首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ion channels contribute to virtually all basic cellular processes, including such crucial ones for maintaining tissue homeostasis as proliferation, differentiation, and apoptosis. The involvement of ion channels in regulation of programmed cell death, or apoptosis, has been known for at least three decades based on observation that classical blockers of ion channels can influence cell death rates, prolonging or shortening cell survival. Identification of the central role of these channels in regulation of cell cycle and apoptosis as well as the recent discovery that the expression of ion channels is not limited solely to the plasma membrane, but may also include membranes of internal compartments, has led researchers to appreciate the pivotal role of ion channels plays in development of cancer. This review focuses on the aspects of programmed cell death influenced by various ion channels and how dysfunctions and misregulations of these channels may affect the development and progression of different cancers.  相似文献   

2.
The traditional view of cancer as a collection of proliferating cells must be reconsidered, and cancer must be viewed as a "tissue" constituted by both transformed cells and a heterogeneous microenvironment, that tumor cells construct and remodel during multistep tumorigenesis. The "tumor microenvironment" (TM) is formed by mesenchymal, endothelial, and immune cells immersed in a network of extracellular matrix (ECM) proteins and soluble factors. The TM strongly contributes to tumor progression, through long distance, cell-to-cell or cell-to-matrix signals, which influence different aspects of tumor cell behavior. Understanding the relationships among the different components of the cancer tissue is crucial to design and develop new therapeutic strategies. Ion channels are emerging as relevant players in the cross talk between tumor cells and their TM. Ion channels are expressed on tumor cells, as well as in the different cellular components of the TM. In all these cells, ion channels are in a strategic position to sense and transmit extracellular signals into the intracellular machinery. Often, this transmission is mediated by integrin adhesion receptors, which can be functional partners of ion channels since they form molecular complexes with the channel protein in the context of the plasma membrane. The same relevant role is exerted by ion transporters, which also contribute to determine two facets of the cancer tissue: hypoxia and the acidic extracellular pH. On the whole, it is conceivable to prospect the targeting of ion channels for new therapeutic strategies aimed at better controlling the malignant progression of the cancer tissue.  相似文献   

3.
Plasma membrane ion channels contribute to virtually all basic cellular processes, including such crucial ones for maintaining tissue homeostasis as proliferation, differentiation, and apoptosis. Enhanced proliferation, aberrant differentiation, and impaired ability to die are the prime reasons for abnormal tissue growth, which can eventually turn into uncontrolled expansion and invasion, characteristic of cancer. Prostate cancer (PCa) cells express a variety of plasma membrane ion channels. By providing the influx of essential signaling ions, perturbing intracellular ion concentrations, regulating cell volume, and maintaining membrane potential, PCa cells are critically involved in proliferation, differentiation, and apoptosis. PCa cells of varying metastatic ability can be distinguished by their ion channel characteristics. Increased malignancy and invasiveness of androgen-independent PCa cells is generally associated with the shift to a 'more excitable' phenotype of their plasma membrane. This shift is manifested by the appearance of voltage-gated Na(+) and Ca(2+) channels which contribute to their enhanced apoptotic resistance together with downregulated store-operated Ca(2+) influx, altered expression of different K(+) channels and members of the Transient Receptor Potential (TRP) channel family, and strengthened capability for maintaining volume constancy. The present review examines channel types expressed by PCa cells and their involvement in metastatic behaviors.  相似文献   

4.
Bioelectrical signals generated by ion channels play crucial roles in excitation genesis and impulse conduction in excitable cells as well as in cell proliferation,migration and apoptosis in proliferative cells.Recent studies have demonstrated that multiple ion channels are heterogeneously present in different stem cells;however,patterns and phenotypes of ion channels are species-and/or origin-dependent.This editorial review focuses on the recent findings related to the expression of functional ion channels and the roles of these channels in regulation of cell proliferation in stem cells.Additional effort is required in the future to clarify the ion channel expression in different types of stem cells;special attention should be paid to the relationship between ion channels and stem cell proliferation,migration and differentiation.  相似文献   

