首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gupta GD  Kumar V 《PloS one》2012,7(3):e33035
Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity.  相似文献   

2.
3.
Serpins in prokaryotes   总被引:7,自引:0,他引:7  
Members of the serpin (serine proteinase inhibitor) superfamily have been identified in higher multicellular eukaryotes (plants and animals) and viruses but not in bacteria, archaea, or fungi. Thus, the ancestral serpin and the origin of the serpin inhibitory mechanism remain obscure. In this study we characterize 12 serpin-like sequences in the genomes of prokaryotic organisms, extending this protein family to all major branches of life. Notably, these organisms live in dramatically different environments and some are evolutionarily distantly related. A sequence-based analysis suggests that all 12 serpins are inhibitory. Despite considerable sequence divergence between the proteins, in four of the 12 sequences the region of the serpin that determines proteinase specificity is highly conserved, indicating that these inhibitors are likely to share a common target. Inhibitory serpins are typically prone to polymerization upon heating; thus, the existence of serpins in the moderate thermophilic bacterium Thermobifida fusca, the thermophilic bacterium Thermoanaerobacter tengcongensis, and the hyperthermophilic archaeon Pyrobaculum aerophilum is of particular interest. Using molecular modeling, we predict the means by which heat stability in the latter protein may be achieved without compromising inhibitory activity.  相似文献   

4.
PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence‐structure‐dynamics‐function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence‐conserved residues and build phylogenetic tree. Three‐dimensional structure alignment was also applied to obtain structure‐conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics.  相似文献   

5.
Gupta GD  Makde RD  Rao BJ  Kumar V 《The FEBS journal》2008,275(16):4235-4249
Translin protein is highly conserved in eukaryotes. Human translin binds both ssDNA and RNA. Its nucleic acid binding site results from a combination of basic regions in the octameric structure. We report here the first biochemical characterization of wild-type Drosophila melanogaster (drosophila) translin and a chimeric translin, and present 3.5 A resolution crystal structures of drosophila P168S mutant translin from two crystal forms. The wild-type drosophila translin most likely exists as an octamer/decamer, and binds to the ssDNA Bcl-CL1 sequence. In contrast, ssDNA binding-incompetent drosophila P168S mutant translin exists as a tetramer. The structures of the mutant translin are identical in both crystal forms, and their C-terminal residues are disordered. The chimeric protein, possessing two nucleic acid binding motifs of drosophila translin, the C-terminal residues of human translin, and serine at position 168, attains the octameric state and binds to ssDNA. The present studies suggest that the oligomeric status of translin critically influences the DNA binding properties of translin proteins.  相似文献   

6.
7.
Structures of homologous proteins are usually conserved during evolution, as are critical active site residues. This is the case for actin and tubulin, the two most important cytoskeleton proteins in eukaryotes. Actins and their related proteins (Arps) constitute a large superfamily whereas the tubulin family has fewer members. Unaligned sequences of these two protein families were analysed by searching for short groups of family-specific amino acid residues, that we call motifs, and by counting the number of residues from one motif to the next. For each sequence, the set of motif-to-motif residue counts forms a subfamily-specific pattern (landmark pattern) allowing actin and tubulin superfamily members to be identified and sorted into subfamilies. The differences between patterns of individual subfamilies are due to inserts and deletions (indels). Inserts appear to have arisen at an early stage in eukaryote evolution as suggested by the small but consistent kingdom-dependent differences found within many Arp subfamilies and in γ-tubulins. Inserts tend to be in surface loops where they can influence subfamily-specific function without disturbing the core structure of the protein. The relatively few indels found for tubulins have similar positions to established results, whereas we find many previously unreported indel positions and lengths for the metazoan Arps.  相似文献   

