共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Anja Bühler Bernd M. Gahr Deung-Dae Park Alberto Bertozzi Alena Boos Mohankrishna Dalvoy Alexander Pott Franz Oswald Rhett A. Kovall Bernhard Kühn Gilbert Weidinger Wolfgang Rottbauer Steffen Just 《PLoS genetics》2021,17(11)
In contrast to mammals, the zebrafish maintains its cardiomyocyte proliferation capacity throughout adulthood. However, neither the molecular mechanisms that orchestrate the proliferation of cardiomyocytes during developmental heart growth nor in the context of regeneration in the adult are sufficiently defined yet. We identified in a forward genetic N-ethyl-N-nitrosourea (ENU) mutagenesis screen the recessive, embryonic-lethal zebrafish mutant baldrian (bal), which shows severely impaired developmental heart growth due to diminished cardiomyocyte proliferation. By positional cloning, we identified a missense mutation in the zebrafish histone deacetylase 1 (hdac1) gene leading to severe protein instability and the loss of Hdac1 function in vivo. Hdac1 inhibition significantly reduces cardiomyocyte proliferation, indicating a role of Hdac1 during developmental heart growth in zebrafish. To evaluate whether developmental and regenerative Hdac1-associated mechanisms of cardiomyocyte proliferation are conserved, we analyzed regenerative cardiomyocyte proliferation after Hdac1 inhibition at the wound border zone in cryoinjured adult zebrafish hearts and we found that Hdac1 is also essential to orchestrate regenerative cardiomyocyte proliferation in the adult vertebrate heart. In summary, our findings suggest an important and conserved role of Histone deacetylase 1 (Hdac1) in developmental and adult regenerative cardiomyocyte proliferation in the vertebrate heart. 相似文献
3.
Takashi Takeuchi 《Development, growth & differentiation》2014,56(5):402-409
The regulation of cardiomyocyte proliferation is important for heart development and regeneration. The proliferation patterns of cardiomyocytes are closely related to heart morphogenesis, size, and functions. The proliferation levels are high during early embryogenesis; however, mammalian cardiomyocytes exit the cell cycle irreversibly soon after birth. The cell cycle exit inhibits cardiac regeneration in mammals. On the other hand, cardiomyocytes of adult zebrafish and probably newts can proliferate after cardiac injury, and the hearts can be regenerated. Therefore, the ability to reproliferate determines regenerative ability. As in other cells, the relationship between proliferation and differentiation is very interesting, and is closely related to cardiac development, regeneration and homeostasis. In this review, these topics are discussed. 相似文献
4.
5.
Oscillatory signaling pathway activity during embryonic development was first identified in the process of vertebrate somite formation. In mouse, this process is thought to be largely controlled by a cyclic signaling network involving the Notch, FGF, and Wnt pathways. Surprisingly, several recent genetic studies reveal that the core oscillation pacemaker is unlikely to involve periodic activation by these pathways. The mechanism(s) responsible for the production of oscillatory gene activity during somite formation remains, therefore, to be discovered. Oscillatory signaling activity has recently been identified in developmental processes distinct from somite formation. Both the processes of limb development in chick embryos and the maintenance of neural progenitors in mouse embryos involve oscillatory gene activity related to the Notch pathway. These discoveries indicate that oscillatory signaling activities during embryonic development might serve a more general function than previously thought. 相似文献
6.
Trk C receptor signaling regulates cardiac myocyte proliferation during early heart development in vivo 总被引:4,自引:0,他引:4
Lin MI Das I Schwartz GM Tsoulfas P Mikawa T Hempstead BL 《Developmental biology》2000,226(2):180-191
Neurotrophin-3 (NT-3) is a member of the neurotrophin family of growth factors, best characterized by its survival- and differentiation-inducing effects on developing neurons bearing the trk C receptor tyrosine kinase. Through analysis of NT-3 and trk C gene-targeted mice we have identified NT-3 as critically regulating cardiac septation, valvulogenesis, and conotruncal formation. Although these defects could reflect cardiac neural crest dysfunction, the expression of NT-3 and trk C by cardiac myocytes prior to neural crest migration prompted analysis of cell-autonomous actions of NT-3 on cardiac myocytes. Retroviral-mediated overexpression of truncated trk C receptor lacking kinase activity was used to inhibit activation of trk C by endogenous NT-3, during early heart development in ovo. During the first week of chicken development, expression of truncated trk C reduced myocyte clone size by more than 60% of control clones. Direct mitogenic actions of NT-3 on embryonic cardiac myocytes were demonstrated by analysis of BrdU incorporation or PCNA immunoreactivity in control and truncated trk C-expressing clones. Inhibition of trk C signaling reduced cardiac myocyte proliferation during the first week of development, but had no effect at later times. These studies demonstrate that endogenous NT-3:trk C signaling regulates cardiac myocyte proliferation during cardiac looping and the establishment of ventricular trabeculation but that myocyte proliferation becomes NT-3 independent during the second week of embryogenesis. 相似文献
7.