5.
Humans maintain a constant cell number throughout their lifespan. This equilibrium of cell number is accomplished when cell proliferation and cell death are kept balanced, achieving a steady-state cell number. Abnormalities in cell growth or cell death can lead to an overabundance of cells known as neoplasm or tumours. While the perception of cancer is often that of an uncontrollable rate of cell growth or increased proliferation, a decrease in cell death can also lead to tumour formation. Most cells when detached from their normal tissue die. However, cancer cells evade cell death, tipping the balance to an overabundance of cell number. Therefore, overcoming this resistance to cell death is a decisive factor in the treatment of cancer. Ion channels play a critical role in cancer in regards to cell proliferation, malignant angiogenesis, migration and metastasis. Additionally, ion channels are also known to be critical components of apoptosis. In this review, we discuss the modes of cell death focusing on the ability of cancer cells to evade apoptosis. Specifically, we focus on the role ion channels play in controlling and regulating life/death decisions and how they can be used to overcome resistance to apoptosis in the treatment of cancer.  相似文献   

6.
Ion transport across the cell membrane mediated by channels and carriers participate in the regulation of tumour cell survival, death and motility. Moreover, the altered regulation of channels and carriers is part of neoplastic transformation. Experimental modification of channel and transporter activity impacts tumour cell survival, proliferation, malignant progression, invasive behaviour or therapy resistance of tumour cells. A wide variety of distinct Ca2+ permeable channels, K+ channels, Na+ channels and anion channels have been implicated in tumour growth and metastasis. Further experimental information is, however, needed to define the specific role of individual channel isoforms critically important for malignancy. Compelling experimental evidence supports the assumption that the pharmacological inhibition of ion channels or their regulators may be attractive targets to counteract tumour growth, prevent metastasis and overcome therapy resistance of tumour cells. This short review discusses the role of Ca2+ permeable channels, K+ channels, Na+ channels and anion channels in tumour growth and metastasis and the therapeutic potential of respective inhibitors.  相似文献   

7.
离子通道与肿瘤   总被引:4,自引:0,他引:4  
钾、钙、氯等离子通道在肿瘤细胞中异常表达,与肿瘤的发生发展密切相关。其可能机制是离子通道通过调节细胞膜电位、细胞周期、细胞体积、胞内钙浓度和胞质pH值等调控肿瘤细胞增殖与凋亡。本文综述了离子通道与肿瘤关系的研究进展,随着研究不断深入,离子通道有可能成为防治肿瘤的新靶标。  相似文献   

8.
Integrin receptors mediate adhesion of the cell to the extracellular matrix and thereby regulate cell motility, proliferation, differentiation and apoptosis. These processes are frequently accompanied by alterations in ion flow. Recent evidence suggests that integrins can regulate ion channels and form macromolecular complexes, thus contributing to the localization of the channel onto the plasma membrane. The integrin-channel complex regulates downstream signaling proteins, such as tyrosine kinases and GTPases. This process could occur in plasma membrane microdomains, such as caveolae. It seems that ion channels sometimes transmit their signals through conformational coupling, instead of change in ion fluxes. Finally, the channel protein is not merely a final target, because it often feeds back by controlling integrin activation and/or expression. These findings have important implications for the physiology of normal and neoplastic cells and suggest interesting perspectives for studies of synaptic plasticity.  相似文献   

9.
All cells possess long-term, steady-state voltage gradients across the plasma membrane. These transmembrane potentials arise from the combined activity of numerous ion channels, pumps, and gap junction complexes. Increasing data from molecular physiology now reveal that the role of changes in membrane voltage controls, and is in turn controlled by, progression through the cell cycle. We review recent functional data on the regulation of mitosis by bioelectric signals, and the function of membrane voltage and specific potassium, sodium, and chloride ion channels in the proliferation of embryonic, somatic, and neoplastic cells. Its unique properties place this powerful, well-conserved, but still poorly-understood signaling system at the center of the coordinated cellular interactions required for complex pattern formation. Moreover, disregulation of ion channel expression and function is increasingly observed to be not only a useful marker but likely a functional element in oncogenesis. New advances in genomics and the development of in vivo biophysical techniques suggest exciting opportunities for molecular medicine, bioengineering, and regenerative approaches to human health.  相似文献   

