutations in recessive genes probably are pathogenic through loss-of-function mechanisms, suggesting that their wild-type products protect dopaminergic cells against a variety of insults. Evidence is emerging that at least some of these genes may play a direct role in the etiology of the common sporadic form of PD. Further, it is likely that the cellular pathways identified in rare monogenic variants of the disease also shed light on the molecular pathogenesis in typical sporadic PD.  相似文献   

7.
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder and in most patients its aetiology remains unknown. Molecular genetic studies in familial forms of the disease identified key proteins involved in PD pathogenesis, and support a major role for mitochondrial dysfunction, which is also of significant importance to the common sporadic forms of PD. While current treatments temporarily alleviate symptoms, they do not halt disease progression. Drugs that target the underlying pathways to PD pathogenesis, including mitochondrial dysfunction, therefore hold great promise for neuroprotection in PD. Here we summarize how the proteins identified through genetic research ( α-synuclein , parkin , PINK1 , DJ-1 , LRRK2 and HTRA2 ) fit into and add to our current understanding of the role of mitochondrial dysfunction in PD. We highlight how these genetic findings provided us with suitable animal models and critically review how the gained insights will contribute to better therapies for PD.  相似文献   

8.
Autosomal-dominant missense mutations in LRRK2 (leucine-rich repeat kinase 2) are a common genetic cause of PD (Parkinson's disease). LRRK2 is a multidomain protein with kinase and GTPase activities. Dominant mutations are found in the domains that have these two enzyme activities, including the common G2019S mutation that increases kinase activity 2-3-fold. However, there is also a genetic variant in some populations, G2385R, that lies in a C-terminal WD40 domain of LRRK2 and acts as a risk factor for PD. In the present study we show that the G2385R mutation causes a partial loss of the kinase function of LRRK2 and deletion of the C-terminus completely abolishes kinase activity. This effect is strong enough to overcome the kinase-activating effects of the G2019S mutation in the kinase domain. Hsp90 (heat-shock protein of 90 kDa) has an increased affinity for the G2385R variant compared with WT (wild-type) LRRK2, and inhibition of the chaperone binding combined with proteasome inhibition leads to association of mutant LRRK2 with high molecular mass native fractions that probably represent proteasome degradation pathways. The loss-of-function of G2385R correlates with several cellular phenotypes that have been proposed to be kinase-dependent. These results suggest that the C-terminus of LRRK2 plays an important role in maintaining enzymatic function of the protein and that G2385R may be associated with PD in a way that is different from kinase-activating mutations. These results may be important in understanding the differing mechanism(s) by which mutations in LRRK2 act and may also have implications for therapeutic strategies for PD.  相似文献   

9.
Parkinson’s disease (PD) is a common neurodegenerative disorder whose symptoms are consistent with death of dopaminergic neurons in the substantia nigra of the brain. The pathogenesis of PD involves several factors, such as α-synuclein aggregation, oxidative stress, mitochondrial dysfunction, and activation of apoptosis, but the exact molecular mechanism of neurodegeneration remains obscure. PD is usually sporadic, while rare monogenic forms have been identified and described in the past 15 years. Familial Parkinson’s disease is most commonly associated with mutations of the leucine repeat-rich kinase 2 gene (LRRK2). The mechanism of the disease due to LRRK2 mutations is unknown. The signaling cascades regulated by LRRK2 are difficult to study because the physiological substrates of the enzyme are unidentified. The G2019S substitution has been found to be the most common LRRK2 mutation, facilitating a search for patients with LRRK2-associated PD in various populations. The review considers the effects of LRRK2 mutations on protein and, in particular, α-synuclein aggregation, cytoskeletal dynamics, the inflammatory response, and the induction of apoptosis as revealed in both in vitro experiments and studies in PD patients. Investigation of rare hereditary PD forms with known etiology provides for a better understanding of the mechanism of neurodegeneration in more common sporadic PD forms.  相似文献   

