首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Integrin alpha9 (ITGA9) is one of the less studied integrin subunits that facilitates accelerated cell migration and regulates diverse biological functions such as angiogenesis, lymphangiogenesis, cancer cell proliferation and migration. In this work, integrin alpha9 expression and its epigenetic regulation in normal human breast tissue, primary breast tumors and breast cancer cell line MCF7 were studied. It was shown that integrin alpha9 is expressed in normal human breast tissue. In breast cancer, ITGA9 expression was downregulated or lost in 44% of tumors while another 45% of tumors showed normal or increased ITGA9 expression level (possible aberrations in the ITGA9 mRNA structure were supposed in 11% of tumors). Methylation of ITGA9 CpG-island located in the first intron of the gene was shown in 90% of the breast tumors with the decreased ITGA9 expression while no methylation at 5′-untranslated region of ITGA9 was observed. 5-aza-dC treatment restored integrin alpha9 expression in ITGA9-negative MCF7 breast carcinoma cells, Trichostatin A treatment did not influenced it but a combined treatment of the cells with 5-aza-dC/Trichostatin A doubled the ITGA9 activation. The obtained results suggest CpG methylation as a major mechanism of integrin alpha9 inactivation in breast cancer with a possible involvement of other yet unidentified molecular pathways.Key words: integrin alpha9, ITGA9, breast cancer, expression, methylation, bisulfite sequencing  相似文献   

2.
Diagnosis and treatment of epithelial ovarian cancer is challenging due to the poor understanding of the pathogenesis of the disease. Our aim was to investigate epigenetic mechanisms in ovarian tumorigenesis and, especially, whether tumors with different histological subtypes or hereditary background (Lynch syndrome) exhibit differential susceptibility to epigenetic inactivation of growth regulatory genes. Gene candidates for epigenetic regulation were identified from the literature and by expression profiling of ovarian and endometrial cancer cell lines treated with demethylating agents. Thirteen genes were chosen for methylation-specific multiplex ligation-dependent probe amplification assays on 104 (85 sporadic and 19 Lynch syndrome-associated) ovarian carcinomas. Increased methylation (i.e., hypermethylation) of variable degree was characteristic of ovarian carcinomas relative to the corresponding normal tissues, and hypermethylation was consistently more prominent in non-serous than serous tumors for individual genes and gene sets investigated. Lynch syndrome-associated clear cell carcinomas showed the highest frequencies of hypermethylation. Among endometrioid ovarian carcinomas, lower levels of promoter methylation of RSK4, SPARC, and HOXA9 were significantly associated with higher tumor grade; thus, the methylation patterns showed a shift to the direction of high-grade serous tumors. In conclusion, we provide evidence of a frequent epigenetic inactivation of RSK4, SPARC, PROM1, HOXA10, HOXA9, WT1-AS, SFRP2, SFRP5, OPCML, and MIR34B in the development of non-serous ovarian carcinomas of Lynch and sporadic origin, as compared to serous tumors. Our findings shed light on the role of epigenetic mechanisms in ovarian tumorigenesis and identify potential targets for translational applications.  相似文献   

3.
The pathogenesis of breast cancer involves multiple genetic and epigenetic events. In this study, we report an epigenetic alteration of DFNA5 in human breast cancer. DFNA5 gene was silenced in breast cancer cell lines that were methylated in the DFNA5 promoter, and restored by treatment with the demethylating agent, 5-aza-dC, and gene knock-down of DFNA5 increased cellular invasiveness in vitro. The mRNA expression of DFNA5 in breast cancer tissues was down-regulated as compared to normal tissues. Moreover, the DFNA5 promoter was found to be methylated in primary tumor tissues with high frequency (53%, 18/34). Quantitative methylation-specific PCR of DFNA5 clearly discriminated primary breast cancer tissues from normal breast tissues (15.3%, 2/13). Moreover, methylation status of DFNA5 was correlated with lymph node metastasis in breast cancer patients. Our data implicate DFNA5 promoter methylation as a novel molecular biomarker in human breast cancer.  相似文献   