8.
COP9信号传导体和26S蛋白酶体的调节盖子复合体皆为含有8个亚基的蛋白复合体,在真核生物体中普遍存在,它们的相应亚基在大小和氨基酸序列上具有一一对应关系.从NCBI站点的所有数据库中获得了裂殖酵母、酿酒酵母、线虫、果蝇、哺乳动物和拟南芥等多种生物的复合体的亚基序列共8组.COP9信号传导体与调节盖子复合体相应亚基之间的氨基酸序列一致性大于12%,它们均具有一些保守的区域,而且保守位点分布均匀,表明它们来自于同一祖先.在基于氨基酸序列构建的系统发育树中,各组序列分别形成两个分支:一个分支由COP9信号传导体亚基和相似蛋白组成,另一分支由相应的调节盖子复合体亚基和相似蛋白构成.各个分支中单细胞生物的序列位于动、植物序列的根部,表明COP9信号传导体与调节盖子复合体的基因重复发生在真核单细胞生物和多细胞生物分化以前,并且二者的亚基基因沿各自的方向独立进化.几乎所有编码两个蛋白复合体的基因在基因组中均为单拷贝,第Ⅴ、Ⅵ组的亚基保守程度最高,暗示着它们在复合体中起着关键的作用.对COP9信号传导体和调节盖子复合体的相应亚基基因两两之间进行dN/dS的相关性分析,分别鉴定出21和15对亚基编码序列间具有显著的Pearson相关关系,推测其相应亚基间可能通过承担相互关联的重要的生物学功能而协同进化.  相似文献   

9.
The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional analyses. The evolutionary history of BEM46 proteins is characterized by exonic indels in lineage specific manner.  相似文献   

10.
The evolution and diversification of different types of photosynthetic reaction centers (RCs) remains an important unresolved problem. We report here novel sequence features of the core proteins from Type I RCs (RC-I) and Type II RCs (RC-II) whose analyses provide important insights into the evolution of the RCs. The sequence alignments of the RC-I core proteins contain two conserved inserts or deletions (indels), a 3 amino acid (aa) indel that is uniquely found in all RC-I homologs from Cyanobacteria (both PsaA and PsaB) and a 1 aa indel that is specifically shared by the Chlorobi and Acidobacteria homologs. Ancestral sequence reconstruction provides evidence that the RC-I core protein from Heliobacteriaceae (PshA), lacking these indels, is most closely related to the ancestral RC-I protein. Thus, the identified 3 aa and 1 aa indels in the RC-I protein sequences must have been deletions, which occurred, respectively, in an ancestor of the modern Cyanobacteria containing a homodimeric form of RC-I and in a common ancestor of the RC-I core protein from Chlorobi and Acidobacteria. We also report a conserved 1 aa indel in the RC-II protein sequences that is commonly shared by all homologs from Cyanobacteria but not found in the homologs from Chloroflexi, Proteobacteria and Gemmatimonadetes. Ancestral sequence reconstruction provides evidence that the RC-II subunits lacking this indel are more similar to the ancestral RC-II protein. The results of flexible structural alignments of the indel-containing region of the RC-II protein with the homologous region in the RC-I core protein, which shares structural similarity with the RC-II homologs, support the view that the 1 aa indel present in the RC-II homologs from Cyanobacteria is a deletion, which was not present in the ancestral form of the RC-II protein. Our analyses of the conserved indels found in the RC-I and RC-II proteins, thus, support the view that the earliest photosynthetic lineages with living descendants likely contained only a single RC (RC-I or RC-II), and the presence of both RC-I and RC-II in a linked state, as found in the modern Cyanobacteria, is a derivation from these earlier phototrophs.  相似文献   

11.
Pentameric ligand-gated ion channels (pLGICs) are ubiquitous neurotransmitter receptors in Bilateria, with a small number of known prokaryotic homologues. Here we describe a new inventory and phylogenetic analysis of pLGIC genes across all kingdoms of life. Our main finding is a set of pLGIC genes in unicellular eukaryotes, some of which are metazoan-like Cys-loop receptors, and others devoid of Cys-loop cysteines, like their prokaryotic relatives. A number of such “Cys-less” receptors also appears in invertebrate metazoans. Together, those findings draw a new distribution of pLGICs in eukaryotes. A broader distribution of prokaryotic channels also emerges, including a major new archaeal taxon, Thaumarchaeota. More generally, pLGICs now appear nearly ubiquitous in major taxonomic groups except multicellular plants and fungi. However, pLGICs are sparsely present in unicellular taxa, suggesting a high rate of gene loss and a non-essential character, contrasting with their essential role as synaptic receptors of the bilaterian nervous system. Multiple alignments of these highly divergent sequences reveal a small number of conserved residues clustered at the interface between the extracellular and transmembrane domains. Only the “Cys-loop” proline is absolutely conserved, suggesting the more fitting name “Pro loop” for that motif, and “Pro-loop receptors” for the superfamily. The infered molecular phylogeny shows a Cys-loop and a Cys-less clade in eukaryotes, both containing metazoans and unicellular members. This suggests new hypotheses on the evolutionary history of the superfamily, such as a possible origin of the Cys-loop cysteines in an ancient unicellular eukaryote. Deeper phylogenetic relationships remain uncertain, particularly around the split between bacteria, archaea, and eukaryotes.  相似文献   