10.
Over the past 20 years, substantial progress has been made in identifying the underlying genetics of Parkinson’s disease (PD). Of the known genes, LRRK2 is a major genetic contributor to PD. However, the exact function of LRRK2 remains to be elucidated. In this review, we discuss how familial forms of PD have led us to hypothesize that alterations in endomembrane trafficking play a role in the pathobiology of PD. We will discuss the major observations that have been made to elucidate the role of LRRK2 in particular, including LRRK2 animal models and high-throughput proteomics approaches. Taken together, these studies strongly support a role of LRRK2 in vesicular dynamics. We also propose that targeting these pathways may not only be beneficial for developing therapeutics for LRRK2-driven PD, but also for other familial and sporadic cases.  相似文献   

11.
Parkinson’s disease (PD), like many common age-related conditions, has been recognized to have a substantial genetic component. Multiple lines of evidence suggest that Leucine-rich repeat kinase 2 (LRRK2) is a crucial factor to understanding the etiology of PD. LRRK2 is a large, widely expressed, multi-domain and multifunctional protein. LRRK2 mutations are the major cause to inherited and sporadic PD. In this review, we discuss the pathology and clinical features which show diversity and variability of LRRK2-associated PD. In addition, we do a thorough literature review and provide theoretical data for gene counseling. Further, we present the evidence linking LRRK2 to various possible pathogenic mechanism of PD such as α-synuclein, tau, inflammatory response, oxidative stress, mitochondrial dysfunction, synaptic dysfunction as well as autophagy-lysosomal system. Based on the above work, we investigate activities both within GTPase and outside enzymatic regions in order to obtain a potential therapeutic approach to solve the LRRK2 problem.  相似文献   

12.
Mutations in leucine-rich repeat kinase-2 (LRRK2) are the most common genetic cause of Parkinson’s disease (PD). The most frequent kinase-enhancing mutation is the G2019S residing in the kinase activation domain. This opens up a promising therapeutic avenue for drug discovery targeting the kinase activity of LRRK2 in PD. Several LRRK2 inhibitors have been reported to date. Here, we report a selective, brain penetrant LRRK2 inhibitor and demonstrate by a competition pulldown assay in vivo target engagement in mice.  相似文献   

13.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with late-onset, autosomal-dominant, familial Parkinson''s disease (PD) and also contribute to sporadic disease. The LRRK2 gene encodes a large protein with multiple domains, including functional Roc GTPase and protein kinase domains. Mutations in LRRK2 most likely cause disease through a toxic gain-of-function mechanism. The expression of human LRRK2 variants in cultured primary neurons induces toxicity that is dependent on intact GTP binding or kinase activities. However, the mechanism(s) underlying LRRK2-induced neuronal toxicity is poorly understood, and the contribution of GTPase and/or kinase activity to LRRK2 pathobiology is not well defined. To explore the pathobiology of LRRK2, we have developed a model of LRRK2 cytotoxicity in the baker''s yeast Saccharomyces cerevisiae. Protein domain analysis in this model reveals that expression of GTPase domain-containing fragments of human LRRK2 are toxic. LRRK2 toxicity in yeast can be modulated by altering GTPase activity and is closely associated with defects in endocytic vesicular trafficking and autophagy. These truncated LRRK2 variants induce similar toxicity in both yeast and primary neuronal models and cause similar vesicular defects in yeast as full-length LRRK2 causes in primary neurons. The toxicity induced by truncated LRRK2 variants in yeast acts through a mechanism distinct from toxicity induced by human α-synuclein. A genome-wide genetic screen identified modifiers of LRRK2-induced toxicity in yeast including components of vesicular trafficking pathways, which can also modulate the trafficking defects caused by expression of truncated LRRK2 variants. Our results provide insight into the basic pathobiology of LRRK2 and suggest that the GTPase domain may contribute to the toxicity of LRRK2. These findings may guide future therapeutic strategies aimed at attenuating LRRK2-mediated neurodegeneration.  相似文献   

