首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transitory starch is formed in chloroplasts during the day and broken down at night. Transitory starch degradation could be regulated by light, circadian rhythms, or carbon balance. To test the role of these potential regulators, starch breakdown rates and metabolites were measured in bean (Phaseolus vulgaris) and Arabidopsis (Arabidopsis thaliana) plants. In continuous light, starch and maltose levels oscillated in a circadian manner. Under photorespiratory conditions, transitory starch breakdown occurred in the light faster than at night and glucose-6-P (G6P) was elevated. Nonaqueous fractionation showed that the increase in G6P occurred in the chloroplast. When Arabidopsis plants lacking the plastidic starch phosphorylase enzyme were placed under photorespiratory conditions, G6P levels remained constant, indicating that the increased chloroplastic G6P resulted from phosphorolytic starch degradation. Maltose was increased under photorespiratory conditions in both wild type and plants lacking starch phosphorylase, indicating that regulation of starch breakdown may occur at a point preceding the division of the hydrolytic and phosphorolytic pathways. When bean leaves were held in N2 to suppress photosynthesis and Suc synthesis without increasing photorespiration, starch breakdown did not occur and maltose and G6P levels remained constant. The redox status of the chloroplasts was found to be oxidized under conditions favoring starch degradation.  相似文献   

2.
3.
Maltose is the major form of carbon exported from the chloroplast at night   总被引:14,自引:0,他引:14  
Weise SE  Weber AP  Sharkey TD 《Planta》2004,218(3):474-482
Transitory starch is formed in chloroplasts during the day and broken down at night. We investigated carbon export from chloroplasts resulting from transitory-starch breakdown. Starch-filled chloroplasts from spinach (Spinacia oleracea L. cv. Nordic IV) were isolated 1 h after the beginning of the dark period and incubated for 2.5 h, followed by centrifugation through silicone oil. Exported products were measured in the incubation medium to avoid measuring compounds retained inside the chloroplasts. Maltose and glucose made up 85% of the total exported products and were exported at rates of 626 and 309 nmol C mg–1 chlorophyll h–1, respectively. Net export of phosphorylated products was less than 5% and higher maltodextrins were not detected. Maltose levels in leaves of bean (Phaseolus vulgaris L. cv. Linden), spinach, and Arabidopsis thaliana (L.) Heynh. were low in the light and high in the dark. Maltose levels remained low and unchanged during the light/dark cycle in two starch-deficient Arabidopsis mutants, stf1, deficient in plastid phosphoglucomutase, and pgi, deficient in plastid phosphoglucoisomerase. Through the use of nonaqueous fractionation, we determined that maltose was distributed equally between the chloroplast and cytosolic fractions during darkness. In the light there was approximately 24% more maltose in the cytosol than the chloroplast. Taken together these data indicate that maltose is the major form of carbon exported from the chloroplast at night as a result of starch breakdown. We hypothesize that the hydrolytic pathway for transitory-starch degradation is the primary pathway used when starch is being converted to sucrose and that the phosphorolytic pathway provides carbon for other purposes.Abbreviations CAM crassulacean acid metabolism - Chl chlorophyll - DHAP dihydroxyacetone phosphate - FBPase fructose bisphosphatase - GAP glyceraldehyde-3-phosphate - G6P glucose 6-phosphate - PGA 3-phosphoglycerate - TPT triose phosphate translocator - WT wild type  相似文献   

4.
Leaf starch degradation comes out of the shadows   总被引:1,自引:0,他引:1  
During the day, plants accumulate starch in their leaves as an energy source for the coming night. Based on recent findings, the prevailing view of how the transitory starch is remobilized needs considerable revision. Analyses of transgenic and mutant plants demonstrate that plastidic glucan phosphorylase is not required for normal starch breakdown and cast doubt on the presumed essential role of alpha-amylase but do show that beta-amylase is important. Repression of the activity of a plastidic beta-amylase, the export of its product (maltose) or further metabolism of maltose by a newly identified transglucosidase impairs starch degradation. Breakdown of particulate starch also depends on the activity of glucan-water dikinase, which phosphorylates glucosyl residues within the polymer.  相似文献   