Changes in regulation of sodium/calcium exchanger of avian ventricular heart cells during embryonic development 总被引:1,自引:0,他引:1
Shepherd N Graham V Trevedi B Creazzo TL 《American journal of physiology. Cell physiology》2007,292(5):C1942-C1950
It has been suggested that the sodium/calcium exchanger NCX1 may have a more important physiological role in embryonic and neonatal hearts than in adult hearts. However, in chick heart sarcolemmal vesicles, sodium-dependent calcium transport is reported to be small and, moreover, to be 312 times smaller in hearts at embryonic day (ED) 45 than at ED18, the opposite of what would be expected of a transporter that is more important in early development. To better assess the role of NCX1 in calcium regulation in the chick embryonic heart, we measured the activity of NCX1 in chick embryonic hearts as extracellular calcium-activated exchanger current (INCX) under controlled ionic conditions. With intracellular calcium concentration ([Ca2+]i) = 47 nM, INCX density increased from 1.34 ± 0.28 pA/pF at ED2 to 3.22 ± 0.55 pA/pF at ED11 (P = 0.006); however, with [Ca2+]i = 481 nM, the increase was small and statistically insignificant, from 4.54 ± 0.77 to 5.88 ± 0.73 pA/pF (P = 0.20, membrane potential = 0 mV, extracellular calcium concentration = 2 mM). Plots of INCX density against [Ca2+]i were well fitted by the Michaelis-Menton equation and extrapolated to identical maximal currents for ED2 and ED11 cells (extracellular calcium concentration = 1, 2, or 4 mM). Thus the increase in INCX at low [Ca2+]i appeared to reflect a developmental change in allosteric regulation of the exchanger by intracellular calcium rather than an increase in the membrane density of NCX1. Supporting this conclusion, RT-PCR demonstrated little change in the amount of mRNA encoding NCX1 expression from ED2 through ED18. NCX1; chick embryo; allosteric regulation; sodium/calcium exchange current 相似文献
8.
非洲爪蟾是脊椎动物胚胎发育研究中的几种重要模式生物之一,为揭示早期胚胎发育中的分子调控机制做出了显著的贡献.其中一个重要的发现就是细胞信号通路在胚胎发育中起到非常关键的调控作用.本文简单介绍Wnt信号在爪蟾早期胚胎发育不同时期的几种调控作用. 相似文献
9.
Kang Chen Hao Bai Melanie Arzigian Yong‐Xing Gao Jing Bao Wen‐Shu Wu Wei‐Feng Shen Liqun Wu Zack Z. Wang 《Journal of cellular biochemistry》2010,111(1):29-39
The molecules and environment that direct pluripotent stem cell differentiation into cardiomyocytes are largely unknown. Here, we determined a critical role of receptor tyrosine kinase, EphB4, in regulating cardiomyocyte generation from embryonic stem (ES) cells through endothelial cells. The number of spontaneous contracting cardiomyocytes, and the expression of cardiac‐specific genes, including α‐MHC and MLC‐2V, was significantly decreased in EphB4‐null ES cells. EphB4 was expressed in endothelial cells underneath contracting cardiomyocytes, but not in cardiomyocytes. Angiogenic inhibitors, including endostatin and angiostatin, inhibited endothelial cell differentiation and diminished cardiomyogenesis in ES cells. Generation of functional cardiomyocytes and the expression of cardiac‐specific genes were significantly enhanced by co‐culture of ES cells with human endothelial cells. Furthermore, the defects of cardiomyocyte differentiation in EphB4‐deficient ES cells were rescued by human endothelial cells. For the first time, our study demonstrated that endothelial cells play an essential role in facilitating cardiomyocyte differentiation from pluripotent stem cells. EphB4 signaling is a critical component of the endothelial niche to regulate regeneration of cardiomyocytes. J. Cell. Biochem. 111: 29–39, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
10.
11.