14.
Although Parkinson's disease (PD) is generally a sporadic neurological disorder, the discovery of monogenic, hereditable forms of the disease has been crucial in delineating the molecular pathways that lead to this pathology. Genes responsible for familial PD can be ascribed to two categories based both on their mode of inheritance and their suggested biological function. Mutations in parkin, PINK1 and DJ-1 cause of recessive Parkinsonism, with a variable pathology often lacking the characteristic Lewy bodies (LBs) in the surviving neurons. Intriguingly, recent findings highlight a converging role of all these genes in mitochondria function, suggesting a common molecular pathway for recessive Parkinsonism. Mutations in a second group of genes, encoding alpha-synuclein (α-syn) and LRRK2, are transmitted in a dominant fashion and generally lead to LB pathology, with α-syn being the major component of these proteinaceous aggregates. In experimental systems, overexpression of mutant proteins is toxic, as predicted for dominant mutations, but the normal function of both proteins is still elusive. The fact that α-syn is heavily phosphorylated in LBs and that LRRK2 is a protein kinase, suggests that a link, not necessarily direct, exists between the two. What are the experimental data supporting a common molecular pathway for dominant PD genes? Do α-syn and LRRK2 target common molecules? Does LRRK2 act upstream of α-syn? In this review we will try to address these of questions based on the recent findings available in the literature.  相似文献   

15.
Niu J  Yu M  Wang C  Xu Z 《Journal of neurochemistry》2012,122(3):650-658
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are the leading causes of genetically inherited Parkinson's disease (PD) identified so far. The underlying mechanism whereby missense alterations in LRRK2 initiate neurodegeneration remains largely unclear. Mitochondrial dysfunction has been recognized to contribute to the pathogenesis of both sporadic and familial PD. The pathogenic gain-of-function mutant form of LRRK2, LRRK2 G2019S, is associated with elevated kinase activity and PD. Here we show that LRRK2 G2019S can cause defects in the morphology and dynamics of mitochondria in cortical neurons. In neurons, endogenous LRRK2 and the mitochondrial fission factor Dynamin like protein 1 (DLP1) interact with and partially co-localize with each other. DLP1 plays an essential role in LRRK2-induced mitochondrial fission. In support of this, expression of LRRK2 leads to the translocation of DLP1 from the cytosol to the mitochondria and knockdown of DLP1 expression inhibits LRRK2-induced mitochondrial fission. In addition, co-expression of LRRK2 and DLP1 induces mitochondrial clearance. Furthermore, we have found that expression of LRRK2 leads to increased reactive oxygen species levels in cells. Taken together, our results provide insights into the pathobiology of LRRK2 and suggest that LRRK2 G2019S may induce neuronal dysfunction or cell death by disturbing normal mitochondrial fission/fusion dynamics and function.  相似文献   

16.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of autosomal-dominant Parkinson's disease (PD). The second known autosomal-dominant PD gene (SNCA) encodes α-synuclein, which is deposited in Lewy bodies, the neuropathological hallmark of PD. LRRK2 contains a kinase domain with homology to mitogen-activated protein kinase kinase kinases (MAPKKKs) and its activity has been suggested to be a key factor in LRRK2-associated PD. Here we investigated the role of LRRK2 in signal transduction pathways to identify putative PD-relevant downstream targets. Over-expression of wild-type [wt]LRRK2 in human embryonic kidney HEK293 cells selectively activated the extracellular signal-regulated kinase (ERK) module. PD-associated mutants G2019S and R1441C, but not kinase-dead LRRK2, induced ERK phosphorylation to the same extent as [wt]LRRK2, indicating that this effect is kinase-dependent. However, ERK activation by mutant R1441C and G2019S was significantly slower than that for [wt]LRRK2, despite similar levels of expression. Furthermore, induction of the ERK module by LRRK2 was associated to a small but significant induction of SNCA, which was suppressed by treatment with the selective MAPK/ERK kinase inhibitor U0126. This pathway linking the two dominant PD genes LRRK2 and SNCA may offer an interesting target for drug therapy in both familial and sporadic disease.  相似文献   