10.
T淋巴细胞上的离子通道   总被引:4,自引:0,他引:4  
Xiao L  Fu HY  Song DM  Fan SG 《生理科学进展》2003,34(2):105-110
近年的研究证明,淋巴细胞上的离子通道,在免疫功能调节中具有重要的作用。T淋巴细胞上主要有三类离子通道,即Ca2 、K 和C1-通道。Ca2 通过T淋巴细胞膜上的Ca2 通道(CRAC)进入细胞内,可作为第二信使激活T淋巴细胞。通过K 通道的K 外流是T淋巴细胞膜电位形成的基础。由于膜电位水平可以影响钙离子的内流,因此,K 通道可以间接调节T淋巴细胞的活化和功能。T淋巴细胞上的Cl-通道是新近发现的一种离子通道,可能与细胞的体积调节有关。本文扼要总结了T淋巴细胞上离子通道的新近进展。  相似文献   

11.
There is emerging evidence from functional analyses and molecular research that the role of ion channels in cell physiology is not only determined by the pore-forming subunits but also depends on their molecular environment. Accordingly, the local and temporal specificity of channel-mediated signal transduction is thought to result from association of these integral membrane proteins with distinct sets of partner proteins or from their assembly into stable macromolecular complexes. As yet, however, the molecular environments of most ion channels have escaped direct investigation, mostly because of technical limitations that precluded their comprehensive molecular analysis. Recent advances in proteomic technologies promoted an experimental workflow that combines affinity purification of readily solubilized protein complexes with quantitative high-resolution mass spectrometry and that offers access to channel-associated protein environments. We will discuss advantages and limitations of this proteomic approach, as well as the results obtained from its application to several types of ion channels including Cav channels, Kv channels, HCN channels, AMPA-type glutamate receptors and GABA(B) receptors. The respective results indicate that the approach provides unbiased and comprehensive information on (i) the subunit composition of channel cores including identification of auxiliary subunits, on (ii) the assembly of channel cores into 'signaling entities' and on (iii) integration of channels into extended protein networks. Thus, quantitative proteomics opens a new window for the investigation of ion channels and their function in the context of various types of cell.  相似文献   

12.
Transient receptor potential (TRP) proteins are a diverse family of ion channels present in multiple types of tissues. They function as gatekeepers for responses to sensory stimuli including temperature, vision, taste, and pain through their activities in conducting ion fluxes. The TRPM (melastatin) subfamily consists of eight members (i.e., TRPM1–8), which collectively regulate fluxes of various types of cations such as K+, Na+, Ca2+, and Mg2+. Growing evidence in the past two decades indicates that TRPM ion channels, their isoforms, or long noncoding RNAs encoded within the locus may be oncogenes involved in the regulation of cancer cell growth, proliferation, autophagy, invasion, and epithelial–mesenchymal transition, and their significant association with poor clinical outcomes of cancer patients. In this review, we describe and discuss recent findings implicating TRPM channels in different malignancies, their functions, mechanisms, and signaling pathways involved in cancers, as well as summarizing their normal physiological functions and the availability of ion channel pharmacological inhibitors.  相似文献   

13.
Tumor vascularization is a critical process that determines tumor growth and metastasis. In the last decade new experimental evidence obtained from in vitro and in vivo studies have challenged the classical angiogenesis model forcing us to consider new scenarios for tumor neovascularization. In particular, the genetic stability of tumor-derived endothelial cells (TECs) has been recently questioned in several studies, which show that TECs, as well as pericytes, differ significantly from their normal counterparts at genetic and functional levels. In addition to such an epigenetic action of tumor microenvironment on endothelial cells (ECs) commitment, the distinct characteristics of TECs could be due to differences in their origin compared with preexisting differentiated ECs. Intracellular Ca(2+) signals are involved at different critical phases in the regulation of the complex process of angiogenesis and tumor progression. These signals are generated by a wide variety of intrinsic and extrinsic factors. Several key components of Ca(2+) signaling including Ca(2+) channels in the plasma membrane, endoplasmic reticulum, calcium pumps, and mitochondria contribute to the generation, amplitude, and frequency of these Ca(2+) change. In particular, several members of the transient receptor potential (TRP) family of calcium-permeable channels have profound effects on the function of ECs. Because of its multifaceted role in the control of cell function, proliferation, and motility, TRP channels have been suggested as a potential molecular target for control of tumor neovascularization. Since plasma membrane Ca(2+) channels are easily and directly accessible via the bloodstream, they are potential targets for a number of pharmacological and antibody-targeted therapeutic strategies, with specificity being the main limitation. In this review we discuss recent advances in understanding the role of Ca(2+) channels, with specific reference to TRP channels, in tumor vascularization process.  相似文献   