12.
The bacterial groups corresponding to different photosynthetic prokaryotes are presently identified mainly on the basis of their branching in phylogenetic trees. The availability of genome sequences is enabling identification of many molecular signatures that are specific for different groups of photosynthetic bacteria. Our recent work has identified large numbers of signatures consisting of conserved inserts or deletions (indels) in widely distributed proteins, as well as whole proteins that are specific for various sequenced species/strains from Cyanobacteria, Chlorobi, and Proteobacteria phyla. Based upon these signatures, it is now possible to identify/distinguish bacteria from these phyla of photosynthetic bacteria as well as their major subclades in clear molecular terms. The use of these signatures in conjunction with phylogenomic analyses, summarized here, is leading to a holistic picture concerning the branching order and evolutionary relationships among the above groups of photosynthetic bacteria. Although detailed studies in this regard have not yet been carried on Chloroflexi and Heliobacteriaceae, we have identified some conserved indels that are specific for these groups. Some of the conserved indels for the photosynthetic bacteria are present in photosynthesis-related proteins. These include a 4 aa insert in the pyruvate flavodoxin/ferridoxin oxidoreductase that is specific for the genus Chloroflexus, a 2 aa insert in magnesium chelatase that is uniquely shared by all Cyanobacteria except the deepest branching Clade A (Gloebacterales), a 6 aa insert in an A-type flavoprotein that is specific for various marine unicellular Cyanobacteria, a 2 aa insert in heme oxygenase that is specific for various Prochlorococcus strains/isolates, and 1 aa deletion in the protein protochlorophyllide oxidoreductase that is commonly shared by various Prochlorococcus strains except the deepest branching isolates MIT 9303 and MIT 9313. The identified CSIs are located in the structures of these proteins in surface loops indicating that they may be important in mediating protein–protein interactions. The cellular functions of these conserved indels, or most of the signature proteins are presently unknown, but they provide valuable means for discovering novel properties that are unique to different groups of photosynthetic bacteria.  相似文献   

13.
COP9信号传导体和26S蛋白酶体的调节盖子复合体皆为含有8个亚基的蛋白复合体,在真核生物体中普遍存在,它们的相应亚基在大小和氨基酸序列上具有一一对应关系。从NCBI站点的所有数据库中获得了裂殖酵母、酿酒酵母、线虫、果蝇、哺乳动物和拟南芥等多种生物的复合体的亚基序列共8组。COP9信号传导体与调节盖子复合体相应亚基之间的氨基酸序列一致性大于12%,它们均具有一些保守的区域,而且保守位点分布均匀,表明它们来自于同一祖先。在基于氨基酸序列构建的系统发育树中,各组序列分别形成两个分支:一个分支由COP9信号传导体亚基和相似蛋白组成,另一分支由相应的调节盖子复合体亚基和相似蛋白构成。各个分支中单细胞生物的序列位于动、植物序列的根部,表明COP9信号传导体与调节盖子复合体的基因重复发生在真核单细胞生物和多细胞生物分化以前,并且二者的亚基基因沿各自的方向独立进化。几乎所有编码两个蛋白复合体的基因在基因组中均为单拷贝,第Ⅴ、Ⅵ组的亚基保守程度最高,暗示着它们在复合体中起着关键的作用。对COP9信号传导体和调节盖子复合体的相应亚基基因两两之间进行dN/dS的相关性分析,分别鉴定出21和15对亚基编码序列间具有显著的Pearson相关关系,推测其相应亚基间可能通过承担相互关联的重要的生物学功能而协同进化。  相似文献   