4.
《Epigenetics》2013,8(12):1577-1587
Diagnosis and treatment of epithelial ovarian cancer is challenging due to the poor understanding of the pathogenesis of the disease. Our aim was to investigate epigenetic mechanisms in ovarian tumorigenesis and, especially, whether tumors with different histological subtypes or hereditary background (Lynch syndrome) exhibit differential susceptibility to epigenetic inactivation of growth regulatory genes. Gene candidates for epigenetic regulation were identified from the literature and by expression profiling of ovarian and endometrial cancer cell lines treated with demethylating agents. Thirteen genes were chosen for methylation-specific multiplex ligation-dependent probe amplification assays on 104 (85 sporadic and 19 Lynch syndrome-associated) ovarian carcinomas. Increased methylation (i.e., hypermethylation) of variable degree was characteristic of ovarian carcinomas relative to the corresponding normal tissues, and hypermethylation was consistently more prominent in non-serous than serous tumors for individual genes and gene sets investigated. Lynch syndrome-associated clear cell carcinomas showed the highest frequencies of hypermethylation. Among endometrioid ovarian carcinomas, lower levels of promoter methylation of RSK4, SPARC, and HOXA9 were significantly associated with higher tumor grade; thus, the methylation patterns showed a shift to the direction of high-grade serous tumors. In conclusion, we provide evidence of a frequent epigenetic inactivation of RSK4, SPARC, PROM1, HOXA10, HOXA9, WT1-AS, SFRP2, SFRP5, OPCML, and MIR34B in the development of non-serous ovarian carcinomas of Lynch and sporadic origin, as compared to serous tumors. Our findings shed light on the role of epigenetic mechanisms in ovarian tumorigenesis and identify potential targets for translational applications.  相似文献   

5.
Xiang T  Li L  Yin X  Yuan C  Tan C  Su X  Xiong L  Putti TC  Oberst M  Kelly K  Ren G  Tao Q 《PloS one》2012,7(1):e29783

Background

Breast cancer (BrCa) is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1) is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear.

Methodology/Principal Findings

We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90%) and 53 of 66 (80%) primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90S-expressed cells.

Conclusions/Significance

UCHL1 exerts its tumor suppressive functions by inducing G0/G1cell cycle arrest and apoptosis in breast tumorigenesis, requiring its deubiquitinase activity. Its frequent silencing by promoter CpG methylation may serve as a potential tumor marker for breast cancer.  相似文献   

6.
Homologous recombination deficiency conferred by alterations in BRCA1 or BRCA2 are common in breast tumors and can drive sensitivity to platinum chemotherapy and PARP inhibitors. Alterations in nucleotide excision repair (NER) activity can also impact sensitivity to DNA damaging agents, but NER activity in breast cancer has been poorly characterized. Here, we apply a novel immunofluorescence-based cellular NER assay to screen a large panel of breast epithelial and cancer cell lines. Although the majority of breast cancer models are NER proficient, we identify an example of a breast cancer cell line with profound NER deficiency. We show that NER deficiency in this model is driven by epigenetic silencing of the ERCC4 gene, leading to lack of expression of the NER nuclease XPF, and that ERCC4 methylation is also strongly correlated with ERCC4 mRNA and XPF protein expression in primary breast tumors. Re-expression of XPF in the ERCC4-deficient breast cancer rescues NER deficiency and cisplatin sensitivity, but does not impact PARP inhibitor sensitivity. These findings demonstrate the potential to use functional assays to identify novel mechanisms of DNA repair deficiency and nominate NER deficiency as a platinum sensitivity biomarker in breast cancer.  相似文献   

7.
《Epigenetics》2013,8(1):41-46
HOX genes are developmental genes that determine anterior–posterior embryonic pattern and govern the process of differentiation. Inappropriate expression of HOX genes has been implicated in developmental abnormalities and hematopoietic malignancies. In addition, HOX genes silencing by DNA methylation has been reported in cancers and related to disease aggressiveness and outcome. On the other hand, accumulating evidence suggests that epigenetic changes at HOX genes are linked to normal development and differentiation. To better understand the relationship between HOXA methylation and cancer, we analyzed the methylation pattern of HOXA genes in human primary breast and colon carcinomas, normal tissues and normal white blood cells. Genome-wide methylation arrays of breast cancers and white blood cells demonstrated similar methylation patterns. Quantitative methylation analysis of seven representative HOXA genes revealed various levels of methylation in both normal tissues and cancers. Analysis of epithelial-enriched normal breast tissue and stroma indicated that the stroma was the major origin of HOXA methylation. Furthermore, in selected dense breast cancers, minimal increase in methylation of several HOXA genes did not correlate with the predominance of malignant epithelial cells in these tumors. Our results suggest that methylation of the HOXA cluster may be a normal developmental and cell type specific process rather than a cancer specific mechanism.  相似文献   

