首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Birds are uricotelic and, like humans, maintain high plasma urate concentrations (approximately 300 microM). The majority of their urate waste, as in humans, is eliminated by renal proximal tubular secretion; however, the mechanism of urate transport across the brush-border membrane of the intact proximal tubule epithelium during secretion is uncertain. The dominance of secretory urate transport in the bird provides a convenient model for examining this process. The present study shows that short hairpin RNA interference (shRNAi) effectively knocked down gene expression of multidrug resistance protein 4 (Mrp4; 25% of control) in primary monolayer cultures of isolated chicken proximal tubule epithelial cells (cPTCs). Control and Mrp4-shRNAi-treated cPTCs were mounted in Ussing chambers and unidirectional transepithelial fluxes of urate were measured. To detect nonspecific effects, transepithelial electrical resistance (TER) and sodium-dependent glucose transport (Iglu) were monitored throughout experiments. Knocking down Mrp4 expression resulted in a reduction of transepithelial urate secretion to 35% of control with no effects on TER or Iglu. Although electrical gradient-driven urate transport in isolated brush-border membrane vesicles was confirmed, potassium-induced depolarization of the plasma membrane in intact cPTCs failed to inhibit active transepithelial urate secretion. However, electrical gradient-dependent vesicular urate transport was inhibited by the MRP4 inhibitor MK-571 also known to inhibit active transepithelial urate transport by cPTCs. Based on these data, direct measure of active transepithelial urate secretion in functional avian proximal tubule epithelium indicates that Mrp4 is the dominant apical membrane exit pathway from cell to lumen.  相似文献   

2.
Uric acid (urate) is the end product of purine metabolism in humans. Human kidneys reabsorb a large proportion of filtered urate. This extensive renal reabsorption, together with the fact that humans do not possess uricase that catalyzes the biotransformation of urate into allantoin, results in a higher plasma urate concentration in humans compared to other mammals. A major determinant of plasma urate concentration is renal excretion as a function of the balance between reabsorption and secretion. We previously identified that renal urate absorption in proximal tubular epithelial cells occurs mainly via apical urate/anion exchanger, URAT1/SLC22A12, and by facilitated diffusion along the trans-membrane potential gradient by the basolateral voltage-driven urate efflux transporter, URATv1/SLC2A9/GLUT9. In contrast, the molecular mechanism by which renal urate secretion occurs remains elusive. Recently, we reported a newly characterized human voltage-driven drug efflux transporter, hNPT4/SLC17A3, which functions as a urate exit pathway located at the apical side of renal proximal tubules. This transporter protein has been hypothesized to play an important role with regard to net urate efflux. An in vivo role of hNPT4 is supported by the fact that missense mutations in SLC17A3 present in hyperuricemia patients with urate underexcretion abolished urate efflux capacity in vitro. Herein, we report data demonstrating that loop diuretics and thiazide diuretics substantially interact with hNPT4. These data provide molecular evidence for loop and thiazide-diuretics-induced hyperuricemia. Thus, we propose that hNPT4 is an important transepithelial proximal tubular transporter that transports diuretic drugs and operates functionally with basolateral organic anion transporters 1/3 (OAT1/OAT3).  相似文献   

3.
Insulin-like growth factor-binding protein-1 (IGFBP-1) is stimulated during intensive exercise and in catabolic conditions to very high concentrations, which are not completely explained by known regulators such as insulin and glucocorticoids. The role of AMP-activated protein kinase (AMPK), an important signaling system in lipid and carbohydrate metabolism, in regulating IGFBP-1 was studied in H4-II-E rat hepatoma cells. Arsenic(III) oxide and 5-aminoimidazole-4-carboxamide-riboside (AICAR) were used as activators. AICAR (150 microM) stimulated IGFBP-1 secretion twofold during a 5-h incubation (P = 0.002). Insulin (100 ng/ml) inhibited IGFBP-1 by 80% (P < 0.001), but this was completely abolished in the presence of 150 microM AICAR. The effect of dexamethasone in stimulating IGFBP-1 threefold was additive to the effect of AICAR (P < 0.001) and, in the presence of AICAR, was incompletely inhibited by insulin. In conclusion AMPK is identified as a novel regulatory pathway for IGFBP-1, stimulating secretion and blocking the inhibitory effect of insulin.  相似文献   