5.
6.
In the future, plants will have additional CO(2) for photosynthesis. However, plants do not take maximal advantage of this additional CO(2) and it has been hypothesized that end product synthesis limitations and sugar sensing mechanisms are important in regulating plant responses to increasing CO(2). Attempts to increase end product synthesis capacity by engineering increased sucrose-phosphate synthase activity have been generally, but not universally, successful. It was found that plants benefited from a two- to three-fold increase in SPS activity but a 10-fold increase did not increase yield. Despite the success in increasing yield, increasing SPS did not increase photosynthesis. However, carbon export from chloroplasts was increased during the day and reduced at night (when starch provides carbon for sucrose synthesis. We develop here a hypothesis that starch degradation is closely sensed by hexokinase because a newly discovered pathway required for starch to sucrose conversion that involves maltose is one of few metabolic pathways that requires hexokinase activity.  相似文献   

7.
8.
9.
During photosynthesis, part of the fixed carbon is directed into the synthesis of transitory starch, which serves as an intermediate carbon storage facility in chloroplasts. This transitory starch is mobilized during the night. Increasing evidence indicates that the main route of starch breakdown proceeds by way of hydrolytic enzymes and results in glucose formation. This pathway requires a glucose translocator to mediate the export of glucose from the chloroplasts. We have reexamined the kinetic properties of the plastidic glucose translocator and, using a differential labeling procedure, have identified the glucose translocator as a component of the inner envelope membrane. Peptide sequence information derived from this protein was used to isolate cDNA clones encoding a putative plastidic glucose translocator from spinach, potato, tobacco, Arabidopsis, and maize. We also present the molecular characterization of a candidate for a hexose transporter of the plastid envelope membrane. This transporter, initially characterized more than 20 years ago, is closely related to the mammalian glucose transporter GLUT family and differs from all other plant hexose transporters that have been characterized to date.  相似文献   

10.
In regions of their leaves, tdy1-R mutants hyperaccumulate starch. We propose 2 alternative hypotheses to account for the data, that Tdy1 functions in starch catabolism or that Tdy1 promotes sucrose export from leaves. To determine whether Tdy1 might function in starch breakdown, we exposed plants to extended darkness. We found that the tdy1-R mutant leaves retain large amounts of starch on prolonged dark treatment, consistent with a defect in starch catabolism. To further test this hypothesis, we identified a mutant allele of the leaf expressed small subunit of ADP-glucose pyrophosphorylase (agps-m1), an enzyme required for starch synthesis. We determined that the agps-m1 mutant allele is a molecular null and that plants homozygous for the mutation lack transitory leaf starch. Epistasis analysis of tdy1-R; agps-m1 double mutants demonstrates that Tdy1 function is independent of starch metabolism. These data suggest that Tdy1 may function in sucrose export from leaves.  相似文献   

11.
Application of glyphosate (N-[phosphonomethyl] glycine) to exporting leaves of sugar beet (Beta vulgaris, L.) during the day lowered stomatal conductance and carbon fixation. Allocation of newly fixed carbon to foliar starch accumulation was nearly completely inhibited, being decreased by the same amount as net carbon fixation. In contrast, decreasing net carbon fixation in untreated leaves by lowering CO2 concentration caused starch accumulation to decrease, but only in the same proportion as net carbon fixation. Shikimate level increased 50-fold in treated leaves but the elevated rate of carbon accumulation in shikimate was only 4% of the decrease in the rate of starch accumulation. Application of steady state labeling with 14CO2 to exporting leaves confirmed the above changes in carbon metabolism, but revealed no other major daytime differences in the 14C-content of amino acids or other compounds between treated and control leaves. Less 14C accumulated in treated leaves because of decreased fixation, not increased export. The proportion of newly fixed carbon allocated to sucrose increased, maintaining export at the level in control leaves. Returning net carbon exchange to the rate before treatment restored starch accumulation fully and prevented a decrease in export during the subsequent dark period.  相似文献   