14.
K+ channels are a most diverse class of ion channels in the plasma membrane and are distributed widely throughout a variety of cells including cancer cells. Evidence has been accumulating from fundamental studies indicating that tumour cells possess various types of K+ channels and that these K+ channels play important roles in regulating tumor cell proliferation, cell cycle progression and apoptosis. Moreover, a significant increase in K+ channel expression has been correlated with tumorigenesis, suggesting the possibility of using these proteins as transformation markers and perhaps reducing the tumor growth rate by selectively inhibiting their functional activity. Significant progress has been made in defining the properties of breast K+ channels, including their biophysical and pharmacological properties and distribution throughout different phases of the cell cycle in breast cell line MCF-7. This review aims to provide a comprehensive overview of the current state of research into K+ channels/currents in breast cancer cells. The possible mechanisms by which K+ channels affect tumor cell proliferation and cell cycle progression are discussed.  相似文献   

15.
Objectives: Clonal kidney cells (Vero cells) are extensively utilized in the manufacture of biological preparations for disease diagnostics and therapeutics and also in preparation of vaccines. In all cells, regulation of volume is an essential function coupled to a variety of physiological processes and is a topic of interest. The objective here was to investigate involvement of ion channels in the process of volume regulation of Vero cells. Methods: Involvement of ion channels in cell volume regulation was studied using video‐microscopy and flow cytometry. Pharmacologically unaltered cells of different sizes, which are presumably at different phases of the cell cycle, were used. Results: Ion transport inhibitors altered all phases of regulatory volume decrease (RVD) of Vero cells, rate of initial cell swelling, Vmax and volume recovery. Effects were dependent on type of inhibitor and on cell size (cell cycle phase). Participation of aquaporins in RVD was suggested. Inhibitors decelerated growth, arresting Vero cells at the G0/G1 phase boundary. Electrophysiological study confirmed presence of volume‐activated Cl? channels and K+ channels in plasmatic membranes of the cells. Conclusion: Vero cells of all sizes maintained the ability to recover from osmotic swelling. Activity of ion channels was one of the key factors that controlled volume regulation and proliferation of the cells.  相似文献   

16.
Clinical Relevance of Ion Channels for Diagnosis and Therapy of Cancer   总被引:7,自引:0,他引:7  
Ion channels have a critical role in cell proliferation and it is well documented that channel blockers can inhibit the growth of cancer cells. The concept of ion channels as therapeutic targets or prognostic biomarkers attracts increasing interest, but the lack of potent and selective channel modulators has hampered a critical verification for many years. Today, the knowledge of human ion channel genes is almost complete and molecular correlates for many native currents have already been identified. This information triggered a wave of experimental results, identifying individual ion channels with relevance for specific cancer types. The current pattern of cancer-related ion channels is not arbitrary, but can be reduced to few members from each ion channel family. This review aims to provide an overview of the molecularly identified ion channels that might be relevant for the most common human cancer types. Possible applications of these candidates for a targeted cancer therapy or for clinical diagnosis are discussed.  相似文献   

17.
Summary The nuclear envelope functions as a selective barrier between nucleus and cytoplasm. During cycles of cell division the nuclear envelope repeatedly disassembles and re-associates. Presumably, each cycle re-establishes the functional and structural integrity of the nuclear envelope. After repeated rounds of cell division, as occurs during differentiation, the selectivity and configuration of the envelope may change. We compare the ionic conductance and the nuclear pore density in four types of murine nuclei: germinal vesicles in oocytes, pronuclei in zygotes, nuclei from two-cell blastomeres, and somatic cell nuclei from the liver. A large-conductance ion channel is present in all nuclear envelopes. Liver cell nuclei have a greater number of these channels than those from earlier developmental stages, and they also have a higher density of nuclear pores. In this article we hypothesize an association between the ion channels and the nuclear pores.  相似文献   