4.
DNA-dependent protein kinase is inhibited by trifluoperazine   总被引:5,自引:0,他引:5  
The DNA-dependent protein kinase (DNA-PK) is a serine/threonine nuclear kinase, important for the repair of DNA double strand breaks (DSB). Cells defective in DNA-PK show increased sensitivity to ionising radiation and different DNA-damaging drugs, such as cisplatinum. Increased sensitivity to cisplatinum has previously been noted in the presence of phenothiazines. We tested a panel of phenothiazines and one thioxanthen for any influence upon the activity and expression of DNA-PK in a nonsmall cell lung cancer cell line, U-1810. The activity of DNA-PK was completely inhibited in cell lysate and in purified enzyme by 200 microM TFP. DNA-PKcs and Ku86 cleavage were evident in U-1810 cells after 30 min incubation with 100 microM TFP, along with changes in the cells consistent with apoptosis. Our study suggests that phenothiazines and thioxanthens, acting through DNA-PK, have the potential to enhance the effects of DNA damaging agents.  相似文献   

5.
6.
Management of cellular energy by the AMP-activated protein kinase system   总被引:28,自引:0,他引:28  
Hardie DG  Scott JW  Pan DA  Hudson ER 《FEBS letters》2003,546(1):113-120
The AMP-activated protein kinase is a sensor of cellular energy status that is found in all eukaryotic cells. It is activated by rising AMP and falling ATP by a complex mechanism that results in an ultrasensitive response. The functions of the different domains on the three subunits of the alphabetagamma heterotrimer are slowly being unravelled, and a recent development has been the identification of a glycogen-binding domain on the beta subunit. Along with findings that high cellular glycogen represses kinase activation, this suggests that the system may be a sensor of glycogen content as well as of AMP and ATP. New insights have been obtained into the sequence and structural features by which the kinase recognises its downstream target proteins, and these are discussed. Once activated by depletion of cellular energy reserves, the kinase switches on ATP-producing catabolic pathways and switches off ATP-consuming processes, both via direct phosphorylation of regulatory proteins and via indirect effects on gene expression. A survey of the range of downstream targets for this important signalling pathway is presented.  相似文献   

7.
In primary cell cultures of the avian (Gallus gallus) renal proximal tubule parathyroid hormone and cAMP activation generate a Cl-dependent short circuit current (ISC) response, consistent with net transepithelial Cl secretion. In this study we investigated the expression and physiological function of the Na-K-2Cl (NKCC) transporter and CFTR chloride channel, both associated with Cl secretion in a variety of tissues, in these proximal tubule cells. Using both RT-PCR and immunoblotting approaches, we showed that NKCC and CFTR are expressed, both in proximal tubule primary cultures and in a proximal tubule fraction of non-cultured (native tissue) fragments. We also used electrophysiological methods to assess the functional contribution of NKCC and CFTR to forskolin-activated ISC responses in filter grown cultured monolayers. Bumetanide (10 μM), a specific blocker of NKCC, inhibited forskolin activated ISC by about 40%, suggesting that basolateral uptake of Cl is partially mediated by NKCC transport. In monolayers permeabilized on the basolateral side with nystatin, forskolin activated an apical Cl conductance, manifested as bidirectional diffusion currents in the presence of oppositely directed Cl gradients. Under these conditions the apical conductance appeared to show some bias towards apical-to-basolateral Cl current. Two selective CFTR blockers, CFTR Inhibitor 172 and GlyH-101 (both at 20 μM) inhibited the forskolin activated diffusion currents by 38-68%, with GlyH-101 having a greater effect. These data support the conclusion that avian renal proximal tubules utilize an apical CFTR Cl channel to mediate cAMP-activated Cl secretion.  相似文献   

8.
Recently, our group described an AT1-mediated direct stimulatory effect of angiotensin II (Ang II) on the Na+-ATPase activity of proximal tubules basolateral membranes (BLM) [Am. J. Physiol. 248 (1985) F621]. Data in the present report suggest the participation of a protein kinase C (PKC) in the molecular mechanism of Ang II-mediated stimulation of the Na+-ATPase activity due to the following observations: (i) the stimulation of protein phosphorylation in BLM, induced by Ang II, is mimicked by the PKC activator TPA, and is completely reversed by the specific PKC inhibitor, calphostin C; (ii) the Na+-ATPase activity is stimulated by Ang II and TPA in the same magnitude, being these effects abolished by the use of the PKC inhibitors, calphostin C and sphingosine; (iii) the Na+-ATPase activity is activated by catalytic subunit of PKC (PKC-M), in a similar and nonadditive manner to Ang II; and (iv) Ang II stimulates the phosphorylation of MARCKS, a specific substrate for PKC.  相似文献   