8.
9.
Basal-like breast cancer is a molecularly distinct subtype of breast cancer that is highly aggressive and has a poor prognosis. MicroRNA-29c (miR-29c) has been shown to be significantly down-regulated in basal-like breast tumors and to be involved in cell invasion and sensitivity to chemotherapy. However, little is known about the genetic and regulatory factors contributing to the altered expression of miR-29c in basal-like breast cancer. We here report that epigenetic modifications at the miR-29c promoter, rather than copy number variation of the gene, may drive the lower expression of miR-29c in basal-like breast cancer. Bisulfite sequencing of CpG sites in the miR-29c promoter region showed higher methylation in basal-like breast cancer cell lines compared to luminal subtype cells with a significant inverse correlation between expression and methylation of miR-29c. Analysis of primary breast tumors using The Cancer Genome Atlas (TCGA) dataset confirmed significantly higher levels of methylation of the promoter in basal-like breast tumors compared to all other subtypes. Furthermore, inhibition of CpG methylation with 5-aza-CdR increases miR-29c expression in basal-like breast cancer cells. Flourescent In Situ Hybridization (FISH) revealed chromosomal abnormalities at miR-29c loci in breast cancer cell lines, but with no correlation between copy number variation and expression of miR-29c. Our data demonstrated that dysregulation of miR-29c in basal-like breast cancer cells may be in part driven by methylation at CpG sites. Epigenetic control of the miR-29c promoter by epigenetic modifiers may provide a potential therapeutic target to overcome the aggressive behavior of these cancers.  相似文献   

10.
11.
Genome wide association studies (GWAS) have identified low penetrance and high frequency single nucleotide polymorphisms (SNPs) that contribute to genetic susceptibility of breast cancer. The SNPs at 16q12, close to the TOX3 and CASC16 genes, represent one of the susceptibility loci identified by GWAS, showing strong evidence for breast cancer association across various populations. To examine molecular mechanisms of TOX3 regulation in breast cancer, we investigated both genetic and epigenetic factors using cell lines and datasets derived from primary breast tumors available through The Cancer Genome Atlas (TCGA). TOX3 expression is highly up-regulated in luminal subtype tumors compared to normal breast tissues or basal-like tumors. Expression quantitative trait loci (eQTL) analyses revealed significant associations of rs3803662 and rs4784227 genotypes with TOX3 expression in breast tumors. Bisulfite sequencing of four CpG islands in the TOX3 promoter showed a clear difference between luminal and basal-like cancer cell lines. 5-Aza-2’-deoxycytidine treatment of a basal-like cancer cell line increased expression of TOX3. TCGA dataset verified significantly lower levels of methylation of the promoter in luminal breast tumors with an inverse correlation between methylation and expression of TOX3. Methylation QTL (mQTL) analyses showed a weak or no correlation of rs3803662 or rs4784227 with TOX3 promoter methylation in breast tumors, indicating an independent relationship between the genetic and epigenetic events. These data suggest a complex system of TOX3 regulation in breast tumors, driven by germline variants and somatic epigenetic modifications in a subtype specific manner.  相似文献   

12.
Whether epithelial-mesenchymal transition (EMT) is always linked to increased tumorigenicity is controversial. Through microRNA (miRNA) expression profiling of mammary epithelial cells overexpressing Twist, Snail or ZEB1, we identified miR-100 as a novel EMT inducer. Surprisingly, miR-100 inhibits the tumorigenicity, motility and invasiveness of mammary tumor cells, and is commonly downregulated in human breast cancer due to hypermethylation of its host gene MIR100HG. The EMT-inducing and tumor-suppressing effects of miR-100 are mediated by distinct targets. While miR-100 downregulates E-cadherin by targeting SMARCA5, a regulator of CDH1 promoter methylation, this miRNA suppresses tumorigenesis, cell movement and invasion in vitro and in vivo through direct targeting of HOXA1, a gene that is both oncogenic and pro-invasive, leading to repression of multiple HOXA1 downstream targets involved in oncogenesis and invasiveness. These findings provide a proof-of-principle that EMT and tumorigenicity are not always associated and that certain EMT inducers can inhibit tumorigenesis, migration and invasion.  相似文献   

