共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine models have proved to be excellent tools in the support of studies of the human genetic bases of malaria resistance and have enabled the mapping of 12 resistance loci, eight of them controlling parasitic levels and four controlling cerebral malaria. Further studies using this method have identified a Pklr variant that confers resistance to murine malaria, a result that shows the potential of this approach to aid the understanding of mechanisms of disease resistance. In the future, the use of murine models for genetic resistance to malaria could lead to the identification of relevant genetic factors that control this devastating disease. 相似文献
2.
Malaria kills approximately 1-2 million people every year, mostly in sub-Saharan Africa and in Asia. These deaths are at the most severe end of a scale of pathologies affecting approximately 500 million people per year. Much of the pathogenesis of malaria is caused by inappropriate or excessive immune responses mounted by the body to eliminate malaria parasites. In this review, we examine the evidence that immunopathology is responsible for malaria disease in the context of what we have learnt from animal models of malaria. In particular, we look in detail at the processes involved in endothelial cell damage leading to syndromes such as cerebral malaria, as well as generalised systemic manifestations such as anaemia, cachexia and problems with thermoregulation of the body. We also consider malaria in light of the variation of the severity of disease observed among people, and discuss the contribution from animal models to our understanding of this variation. Finally, we discuss some of the implications of immunopathology, and of host and parasite genetic variation, for the design and implementation of anti-malarial vaccines. 相似文献
3.
R A Burt 《International journal for parasitology》1999,29(6):973-979
A comprehension of the genetics of host resistance to malaria is essential to understanding the complex host/parasite interaction. Current research is directed towards the genetic dissection of both the murine and human host responses to the disease. Significant progress has been made towards the mapping of novel murine resistance loci. In addition, the role of the major histocompatibility complex in the host response has been examined in both animal models and human populations. Several large segregation analyses, association studies and, more recently, linkage analyses have been conducted in different African populations to examine the role of host genetics in both mild and severe malaria. The results of these studies have been collated within this review. The cloning of genes involved in malarial resistance will lead not only to a greater understanding of this complex disease but, potentially, to the development of effective medical intervention. 相似文献
4.
5.
The action of host genes in response to malarial infection is complex. Two mouse loci, Char1, and Char2, have previously been shown to control peak parasitemia and host survival. Recent analysis of host response to mouse malaria
has demonstrated that the action of several loci is time dependent. Char1 and Char2 act prior to peak parasitemia. Analysis of additional crosses revealed significant linkage to Chromosome 17 on the day following
peak parasitemia. This H2-linked locus acts late in infection and is therefore crucial in clearing parasites from the circulation. The cloning of this
gene will lead to a greater understanding of the host-parasite interaction, and the kinetics of host gene expression during
an immune response.
Received: 20 May 1999 / Revised: 9 August 1999 相似文献
6.
Knowledge of the host response, of the resistance process, and of the mediators committed against Salmonella infection is essential to progress towards better means of prophylaxis and eradication. In this context, the present contribution attempts to interconnect, with the pivotal role of the macrophage, the early resistance process under the control of the Nramp1 gene and the cytokine response for resolving infection. IL-12 produced by macrophages is an inducer of IFN-gamma production, which in turn activates the macrophage antibacterial activity and synergizes its effects with TNF-alpha. All three of these cytokines are powerful actors in the first line of anti-Salmonella defence. It can be pointed out that susceptible and resistant individuals do not seem to see the cytokine environment the same way, the former being unresponsive to IL-1 or GM-CSF treatment and deficient in IFN-gamma production. These discrepancies may rely on cell signalling events that could be defective in macrophages of the susceptible phenotype. 相似文献
7.
8.
Host load prediction using linear models 总被引:11,自引:0,他引:11
This paper evaluates linear models for predicting the Digital Unix fivesecond host load average from 1 to 30 seconds into the future. A detailed statistical study of a large number of long, fine grain load traces from a variety of real machines leads to consideration of the Box–Jenkins models (AR, MA, ARMA, ARIMA), and the ARFIMA models (due to selfsimilarity.) We also consider a simple windowedmean model. The computational requirements of these models span a wide range, making some more practical than others for incorporation into an online prediction system. We rigorously evaluate the predictive power of the models by running a large number of randomized testcases on the load traces and then datamining their results. The main conclusions are that load is consistently predictable to a very useful degree, and that the simple, practical models such as AR are sufficient for host load prediction. We recommend AR(16) models or better for host load prediction. We implement an online host load prediction system around the AR(16) model and evaluate its overhead, finding that it uses miniscule amounts of CPU time and network bandwidth. 相似文献
9.