9.
The AMP-activated protein kinase (AMPK) is a critical regulator of energy balance at both the cellular and whole-body levels. Two upstream kinases have been reported to activate AMPK in cell-free assays, i.e., the tumor suppressor LKB1 and calmodulin-dependent protein kinase kinase. However, evidence that this is physiologically relevant currently only exists for LKB1. We now report that there is a significant basal activity and phosphorylation of AMPK in LKB1-deficient cells that can be stimulated by Ca2+ ionophores, and studies using the CaMKK inhibitor STO-609 and isoform-specific siRNAs show that CaMKKbeta is required for this effect. CaMKKbeta also activates AMPK much more rapidly than CaMKKalpha in cell-free assays. K(+)-induced depolarization in rat cerebrocortical slices, which increases intracellular Ca2+ without disturbing cellular adenine nucleotide levels, activates AMPK, and this is blocked by STO-609. Our results suggest a potential Ca(2+)-dependent neuroprotective pathway involving phosphorylation and activation of AMPK by CaMKKbeta.  相似文献   

10.
AMP-activated protein kinase (AMPK) is activated in response to fluctuations in cellular energy status caused by oxidative stress. One of its targets is the cystic fibrosis transmembrane conductance regulator (CFTR), which is the predominant Cl- secretory channel in colonic tissue. The aim of this study was to determine the role of AMPK in the modulation of colonic chloride secretion under conditions of oxidative stress and chronic inflammation. Chloride secretion and AMPK activity were examined in colonic tissue from adult IL-10-deficient and wild-type 129 Sv/Ev mice in the presence and absence of pharmacological AMPK inhibitors and activators, respectively. Apical levels of CFTR were measured in brush-border membrane vesicles. Cell culture studies in human colonic T84 monolayers examined the effect of hydrogen peroxide and pharmacological activation of AMPK on forskolin-stimulated chloride secretion. Inflamed colons from IL-10-deficient mice exhibited hyporesponsiveness to forskolin stimulation in association with reductions in surface CFTR expression and increased AMPK activity. Inhibition of AMPK restored tissue responsiveness to forskolin, whereas stimulation of AMPK with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) induced tissue hyporesponsivness in wild-type mice. T84 cells exposed to hydrogen peroxide demonstrated a time-dependent increase in AMPK activity and reduction of forskolin-stimulated chloride secretion. Inhibition of AMPK prevented the reduction in chloride secretion. Treatment of cells with the AMPK activator, AICAR, resulted in a decreased chloride secretion. In conclusion, AMPK activation is linked with reductions in cAMP-mediated epithelial chloride flux and may be a contributing factor to the hyporesponsiveness seen under conditions of chronic inflammation.  相似文献   

11.
Hypoglycemia and neuroglucopenia stimulate AMP-activated protein kinase (AMPK) activity in the hypothalamus and this plays an important role in the counterregulatory responses, i.e. increased food intake and secretion of glucagon, corticosterone and catecholamines. Several upstream kinases that activate AMPK have been identified including Ca(2+)/Calmodulin-dependent protein kinase kinase (CaMKK), which is highly expressed in neurons. However, the involvement of CaMKK in neuroglucopenia-induced activation of AMPK in the hypothalamus has not been tested. To determine whether neuroglucopenia-induced AMPK activation is mediated by CaMKK, we tested whether STO-609 (STO), a CaMKK inhibitor, would block the effects of 2-deoxy-D-glucose (2DG)-induced neuroglucopenia both ex vivo on brain sections and in vivo. Preincubation of rat brain sections with STO blocked KCl-induced α1 and α2-AMPK activation but did not affect AMPK activation by 2DG in the medio-basal hypothalamus. To confirm these findings in vivo, STO was pre-administrated intracerebroventricularly (ICV) in rats 30 min before 2DG ICV injection (40 μmol) to induce neuroglucopenia. 2DG-induced neuroglucopenia lead to a significant increase in glycemia and food intake compared to saline-injected control rats. ICV pre-administration of STO (5, 20 or 50 nmol) did not affect 2DG-induced hyperglycemia and food intake. Importantly, activation of hypothalamic α1 and α2-AMPK by 2DG was not affected by ICV pre-administration of STO. In conclusion, activation of hypothalamic AMPK by 2DG-induced neuroglucopenia is not mediated by CaMKK.  相似文献   