17.
Parkinson's disease (PD) is one of the most common movement disorders with loss of dopaminergic neurons and the presence of Lewy bodies in certain brain areas. However, it is not clear how Lewy body (inclusion with protein aggregation) formation occurs. Mutations in leucine-rich repeat kinase 2 (LRRK2) can cause a genetic form of PD and contribute to sporadic PD with the typical Lewy body pathology. Here, we used our recently identified LRRK2 GTP-binding inhibitors as pharmacological probes to study the LRRK2-linked ubiquitination and protein aggregation. Pharmacological inhibition of GTP-binding by GTP-binding inhibitors (68 and Fx2149) increased LRRK2-linked ubiquitination predominantly via K27 linkage. Compound 68- or Fx2149 increased G2019S-LRRK2-linked ubiquitinated aggregates, which occurred through the atypical linkage types K27 and K63. Coexpression of K27R and K63R, which prevented ubiquitination via K27 and K63 linkages, reversed the effects of 68 and Fx2149. Moreover, 68 and Fx2149 also promoted G2019S-LRRK2-linked aggresome (Lewy body-like inclusion) formation via K27 and K63 linkages. These findings demonstrate that LRRK2 GTP-binding activity is critical in LRRK2-linked ubiquitination and aggregation formation. These studies provide novel insight into the LRRK2-linked Lewy body-like inclusion formation underlying PD pathogenesis.  相似文献   

18.
The identification of mutations in the leucine-rich repeat kinase 2 (LRRK2) gene as a cause of autosomal dominant Parkinson’s disease (PD) was a major step forward in the genetic dissection of this disorder. However, what makes LRRK2 unique among the known PD-causing genes is that a low-penetrance mutation, Gly2019Ser, is a frequent determinant not only of familial, but also of sporadic PD in several populations from South Europe, North Africa and Middle East. Moreover, a different polymorphic variant, Gly2385Arg, is a frequent risk factor for PD among Chinese and Japanese populations. Currently, the Gly2019Ser and Gly2385Arg variants represent the most relevant PD-causing mutation and risk allele, respectively, linking the etiology of the familial and the sporadic forms of this disease. Understanding how the dysfunction of LRRK2 protein leads to neurodegeneration might provide crucial insights for unraveling the molecular mechanisms of PD and for developing disease-modifying therapies. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

19.
Parkinson's disease (PD) is generally sporadic but a number of genetic diseases have parkinsonism as a clinical feature. Two dominant genes, α‐synuclein (SNCA) and leucine‐rich repeat kinase 2 (LRRK2), are important for understanding inherited and sporadic PD. SNCA is a major component of pathologic inclusions termed Lewy bodies found in PD. LRRK2 is found in a significant proportion of PD cases. These two proteins may be linked as most LRRK2 PD cases have SNCA‐positive Lewy bodies. Mutations in both proteins are associated with toxic effects in model systems although mechanisms are unclear. LRRK2 is an intracellular signaling protein possessing both GTPase and kinase activities that may contribute to pathogenicity. A third protein, tau, is implicated as a risk factor for PD. We discuss the potential relationship between these genes and suggest a model for PD pathogenesis where LRRK2 is upstream of pathogenic effects through SNCA, tau, or both proteins.  相似文献   

20.
Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common known cause of Parkinson''s disease (PD). The clinical features of LRRK2 PD are indistinguishable from idiopathic PD, with accumulation of α-synuclein and/or tau and/or ubiquitin in intraneuronal aggregates. This suggests that LRRK2 is a key to understanding the aetiology of the disorder. Although loss-of-function does not appear to be the mechanism causing PD in LRRK2 patients, it is not clear how this protein mediates toxicity. In this study, we report that LRRK2 overexpression in cells and in vivo impairs the activity of the ubiquitin-proteasome pathway, and that this accounts for the accumulation of diverse substrates with LRRK2 overexpression. We show that this is not mediated by large LRRK2 aggregates or sequestration of ubiquitin to the aggregates. Importantly, such abnormalities are not seen with overexpression of the related protein LRRK1. Our data suggest that LRRK2 inhibits the clearance of proteasome substrates upstream of proteasome catalytic activity, favouring the accumulation of proteins and aggregate formation. Thus, we provide a molecular link between LRRK2, the most common known cause of PD, and its previously described phenotype of protein accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号