Transgenic mouse models that explore the multistep hypothesis of intestinal neoplasia 总被引:12,自引:4,他引:12
下载免费PDF全文

《The Journal of cell biology》1993,123(4):877-893
SV-40 T antigen (TAg), human K-rasVal12, and a dominant negative mutant of human p53 (p53Ala143) have been expressed singly and in all possible combinations in postmitotic enterocytes distributed throughout the duodenal-colonic axis of 1-12-mo-old FVB/N transgenic mice to assess the susceptibility of this lineage to gene products implicated in the pathogenesis of human gut neoplasia. SV-40 TAg produces re-entry into the cell cycle. Transgenic pedigrees that produce K-rasVal12 alone, p53Ala143 alone, or K-rasVal12 and p53Ala143 have no detectable phenotypic abnormalities. However, K-rasVal12 cooperates with SV-40 TAg to generate marked proliferative and dysplastic changes in the intestinal epithelium. These abnormalities do not progress to form adenomas or adenocarcinomas over a 9-12-mo period despite sustained expression of the transgenes. Addition of p53Ala143 to enterocytes that synthesize SV-40 TAg and K-rasVal12 does not produce any further changes in proliferation or differentiation. Mice that carry one, two, or three of these transgenes were crossed to animals that carry Min, a fully penetrant, dominant mutation of the Apc gene associated with the development of multiple small intestinal and colonic adenomas. A modest (2-5-fold) increase in tumor number was noted in animals which express SV-40 TAg alone, SV-40 TAg and K-rasVal12, or SV-40 TAg, K-rasVal12 and p53Ala143. However, the histopathologic features of the adenomas were not altered and the gut epithelium located between tumors appeared similar to the epithelium of their single transgenic, bi-transgenic, or tri-transgenic parents without Min. These results suggest that (a) the failure of the dysplastic gut epithelium of SV-40 TAg X K-rasVal12 mice to undergo further progression to adenomas or adenocarcinomas is due to the remarkable protective effect of a continuously and rapidly renewing epithelium, (b) initiation of tumorigenesis in Min mice typically occurs in crypts rather than in villus-associated epithelial cell populations, and (c) transgenic mouse models of neoplasia involving members of the enterocytic lineage may require that gene products implicated in tumorigenesis be directed to crypt stem cells or their immediate descendants. Nonetheless, directing K-rasVal12 production to proliferating and nonproliferating cells in the lower and upper half of small intestinal and colonic crypts does not result in any detectable abnormalities. 相似文献
10.
Malaria is a disease caused by infection with Plasmodium parasites that are transmitted by mosquito bite. Five different species of Plasmodium infect humans with severe disease, but human malaria is primarily caused by Plasmodium falciparum. The burden of malaria on the developing world is enormous, and a fully protective vaccine is still elusive. One of the biggest challenges in the quest for the development of new antimalarial drugs and vaccines is the lack of accessible animal models to study P. falciparum infection because the parasite is restricted to the great apes and human hosts. Here, we review the current state of research in this field and provide an outlook of the development of humanized small animal models to study P. falciparum infection that will accelerate fundamental research into human parasite biology and could accelerate drug and vaccine design in the future. 相似文献
11.