12.
AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (cAMPK) have been reported to phosphorylate sites on phosphorylase kinase (PhK). Their target residues Ser 1018 and Ser 1020, respectively, are located in the so-called multi-phosphorylation domain in the PhK alpha subunit. In PhK preparations, only one of these serines is phosphorylated, but never both of them. The aim of this study was to determine whether phosphorylation by cAMPK or AMPK would influence subsequent phosphorylation by the other kinase. Surprisingly, employing four different PhK substrates, it could be demonstrated that, in contradiction to previous reports, PhK is not phosphorylated by AMPK.  相似文献   

13.
Recently, our group described an AT(1)-mediated direct stimulatory effect of angiotensin II (Ang II) on the Na(+)-ATPase activity of proximal tubules basolateral membranes (BLM) [Am. J. Physiol. 248 (1985) F621]. Data in the present report suggest the participation of a protein kinase C (PKC) in the molecular mechanism of Ang II-mediated stimulation of the Na(+)-ATPase activity due to the following observations: (i) the stimulation of protein phosphorylation in BLM, induced by Ang II, is mimicked by the PKC activator TPA, and is completely reversed by the specific PKC inhibitor, calphostin C; (ii) the Na(+)-ATPase activity is stimulated by Ang II and TPA in the same magnitude, being these effects abolished by the use of the PKC inhibitors, calphostin C and sphingosine; (iii) the Na(+)-ATPase activity is activated by catalytic subunit of PKC (PKC-M), in a similar and nonadditive manner to Ang II; and (iv) Ang II stimulates the phosphorylation of MARCKS, a specific substrate for PKC.  相似文献   

14.
Abnormal glucose handling in the proximal tubule may play an important role in the development of diabetic nephropathy. Thus, the present study was designed to examine the effect of high glucose on alpha-methyl-D-glucopyranoside (alpha-MG) uptake and its signaling pathways in the primary cultured rabbit renal proximal tubule cells (PTCs). When PTCs were preincubated with 25 or 50 mM glucose for 4 h, 25 or 50 mM glucose significantly inhibited alpha-MG uptake, while 25 or 50 mM mannitol and L-glucose did not affect. Actinomycin D and cycloheximide did not block the effect of high glucose on alpha-MG uptake. Twenty-five millimoles glucose-induced inhibition of alpha-MG uptake was blocked by mepacrine and AACOCF(3), phospholipase A(2) (PLA(2)) inhibitors. Twenty-five millimoles of glucose, not mannitol or L-glucose, significantly increased the [(3)H]-arachidonic acid (AA) release compared to control. In addition, the 25 mM glucose-induced [(3)H]-AA release was completely blocked by mepacrine or AACOCF(3). Indomethacin, a cyclooxygenase inhibitor, blocked the high glucose-induced inhibition of alpha-MG uptake, although econazole, cytochrome P-450 a epoxygenase inhibitor, and nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, did not. On the other hand, staurosporine and bisindolylmaleimide I, protein kinase C (PKC) inhibitors, blocked 25 mM glucose-induced increase of [(3)H]-AA release and inhibition of alpha-MG uptake. However, neomycin, U 73122, and phospholipase c(PLC) inhibitors did not block the effect of 25 mM glucose on [(3)H]-AA release and alpha-MG uptake. Pretreatment of methoxyverapamil, an L-type Ca(2+) channel blocker, abolished 25 mM glucose-induced increase of [(3)H]-AA release. Indeed, 25 mM glucose increased translocation of cPLA(2) from cytosolic fraction to membrane fraction. In conclusion, the present results demonstrate that high glucose inhibits alpha-MG uptake by the increase of AA release via the activation of PKC.  相似文献   