13.
《Epigenetics》2013,8(4):428-439
Growing evidence supports the existence of a subpopulation of cancer cells with stem cell characteristics within breast tumors. In spite of its potential clinical implications, an understanding of the mechanisms responsible for retaining the stem cell characteristics in these cells is still lacking. Here, we used the mammosphere model combined with DNA methylation bead arrays and quantitative gene expression to characterize the epigenetic mechanisms involved in the regulation of developmental pathways in putative breast cancer stem cells. Our results revealed that MCF7-derived mammospheres exhibit distinct CpG promoter methylation profiles in a specific set of genes, including those involved in Jak-STAT signaling pathway. Hypomethylation of several gene components of the Jak-STAT pathway was correlated with an increased expression in mammospheres relative to parental cells. Remarkably, cell sorting of the cells with a putative cancer stem cell phenotype (CD44+/CD24 low) suggests a constitutive activation of Jak-STAT pathway in these cells. These results show that Jak-STAT activation may represent a characteristic of putative breast cancer stem cells. In addition, they favor the concept that the expression of cancer stem-like pathways and the establishment and maintenance of defining properties of cancer stem cells are orchestrated by epigenetic mechanisms.  相似文献   

14.
15.
16.
To escape the immune system, tumor cells may remove surface molecules such as the major histocompatibility complex (MHC) and co-stimulatory molecules, which are essential for recognition by lymphocytes. Down-regulation of the co-stimulatory molecules CD70 (TNFSF7) and CD80 may contribute to tumor cell survival; however, the mechanism of down-regulation of the TNFSF7 gene during tumorigenesis is poorly understood. Here we present evidence indicating that TNFSF7 gene expression is epigenetically down-regulated via DNA hypermethylation within its promoter region during progression in breast cancer cells in the isogenic MCF10 model. Bisulfite sequencing revealed that the CpG pairs at the proximal region of the TNFSF7 promoter are heavily methylated during progression of breast cancer cells but that methylation of the more distal sequences was not changed considerably. Thus, this epigenetic silencing of the TNFSF7 gene via hypermethylation of its proximal region may allow the benign and invasive MCF10 variants to escape immune surveillance.  相似文献   

17.
18.
Age is a key risk factor for breast cancer and epigenetic alterations may contribute to age-related increases in breast cancer risk, though the relation of age-related methylation in normal breast tissues with altered methylation in breast tumors is unclear. We investigated the relation of age with DNA methylation in normal breast tissues genome-wide using two data sets from the Gene Expression Omnibus (GEO) database (GSE32393 and GSE31979). We validated our observations in an independent set of normal breast tissues, examined age-related methylation in normal breast for enrichment of genomic features, and compared age-related methylation in normal tissue with methylation alterations in breast tumors. Between the two array-based methylation data sets, there were 204 CpG loci with significant (P < 0.05) and consistent age-related methylation, 97% of which were increases in methylation. Our validation sets confirmed the direction of age-related DNA methylation changes in all measured regions. Among the 204 age-related CpG loci, we observed a significant enrichment for CpG islands (P = 8.7E-6) and polycomb group protein target genes (P = 0.03). In addition, 24 of the 204 CpGs with age-related methylation in normal breast were significantly differentially methylated between normal and breast tumor tissues. We identified consistent age-related methylation changes in normal breast tissue that are further altered in breast tumors and may represent early events contributing to breast carcinogenesis. This work identifies age-related methylation in normal breast tissue and begins to deconstruct the contribution of aging to epigenetic alterations present in breast tumors.  相似文献   

19.
20.
《Epigenetics》2013,8(2):268-275
Age is a key risk factor for breast cancer and epigenetic alterations may contribute to age-related increases in breast cancer risk, though the relation of age-related methylation in normal breast tissues with altered methylation in breast tumors is unclear. We investigated the relation of age with DNA methylation in normal breast tissues genome-wide using two data sets from the Gene Expression Omnibus (GEO) database (GSE32393 and GSE31979). We validated our observations in an independent set of normal breast tissues, examined age-related methylation in normal breast for enrichment of genomic features, and compared age-related methylation in normal tissue with methylation alterations in breast tumors. Between the two array-based methylation data sets, there were 204 CpG loci with significant (P < 0.05) and consistent age-related methylation, 97% of which were increases in methylation. Our validation sets confirmed the direction of age-related DNA methylation changes in all measured regions. Among the 204 age-related CpG loci, we observed a significant enrichment for CpG islands (P = 8.7E-6) and polycomb group protein target genes (P = 0.03). In addition, 24 of the 204 CpGs with age-related methylation in normal breast were significantly differentially methylated between normal and breast tumor tissues. We identified consistent age-related methylation changes in normal breast tissue that are further altered in breast tumors and may represent early events contributing to breast carcinogenesis. This work identifies age-related methylation in normal breast tissue and begins to deconstruct the contribution of aging to epigenetic alterations present in breast tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号