14.
15.
The origins of modern proteomes   总被引:1,自引:0,他引:1  
Kurland CG  Canbäck B  Berg OG 《Biochimie》2007,89(12):1454-1463
Distributions of phylogenetically related protein domains (fold superfamilies), or FSFs, among the three Superkingdoms (trichotomy) are assessed. Very nearly 900 of the 1200 FSFs of the trichotomy are shared by two or three Superkingdoms. Parsimony analysis of FSF distributions suggests that the FSF complement of the last common ancestor to the trichotomy was more like that of modern eukaryotes than that of archaea and bacteria. Studies of length distributions among members of orthologous families of proteins present in all three Superkingdoms reveal that such lengths are significantly longer among eukaryotes than among bacteria and archaea. The data also reveal that proteins lengths of eukaryotes are more broadly distributed than they are within archaeal and bacterial members of the same orthologous families. Accordingly, selective pressure for a minimal size is significantly greater for orthologous protein lengths in archaea and bacteria than in eukaryotes. Alignments of orthologous proteins of archaea, bacteria and eukaryotes are characterized by greater sequence variation at their N-terminal and C-terminal domains, than in their central cores. Length variations tend to be localized in the terminal sequences; the conserved sequences of orthologous families are localized in a central core. These data are consistent with the interpretation that the genomes of the last common ancestor (LUCA) encoded a cohort of FSFs not very different from that of modern eukaryotes. Divergence of bacterial and archaeal genomes from that common ancestor may have been accompanied by more intensive reductive evolution of proteomes than that expressed in eukaryotes. Dollo's Law suggests that the evolution of novel FSFs is a very slow process, while laboratory experiments suggests that novel protein genesis from preexisting FSFs can be relatively rapid. Reassortment of FSFs to create novel proteins may have been mediated by genetic recombination before the advent of more efficient splicing mechanisms.  相似文献   

16.
The organization of proteins into superfamilies based primarily on their sequences is introduced: examples are given of the methods used to cluster the related sequences and to elucidate the evolutionary history of the corresponding genes within each superfamily. Within the framework of this organization, the amount of sequence information currently and potentially available in all living forms can be discussed. The 116 superfamilies already sampled reflect possibly 10% of the total number. There are related proteins from many species in all of these superfamilies, suggesting that the origin of a new superfamily is rare indeed. The proteins so far sequenced are so rigorously conserved by the evolutionary process that we would expect to recognize as related descendants of any protein found in the ancestral vertebrate. The evolutionary history of the thyrotropin-gonadotropin beta chain superfamily is discussed in detail as an example. Some proteins are so constrained in structure that related forms can be recognized in prokaryotes and eukaryotes. Evolution in these superfamilies can be traced back close to the origin of life itself. From the evolutionary tree of the c-type cytochromes the identity of the prokaryote types involved in the symbiotic origin of mitochondria and chloroplasts begins to emerge.  相似文献   

17.
Proteins in the cupin superfamily have a wide range of biological functions in archaea, bacteria and eukaryotes. Although proteins in the cupin superfamily show very low overall sequence similarity, they all contain two short but partially conserved cupin sequence motifs separated by a less conserved intermotif region that varies both in length and amino acid sequence. Furthermore, these proteins all share a common architecture described as a six-stranded β-barrel core, and this canonical cupin or “jelly roll” β-barrel is formed with cupin motif 1, the intermotif region, and cupin motif 2 each forming two of the core six β-strands in the folded protein structure. The recently obtained crystal structures of cysteine dioxygenase (CDO), with contains conserved cupin motifs, show that it has the predicted canonical cupin β-barrel fold. Although there had been no reports of CDO activity in prokaryotes, we identified a number of bacterial cupin proteins of unknown function that share low similarity with mammalian CDO and that conserve many residues in the active-site pocket of CDO. Putative bacterial CDOs predicted to have CDO activity were shown to have similar substrate specificity and kinetic parameters as eukaryotic CDOs. Information gleaned from crystal structures of mammalian CDO along with sequence information for homologs shown to have CDO activity facilitated the identification of a CDO family fingerprint motif. One key feature of the CDO fingerprint motif is that the canonical metal-binding glutamate residue in cupin motif 1 is replaced by a cysteine (in mammalian CDOs) or by a glycine (bacterial CDOs). The recent report that some putative bacterial CDO homologs are actually 3-mercaptopropionate dioxygenases suggests that the CDO family may include proteins with specificities for other thiol substrates. A paralog of CDO in mammals was also identified and shown to be the other mammalian thiol dioxygenase, cysteamine dioxygenase (ADO). A tentative fingerprint motif for ADOs, or DUF1637 family members, is proposed. In ADOs, the conserved glutamate residue in cupin motif 1 is replaced by either glycine or valine. Both ADOs and CDOs appear to represent unique clades within the cupin superfamily.  相似文献   