15.
We found that a natural product, Sanguinarine, directly interacts with AMPK and enhances its enzymatic activity. Cell-based assays confirmed that cellular AMPK and the downstream acetyl-CoA carboxylase (ACC) were phosphorylated after Sanguinarine treatment. Sanguinarine was shown to exclusively activate AMPK holoenzymes containing α1γ1 complexes, and it activated both β1- and β2-containing isotypes of AMPK. Furthermore, a docking study suggested that Sanguinarine binds AMPK at the cleft between the β and γ domains whereas the physiological activator, AMP, binds at the well-characterized γ domain pocket. In summary, we report that Sanguinarine is a novel, direct activator of AMPK that binds by a unique allosteric mechanism different from that of the natural AMPK ligand, AMP, and other known AMPK activators. These studies have direct applications to the pharmacological study of AMPK activation and the potential development of new therapeutics.  相似文献   

16.
LKB1 is the upstream kinase in the AMP-activated protein kinase cascade   总被引:16,自引:0,他引:16  
Inactivating mutations in the protein kinase LKB1 lead to a dominantly inherited cancer in humans termed Peutz-Jeghers syndrome. The role of LKB1 is unclear, and only one target for LKB1 has been identified in vivo [3]. AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that plays a pivotal role in energy homeostasis. AMPK may have a role in protecting the body from metabolic diseases including type 2 diabetes, obesity, and cardiac hypertrophy. We previously reported the identification of three protein kinases (Elm1, Pak1, and Tos3 [9]) that lie upstream of Snf1, the yeast homologue of AMPK. LKB1 shares sequence similarity with Elm1, Pak1, and Tos3, and we demonstrated that LKB1 phosphorylates AMPK on the activation loop threonine (Thr172) within the catalytic subunit and activates AMPK in vitro [9]. Here, we have investigated whether LKB1 corresponds to the major AMPKK activity present in cell extracts. AMPKK purified from rat liver corresponds to LKB1, and blocking LKB1 activity in cells abolishes AMPK activation in response to different stimuli. These results identify a link between two protein kinases, previously thought to lie in unrelated, distinct pathways, that are associated with human diseases.  相似文献   

17.
AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular metabolism. Changes in AMPK activity contribute to the regulation of insulin secretion. Epidemiological evidence links the ingestion of saturated fatty acid with hyperinsulinemia. The aim of the present study was to examine the effects of palmitate on beta cell AMPK activity and insulin secretion. Isolated rat islets and MIN6 beta cells were treated acutely (5-60 min) or chronically (24 h) with palmitate. Insulin secretion, AMPK and acetyl CoA carboxylase phosphorylation were assessed. The acute effects of palmitate included AMPK activation and augmentation in insulin secretion. Activation of AMPK by 24h pretreatment with palmitate suppressed glucose-stimulated insulin secretion, but not the response of insulin secretion to combined stimuli of glucose and palmitate. This study demonstrated that palmitate availability affected beta cell AMPK activity. In beta cells, an increase in AMPK activity may be required for fatty acid-induced fatty acid oxidation and prevention of lipotoxicity.  相似文献   

18.
An imbalance between caloric intake and energy expenditure leads to obesity. Obesity is an important risk factor for the development of several metabolic diseases including insulin resistance, metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease. So, controlling obesity could be effective in the improvement of obesity-related diseases. Various factors are involved in obesity, such as AMP-activated protein kinases (AMPK), silent information regulators, inflammatory mediators, oxidative stress parameters, gastrointestinal hormones, adipokines, angiopoietin-like proteins, and microRNAs. These factors play an important role in obesity by controlling fat metabolism, energy homeostasis, food intake, and insulin sensitivity. AMPK is a heterotrimeric serine/threonine protein kinase known as a fuel-sensing enzyme. The central role of AMPK in obesity makes it an attractive molecule to target obesity and related metabolic diseases. In this review, the critical role of AMPK in obesity and the interplay between AMPK and obesity-associated factors were elaborated.  相似文献   

19.
This study was undertaken to interrogate cancer cell survival during long-term hypoxic stress. Two systems with relevance to carcinogenesis were employed: Fully transformed BJ cells and a renal carcinoma cell line (786-0). The dynamic of AMPK activity was consistent with a prosurvival role during chronic hypoxia. This was further supported by the effects of AMPK agonists and antagonists (AICAR and compound C). Expression of a dominant-negative AMPK alpha resulted in a decreased ATP level and significantly compromised survival in hypoxia. Dose-dependent prosurvival effects of rapamycin were consistent with mTOR inhibition being a critical downstream mediator of AMPK in persistent low oxygen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号