Jing Chen 《Genesis (New York, N.Y. : 2000)》2021,59(1-2):e23408
The ubiquitous NF‐Y gene regulates the expression of different genes in various signaling pathways. However, the function of NF‐Y in zebrafish heart development is largely unknown. Previously we identified a same group of cell cycle related gene cluster (CCRG) was downregulated in the embryonic hearts with impeded growth due to various stresses. The promoter regions of these CCRG genes shared a most common motif for NF‐Y. Chromatin immunoprecipitation experiment demonstrated that the binding of NF‐Y to its motif was real on the CCRG candidate gene promoters. Knockdown of embryonic NF‐Y by morpholinos led to a small heart, mimicking the abnormal heart phenotype caused by other stresses. In parallel the expression of certain CCRG candidate genes was reduced in the NF‐Y A morphant hearts exposed to malignant environments. Absence of NF‐Y A also led to undermine cardiomyocyte proliferation and hence less total number of caridomyocytes per heart. Trans‐AM Elisa experiment also found that in the presence of the stresses such as TCDD and TNNT2 MO, the binding capacity of NF‐Y A subunit to its core motif was reduced. We conclude that NF‐Y sustains proper cardiomyocyte proliferation in the heart, thus it plays a positive role in promoting early zebrafish heart growth. 相似文献
12.
Yahan Wu Liping Zhou Hongyu Liu Ran Duan Huixing Zhou Fulei Zhang Xiaoyu He Dongbo Lu Ke Xiong Maolin Xiong Jinzhu Zhuang Yi Liu Li Li Dandan Liang Yi-Han Chen 《Cell research》2021,31(4):450-462
The adult mammalian heart is thought to be a terminally differentiated organ given the postmitotic nature of cardiomyocytes. Consequently, the potential for cardiac repair through cardiomyocyte proliferation is extremely limited. Low-density lipoprotein receptor-related protein 6 (LRP6) is a Wnt co-receptor that is required for embryonic heart development. In this study we investigated the role of LRP6 in heart repair through regulation of cardiomyocyte proliferation. Lrp6 deficiency increased cardiomyocyte cell cycle activity in neonatal, juvenile and adult mice. Cardiomyocyte-specific deletion of Lrp6 in the mouse heart induced a robust regenerative response after myocardial infarction (MI), led to reduced MI area and improvement in left ventricular systolic function. In vivo genetic lineage tracing revealed that the newly formed cardiomyocytes in Lrp6-deficient mouse hearts after MI were mainly derived from resident cardiomyocytes. Furthermore, we found that the pro-proliferative effect of Lrp6 deficiency was mediated by the ING5/P21 signaling pathway. Gene therapy using the adeno-associated virus (AAV)9 miRNAi-Lrp6 construct promoted the repair of heart injury in mice. Lrp6 deficiency also induced the proliferation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Our study identifies LRP6 as a critical regulator of cardiomyocyte proliferation, which may lead to the development of a novel molecular strategy to promote myocardial regeneration and repair.Subject terms: Cell-cycle exit, Cytokinesis 相似文献
13.
In this paper, we are looking for mathematical modeling of mouse embryonic melanoblast proliferation dynamics, taking into account, the expression level of β‐catenin. This protein plays an important role into the whole signal pathway process. Different assumptions on some unobservable features lead to different candidate models. From real data measured, from biological experiments and from a priori biological knowledge, it was able to validate or invalidate some of the candidate models. Data assimilation and parameter identification allowed us to derive a mathematical model that is in very good agreement with biological data. As a result, the produced model can give tracks for biologists into their biological investigations and experimental evidence. Another interest is the use of this model for robust hidden parameter identification like double times or number of founder melanoblasts. 相似文献
14.
Notch signaling is required for arterial-venous differentiation during embryonic vascular development 总被引:30,自引:0,他引:30
Lawson ND Scheer N Pham VN Kim CH Chitnis AB Campos-Ortega JA Weinstein BM 《Development (Cambridge, England)》2001,128(19):3675-3683
Recent evidence indicates that acquisition of artery or vein identity during vascular development is governed, in part, by genetic mechanisms. The artery-specific expression of a number of Notch signaling genes in mouse and zebrafish suggests that this pathway may play a role in arterial-venous cell fate determination during vascular development. We show that loss of Notch signaling in zebrafish embryos leads to molecular defects in arterial-venous differentiation, including loss of artery-specific markers and ectopic expression of venous markers within the dorsal aorta. Conversely, we find that ectopic activation of Notch signaling leads to repression of venous cell fate. Finally, embryos lacking Notch function exhibit defects in blood vessel formation similar to those associated with improper arterial-venous specification. Our results suggest that Notch signaling is required for the proper development of arterial and venous blood vessels, and that a major role of Notch signaling in blood vessels is to repress venous differentiation within developing arteries. Movies available on-line 相似文献
15.