18.
Ion channels in microglia (brain macrophages)   总被引:12,自引:0,他引:12  
Microglia are immunocompetent cells in the brain that have manysimilarities with macrophages of peripheral tissues. In normal adultbrain, microglial cells are in a resting state, but they becomeactivated during inflammation of the central nervous system, afterneuronal injury, and in several neurological diseases. Patch-clamp studies of microglial cells in cell culture and in tissue slices demonstrate that microglia express a wide variety of ion channels. Sixdifferent types of K+ channelshave been identified in microglia, namely, inward rectifier, delayedrectifier, HERG-like, G protein-activated, as well as voltage-dependentand voltage-independentCa2+-activatedK+ channels. Moreover, microgliaexpress H+ channels,Na+ channels, voltage-gatedCa2+ channels,Ca2+-release activatedCa2+ channels, andvoltage-dependent and voltage-independentCl channels. With respectto their kinetic and pharmacological properties, most microglial ionchannels closely resemble ion channels characterized in othermacrophage preparations. Expression patterns of ion channels inmicroglia depend on the functional state of the cells. Microglial ionchannels can be modulated by exposure to lipopolysaccharide or variouscytokines, by activation of protein kinase C or G proteins, by factorsreleased from astrocytes, by changes in the concentration of internalfree Ca2+, and by variations ofthe internal or external pH. There is evidence suggesting that ionchannels in microglia are involved in maintaining the membranepotential and are also involved in proliferation, ramification, and therespiratory burst. Further possible functional roles of microglial ionchannels are discussed.

  相似文献   

19.
In muscle cells, as in a variety of cell types, proliferation and differentiation are mutually exclusive events controlled by a balance of opposing cellular signals. Members of the MyoD family of muscle-specific helix-loop-helix proteins which, in collaboration with ubiquitous factors, activate muscle differentiation and inhibit cell proliferation function at the nexus of the cellular circuits that control proliferation and differentiation of muscle cells. The activities of these myogenic regulators are negatively regulated by peptide growth factors and activated oncogenes whose products transmit growth signals from the membrane to the nucleus. Recent studies have revealed multiple mechanisms through which intracellular growth factor signals may interfere with the functions of the myogenic regulators. When expressed at high levels, members of the MyoD family can override mitogenic signals and can cause growth arrest independent of their effects on differentiation. The ability of these myogenic regulators to inhibit proliferation of normal as well as transformed cells from multiple lineages suggests that they interact with conserved components of the cellular machinery involved in cell cycle progression and that similar types of regulatory factors participate in differentiation and cell cycle control in diverse cell types.  相似文献   

20.
Cyclic nucleotide-gated channels (CNGCs) are important transducers of external signals in sensory processes. These channels are ubiquitously expressed in a variety of neurons, and are necessary to transduce signals for growth cone guidance and plasticity. Here, we demonstrate that the CNGC subunits (CNGA1 and CNGB1, presumably the 1b isoform) are expressed in rat cerebellar granule cells and that they combine to form functional channels. The expression of the mRNAs that encode these proteins is maximal after 7 days in cell culture, when the channels are expressed at synapses and co-localize with the synaptic marker synapsin I. These ligand-gated channels are functional and can be blocked by Mg(2+) or L-cis-diltiazem. Moreover, channel opening in response to increases in intracellular cGMP results in Ca(2+) entry into the cell. Chronic blockade (96 h) of these channels with L-cis-diltiazem significantly decreases the number of functional boutons, as determined by their capacity to load and unload the styryl dye FM1-43 when stimulated. Moreover, the unloading kinetics is modified from a biphasic to a monophasic profile in a subset of synaptic boutons. These channels are also expressed in early developmental stages, both in the soma and in emerging processes, and CNGA1 can be detected in growth cones. Pharmacological blockade of these channels with L-cis-diltiazem causes an overall change in growth cone morphology, impairing the formation of lamellipodia between filopodia and increasing the number of filopodia. J  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号