Cohen MD 《Methods (San Diego, Calif.)》2007,41(1):20-30
To assess potential immunomodulatory effects of a drug, pollutant, or natural product, an analysis of an exposed host's ability to resist challenge with a viable bacteria is one of the best gauges. Many factors govern whether a host exposed to a test agent and then infected becomes ill or dies at rates greater than infected control counterparts. Beyond the status of the host's immunocompetence, a bacterium's route of entry into the host and its inherent virulence are important variables determining how (and rate at which) an infection resolves. A pre-determination of endpoint(s) to be defined is critical during planning of resistance assays. If a study is to determine overall changes in immunocompetence due to exposure (regardless of regimen or dosage of test agent), then assessing shifts in morbidity/mortality at a defined lethal dose [LD(x)] value for the chosen route of infection would suffice. However, if a study is to define extent of immunomodulation in a particular body organ/cavity--or specific alterations in particular aspects of the humoral or cell-mediated immune responses--then careful selection of the pathogen, dose of the inoculum, means of infection of target site, and extent of the post-infection period to be examined, need to be made prior to host exposure to the test toxicant. This review will provide the Reader with background information about bacterial infections and how endpoint selection could be approached when designing resistance assays. An overview of protocols involved in the assays (e.g., bacterial preparation, host infection, post-infection endpoint analyses) and information about three bacteria that are among the most commonly employed in resistance assays is provided as well. 相似文献
12.
Host resistance and the evolutionary response of plant viruses 总被引:2,自引:0,他引:2
FRANK VAN DEN BOSCH GORDON AKUDIBILAH SUE SEAL†‡ MIKE JEGER† 《Journal of Applied Ecology》2006,43(3):506-516
13.
Host control of malaria infections: constraints on immune and erythropoeitic response kinetics
下载免费PDF全文

The two main agents of human malaria, Plasmodium vivax and Plasmodium falciparum, can induce severe anemia and provoke strong, complex immune reactions. Which dynamical behaviors of host immune and erythropoietic responses would foster control of infection, and which would lead to runaway parasitemia and/or severe anemia? To answer these questions, we developed differential equation models of interacting parasite and red blood cell (RBC) populations modulated by host immune and erythropoietic responses. The model immune responses incorporate both a rapidly responding innate component and a slower-responding, long-term antibody component, with several parasite developmental stages considered as targets for each type of immune response. We found that simulated infections with the highest parasitemia tended to be those with ineffective innate immunity even if antibodies were present. We also compared infections with dyserythropoiesis (reduced RBC production during infection) to those with compensatory erythropoiesis (boosted RBC production) or a fixed basal RBC production rate. Dyserythropoiesis tended to reduce parasitemia slightly but at a cost to the host of aggravating anemia. On the other hand, compensatory erythropoiesis tended to reduce the severity of anemia but with enhanced parasitemia if the innate response was ineffective. For both parasite species, sharp transitions between the schizont and the merozoite stages of development (i.e., with standard deviation in intra-RBC development time ≤2.4 h) were associated with lower parasitemia and less severe anemia. Thus tight synchronization in asexual parasite development might help control parasitemia. Finally, our simulations suggest that P. vivax can induce severe anemia as readily as P. falciparum for the same type of immune response, though P. vivax attacks a much smaller subset of RBCs. Since most P. vivax infections are nonlethal (if debilitating) clinically, this suggests that P. falciparum adaptations for countering or evading immune responses are more effective than those of P. vivax. 相似文献
14.
Innate resistance to malaria: the intraerythrocytic cycle 总被引:3,自引:0,他引:3
R L Nagel 《Blood cells》1990,16(2-3):321-39; discussion 340-9
The human innate resistance to P. falciparum malaria is based on genetic features that affect several stages of the intraerythrocytic cycle of the plasmodia. HbS, HbE and alpha and beta thalassemia (in addition to G-6PD deficiency) are protective to the carriers, because they inhibit the intraerythrocytic growth period, and in the case of AS red cells, in addition, parasitosis make them detectable expeditiously by the spleen. Blood group polymorphisms can interfere with red cell invasion by plasmodia. HbC belongs to a special category, since it apparently interferes with the cycle at the moment of cell lysis and release of merozoites. Finally, ovalocytosis observed in South East Asia, which most likely corresponds to a cytoskeleton or membrane protein defect, protects from malaria by inhibiting invasion. It should be kept in mind that many of these red cell defects might protect individuals in the critical first 5 years of life by retarding the switch of HbF to adult hemoglobin, since the HbF containing red cells are less than hospitable to the parasite. 相似文献
15.