Functions and regulations of fibroblast growth factor signaling during embryonic development 总被引:15,自引:0,他引:15
Fibroblast growth factors (FGF) are secreted molecules which function through the activation of specific tyrosine kinases receptors, the FGF receptors that transduce the signal by activating different pathways including the Ras/MAP kinase and the phospholipase-C gamma pathways. FGFs are involved in the regulation of many developmental processes including patterning, morphogenesis, differentiation, cell proliferation or migration. Such a diverse set of activities requires a tight control of the transduction signal which is achieved through the induction of different feedback inhibitors such as the Sproutys, Sef and MAP kinase phosphatase 3 which are responsible for the attenuation of FGF signals, limiting FGF activities in time and space. 相似文献
16.
17.
Lee GR Bell D Kelso EJ Argent CC McDermott BJ 《American journal of physiology. Heart and circulatory physiology》2004,287(1):H425-H432
The hypothesis that endothelin (ET) receptor mechanisms are altered during development and progression of left ventricular hypertrophy (LVH) in vivo was tested using spontaneously hypertensive rats (SHRs). Ventricular cardiomyocytes were isolated from SHRs before onset (8 and 12 wk) and during progression (16, 20, and 24 wk) of LVH and compared with age-matched normotensive Wistar-Kyoto (WKY) rats. PreproET-1 mRNA expression was elevated in SHR (P < 0.05) relative to WKY cardiomyocytes at 20-24 wk. ET binding-site density was twofold greater in SHR than WKY cells at 12 wk (P < 0.05) but normalized at 20 wk. ET(B) receptors were detected on SHR cardiomyocytes as early as 8 wk and their affinity increased progressively with age (P < 0.05), whereas ET(B) receptors were not detected on WKY cells until 20 wk. ET-1 stimulated protein synthesis with similar maximum responses between strains (21-30%), in contrast with sarafotoxin 6c, which stimulated protein synthesis in SHR (13-20%) but not WKY cells at 12-20 wk. In SHR but not WKY cells, the ET(B) receptor-selective ligand A-192621 increased protein synthesis progressively with the development of LVH (15% maximum effect). In conclusion, the presence of ET(B) receptors (8-12 wk) coupled with functional responsiveness of SHR cells but not WKY cells to sarafotoxin 6c at 12 wk supports the involvement of ET(B) receptors before the onset of cardiomyocyte hypertrophy, whereas altered ET(B) receptor characteristics during active hypertrophy (16-24 wk) indicate that ET(B) receptor mechanisms may also contribute to disease progression. 相似文献
18.
《Organogenesis》2013,9(1):108-125
Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range of developmental disorders and diseases called ciliopathies. Recent studies have indicated a major role of different populations of cilia, including nodal and cardiac primary cilia, in coordinating heart development, and defects in these cilia are associated with congenital heart disease. Here, we present an overview of the role of nodal and cardiac primary cilia in heart development. 相似文献
19.
20.
Crosstalk between the p190-B RhoGAP and IGF signaling pathways is required for embryonic mammary bud development 总被引:2,自引:0,他引:2
Heckman BM Chakravarty G Vargo-Gogola T Gonzales-Rimbau M Hadsell DL Lee AV Settleman J Rosen JM 《Developmental biology》2007,309(1):137-149
P190-B RhoGAP (p190-B, also known as ARHGAP5) has been shown to play an essential role in invasion of the terminal end buds (TEBs) into the surrounding fat pad during mammary gland ductal morphogenesis. Here we report that embryos with a homozygous p190-B gene deletion exhibit major defects in embryonic mammary bud development. Overall, p190-B-deficient buds were smaller in size, contained fewer cells, and displayed characteristics of impaired mesenchymal proliferation and differentiation. Consistent with the reported effects of p190-B deletion on IGF-1R signaling, IGF-1R-deficient embryos also displayed a similar small mammary bud phenotype. However, unlike the p190-B-deficient embryos, the IGF-1R-deficient embryos exhibited decreased epithelial proliferation and did not display mesenchymal defects. Because both IGF and p190-B signaling affect IRS-1/2, we examined IRS-1/2 double knockout embryonic mammary buds. These embryos displayed major defects similar to the p190-B-deficient embryos including smaller bud size. Importantly, like the p190-B-deficient buds, proliferation of the IRS-1/2-deficient mesenchyme was impaired. These results indicate that IGF signaling through p190-B and IRS proteins is critical for mammary bud formation and ensuing epithelial-mesenchymal interactions necessary to sustain mammary bud morphogenesis. 相似文献