18.
Translin-associated factor X (TRAX) is the predominantly cytoplasmic binding partner of TB-RBP/translin in mouse testis. Four mouse testis cDNAs encoding specific TRAX-interacting proteins were isolated from a yeast two-hybrid library screen. One novel cDNA designated Tsnaxip1 (TRAX-interacting protein-1) encodes 709 amino acids. We isolated a cDNA encoding the 427 carboxy-terminal amino acids of MEA-2, a Golgi-associated, maleenhanced autoantigen; a cDNA encoding 429 amino acids with 73% homology to centrosomal Akap9; and a cDNA encoding 346 amino acids with 75% homology to SUN1, a predicted human protein that contains a SUN domain (which is present in some perinuclear proteins). Interactions were verified using in vitro synthesized fusion proteins. All four genes were expressed in the testis and enriched in germ cells. Confocal microscopy studies using green fluorescent protein fusion proteins determined that these TRAX-interacting proteins colocalize with TRAX. The data suggest that TRAX may have a function associated with perinuclear organelles during spermatogenesis.  相似文献   

19.
Testis brain RNA-binding protein (TB-RBP), the mouse orthologue of human translin, is an RNA and single-stranded DNA-binding protein abundant in testis and brain. Translin-associated factor X (TRAX) was identified as a protein that interacts with TB-RBP and is dependent upon TB-RBP for stabilization. Using immunohistochemistry to investigate the subcellular locations of TB-RBP and TRAX during spermatogenesis, both proteins localize in nuclei in meiotic pachytene spermatocytes and in the cytoplasm of subsequent meiotic and post-meiotic cells. An identical subcellular distribution is seen in female germ cells. Western blot analysis of germ cell protein extracts reveals an increased ratio of TRAX to TB-RBP in meiotic pachytene spermatocytes compared with the post-meiotic round and elongated spermatids. Using COS-1 cells and mouse embryonic fibroblasts derived from TB-RBP null mice as model systems to examine the shuttling of TB-RBP and TRAX, we demonstrate that TRAX contains a functional nuclear localization signal and TB-RBP contains a functional nuclear export signal. Coexpression of both proteins in COS-1 cells and TB-RBP-deficient mouse embryonic fibroblasts reveals that the ratio of TRAX to TB-RBP determines their subcellular locations, i.e. increased TRAX to TB-RBP ratios lead to nuclear localizations, whereas TRAX remains in the cytoplasm when TB-RBP levels are elevated. These subcellular distributions require interaction between TB-RBP and TRAX. We propose that the subcellular locations of TB-RBP and TRAX in male germ cells are modulated by the relative ratios of TRAX and TB-RBP.  相似文献   

20.
Translin is a single-stranded DNA and RNA binding protein that has a high affinity for G-rich sequences. TRAX is a Translin paralog that associates with Translin. Both Translin and TRAX were highly conserved in eukaryotes. The nucleic acid binding form of Translin is a barrel-shaped homo-octamer. A Translin–TRAX hetero-octamer having a similar structure also binds nucleic acids. Previous reports suggested that Translin may be involved in chromosomal translocations, telomere metabolism and the control of mRNA transport and translation. More recent studies have indicated that Translin–TRAX hetero-octamers are involved in RNA silencing. To gain a further insight into the functions of Translin, we have undertaken to systematically search for proteins with which it forms specific complexes in living cells. Here we report the results of such a search conducted in the fission yeast Schizosaccharomyces pombe, a suitable model system. This search was carried out by affinity purification and immuno-precipitation techniques, combined with differential labeling of the intracellular proteins with the stable isotopes 15N and 14N. We identified for the first time two proteins containing an RNA Recognition Motif (RRM), which are specifically associated with the yeast Translin: (1) the pre-mRNA-splicing factor srp1 that belongs to the highly conserved SR family of proteins and (2) vip1, a protein conserved in fungi. Our data also support the presence of RNA in these intracellular complexes. Our experimental approach should be generally applicable to studies of weak intracellular protein–protein interactions and provides a clear distinction between false positive vs. truly interacting proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号