12.
Debranching enzymes, which hydrolyze α-1 and 6-glucosidic linkages in α-polyglucans, play a dual role in the synthesis and degradation of starch in plants. A transposon-inserted rice mutant of isoamylase3 (isa3) contained an increased amount of starch in the leaf blade at the end of the night, indicating that ISA3 plays a role in the degradation of transitory starch during the night. An epitope-tagged ISA3 expressed in Escherichia coli exhibited hydrolytic activity on β-limit dextrin and amylopectin. We investigated whether ISA3 plays a role in amyloplast development and starch metabolism in the developing endosperm. ISA3-green fluorescent protein (GFP) fusion protein expressed under the control of the rice ISA3 promoter was targeted to the amyloplast stroma in the endosperm. Overexpression of ISA3 in the sugary1 mutant, which is deficient in ISA1 activity, did not convert water-soluble phytoglycogen to starch granules, indicating that ISA1 and ISA3 are not functionally redundant. Both overexpression and loss of function of ISA3 in the endosperm generated pleomorphic amyloplasts and starch granules. Furthermore, chloroplasts in the leaf blade of isa3 seedlings were large and pleomorphic. These results suggest that ISA3 facilitates starch metabolism and affects morphological characteristics of plastids in rice.  相似文献   

13.
14.
Maltose is the major form of carbon exported from the chloroplast at night as a result of transitory starch breakdown. Maltose exists as an alpha- or beta-anomer. We developed an enzymatic technique for distinguishing between the two anomers of maltose and tested the accuracy and specificity of this technique using beta-maltose liberated from maltoheptose by beta-amylase. This technique was used to investigate which form of maltose is present during transitory starch degradation in bean (Phaseolus vulgaris), wild-type Arabidopsis (Arabidopsis thaliana), two starch deficient Arabidopsis lines, and one starch-excess mutant of Arabidopsis. In Phaseolus and wild-type Arabidopsis, beta-maltose levels were low during the day but were much higher at night. In Arabidopsis plants unable to metabolize maltose due to a T-DNA insertion in the gene for the cytosolic amylomaltase, (Y. Lu, T.D. Sharkey [2004] Planta 218: 466-473) levels of alpha- and beta-maltose were high during both the day and night. In starchless mutants of Arabidopsis, total maltose levels were low and almost completely in the alpha-form. We also found that the subcellular concentration of beta-maltose at night was greater in the chloroplast than in the cytosol by 278 microm. We conclude that beta-maltose is the metabolically active anomer of maltose and that a sufficient gradient of beta-maltose exists between the chloroplast and cytosol to allow for passive transport of maltose out of chloroplasts at night.  相似文献   

15.
ADP-glucose pyrophosphorylase (AGP) is a heterotetrameric enzyme comprising two small and two large subunits that catalyze the production of ADP-glucose linked to starch biosynthesis. The current paradigm on leaf starch metabolism assumes that post-translational redox modification of AGP in response to light is a major determinant of fine regulation of transitory starch accumulation. According to this view, under oxidizing conditions occurring during the night the two AGP small subunits (APS1) are covalently linked via an intermolecular disulfide bridge that inactivates the protein, whereas under reducing conditions occurring during the day NADP-thioredoxin reductase C (NTRC)-dependent reductive monomerization of APS1 activates the enzyme. In this work we have analyzed changes in the redox status of APS1 during dark-light transition in leaves of plants cultured under different light intensities. Furthermore, we have carried out time-course analyses of starch content in ntrc mutants, and in aps1 mutants expressing the Escherichia coli redox-insensitive AGP (GlgC) in the chloroplast. We also characterized aps1 plants expressing a redox-insensitive, mutated APS1 (APS1mut) form in which the highly conserved Cys81 residue involved in the formation of the intermolecular disulfide bridge has been replaced by serine. We found that a very moderate, NTRC-dependent APS1 monomerization process in response to light occurred only when plants were cultured under photo-oxidative conditions. We also found that starch accumulation rates during the light in leaves of both ntrc mutants and GlgC-expressing aps1 mutants were similar to those of wild-type leaves. Furthermore, the pattern of starch accumulation during illumination in leaves of APS1mut-expressing aps1 mutants was similar to that of APS1-expressing aps1 mutants at any light intensity. The overall data demonstrate that post-translational redox modification of AGP in response to light is not a major determinant of fine regulation of transitory starch accumulation in Arabidopsis.  相似文献   