Yuri C Martins Guilherme L Werneck Leonardo J Carvalho Beatriz PT Silva Bruno G Andrade Tadeu M Souza Diogo O Souza Cláudio T Daniel-Ribeiro 《Malaria journal》2010,9(1):1-13
Background
Metabolic changes in the host in response to Plasmodium infection play a crucial role in the pathogenesis of malaria. Alterations in metabolism of male and female mice infected with Plasmodium berghei ANKA are reported here.Methods
1H NMR spectra of urine, sera and brain extracts of these mice were analysed over disease progression using Principle Component Analysis and Orthogonal Partial Least Square Discriminant Analysis.Results
Analyses of overall changes in urinary profiles during disease progression demonstrate that females show a significant early post-infection shift in metabolism as compared to males. In contrast, serum profiles of female mice remain unaltered in the early infection stages; whereas that of the male mice changed. Brain metabolite profiles do not show global changes in the early stages of infection in either sex. By the late stages urine, serum and brain profiles of both sexes are severely affected. Analyses of individual metabolites show significant increase in lactate, alanine and lysine, kynurenic acid and quinolinic acid in sera of both males and females at this stage. Early changes in female urine are marked by an increase of ureidopropionate, lowering of carnitine and transient enhancement of asparagine and dimethylglycine. Several metabolites when analysed individually in sera and brain reveal significant changes in their levels in the early phase of infection mainly in female mice. Asparagine and dimethylglycine levels decrease and quinolinic acid increases early in sera of infected females. In brain extracts of females, an early rise in levels is also observed for lactate, alanine and glycerol, kynurenic acid, ureidopropionate and 2-hydroxy-2-methylbutyrate.Conclusions
These results suggest that P. berghei infection leads to impairment of glycolysis, lipid metabolism, metabolism of tryptophan and degradation of uracil. Characterization of early changes along these pathways may be crucial for prognosis and better disease management. Additionally, the distinct sexual dimorphism exhibited in these responses has a bearing on the understanding of the pathophysiology of malaria. 相似文献16.
M. Dobson 《BMJ (Clinical research ed.)》1996,313(7049):67-68
17.
Ng HH Frantz CE Rausch L Fairchild DC Shimon J Riccio E Smith S Mirsalis JC 《Genomics》2005,86(6):657-667
The purpose of this study was to evaluate gene expression profiles in the liver and blood for prediction of infection severity from Listeria monocytogenes (LM). Mice were injected with medium broth (control) or a nonlethal or lethal dose of LM and sacrificed 6 h later. Gene expression changes were determined using Affymetrix MGU74Av2 GeneChips and confirmed by real-time polymerase chain reaction analysis. We identified discernable genes whose gene expression profiles can be used in pattern recognition to predict and classify samples in differently treated groups, with >or=90% accuracy in liver samples and 80% accuracy in blood at prediction; however, different genes were predictive in each tissue. Our results suggest that gene expression profiling in response to LM in mice may be able to distinguish samples in groups with varying severity of infection and provide information in finding molecular mechanisms and early biomarkers for subsequent conventional clinical endpoints. 相似文献
18.
19.
In a recent study, rich clinical assessment and longitudinal study design are combined with host gene expression and microbial sequencing analyses to develop a framework for exploring disease etiology and outcomes in the context of human inflammatory disease.See related article: http://dx.doi.org/10.1186/s13059-015-0637-x 相似文献
20.
The disease outcome in malaria caused by the protozoan parasite Plasmodium is influenced by host genetic factors. To identify host genes conferring resistance to infection with the malaria parasite, we undertook chromosomal mapping using a whole-genome scanning approach in cross-bred mice. NC/Jic mice all died with high parasitemia within 8 days of infection with 1 x 10(5) parasitized erythrocytes. In contrast, 129/SvJ mice all completely excluded malaria parasites from the circulation and remained alive 21 days after infection. We performed linkage analysis in backcross [(NC/Jic x 129/SvJ)xNC/Jic] mice. The Pymr ( Plasmodium yoelii malaria resistance) locus was mapped to the telomeric portion of mouse Chromosome (Chr) 9. This locus controls host survival and parasitemia after infection. The Char1 locus ( P. chabaudi resistance locus 1), controlling host survival and peak parasitemia in P. chabaudi infection, was previously mapped to the same region. This host resistance locus mapping to Chr 9 may represent a ubiquitous locus controlling susceptibility to rodent malaria. Elucidation of the function of this gene will provide valuable insights into the mechanism of host defense against malaria parasite infection. 相似文献