16.
The aim of this work was to discover the pathway of starch breakdown during thermogenesis in the club of the spadix of Arum maculatum. The conventional α-amylase of higher plants could not be demonstrated in extracts of clubs although such extracts did exhibit considerable hydrolytic activity towards starch. This activity had an action pattern characteristic of an endo-amylase, was destroyed by heating to 70°, and was not inhibited by either 7 mM ethylenediaminetetra-acetic acid or 100 mM N-ethyl maleimide. Measurements of this hydrolytic activity, and of the maximum catalytic activities of starch phosphorylase, phosphoglucomutase and hexokinase, were made at different stages of club development. These measurements were compared with estimates of the rate of starch breakdown at thermogenesis. This comparison indicates that phosphorolytic cleavage does not play a large role in such starch breakdown, and that this process is mediated, mainly, by the hydrolytic activity, described above, and by hexokinase.  相似文献   

17.
Starch is the major storage carbohydrate in higher plants and of considerable importance for the human diet and for numerous technical applications. In addition, starch can be accumulated transiently in chloroplasts as a temporary deposit of carbohydrates during ongoing photosynthesis. This transitory starch has to be mobilized during the subsequent dark period. Mutants defective in starch mobilization are characterized by high starch contents in leaves after prolonged periods of darkness and therefore are termed starch excess (sex) mutants. Here we describe the molecular characterization of the Arabidopsis sex1 mutant that has been proposed to be defective in the export of glucose resulting from hydrolytic starch breakdown. The mutated gene in sex1 was cloned using a map-based cloning approach. By complementation of the mutant, immunological analysis, and analysis of starch phosphorylation, we show that sex1 is defective in the Arabidopsis homolog of the R1 protein and not in the hexose transporter. We propose that the SEX1 protein (R1) functions as an overall regulator of starch mobilization by controlling the phosphate content of starch.  相似文献   

18.
Carbon Partitioning in Mature Leaves of Pepper: Effects of Daylength   总被引:2,自引:0,他引:2  
Grange, R. 1. 1985. Carbon partitioning in mature leaves ofpepper: effects of daylength.—J. exp. Bot. 36: 1749–1759. The partitioning of recently fixed carbon has been examinedin mature pepper leaves grown in 6, 10 or 14 h photoperiodsat different irradiances chosen to give similar radiation integralsand in a 6 h photoperiod at the lowest of these irradiances.The partitioning of carbon into export, starch, sugars and respirationwas followed over the photopenod and the subsequent night ina mature leaf. The maximum export rate during the day (approximately 18 µgC cm–2 leaf h–1) was not significantly differentamong the treatments. Net photosynthesis rate was directly relatedto irradiance; the proportion of net photosynthesis exportedduring the day was 33% in 6-h days and 57% in 14-h days. Leafstarch accumulation (as a proportion of net photosynthesis rate)increased slightly when plants were grown in 6-h days. The remobilization of starch and sugars at night allowed exportrates to remain similar over 24 h when plants were grown in10-h or 14-h photoperiods. Leaves grown in 6-h days showed nosignificant changes in export rate during the first few hoursof night but exhausted their starch reserves during the nightand export rates declined. Sucrose and hexose levels decreased at the onset of darkness,but did not fall below 40 µg cm–2 in plants grownin 10-h or 14-h photoperiods; when this level was reached after3–4 h of darkness, starch breakdown began. In leaves grownin both 6-h treatments, sucrose levels fell below 40 µgcm–2 when starch reserves were depleted during the nightand the export rate decreased concurrently. The results are discussed in relation to the control of exportand starch metabolism in the leaf. Key words: Pepper, partitioning, daylength  相似文献   

19.
20.
In the halophytic plant Mesembryanthemum crystallinum salinity or drought can change the mode of photosynthesis from C3 to crassulacean acid metabolism (CAM). These two stress factors are linked to oxidative stress, however, the induction of CAM by oxidative stress per se is not straightforward. Treatment with high light (HL) did not lead to the induction of CAM, as documented by a low night/day difference in malate level and a low expression of the CAM-related form of phosphoenolcarboxylase (Ppc1), despite causing some oxidative damage (elevated MDA level, malondialdehyde). In contrast to the action of high salinity (0.4 M NaCl), HL treatment did not activate neither the cytosolic NADP-malic enzyme nor the chloroplastic form of NADP-dependent malate dehydrogenase (NADP-MDH). In plastids of HL-treated plants a huge amount of starch was accumulated. This was associated with a weak stimulation of hydrolytic and phosphorolytic starch-degrading enzymes, in contrast to their strong up-regulation under high salinity. It is concluded that HL alone is not able to activate starch degradation necessary for CAM performance. Moreover, in the absence of salinity in C3M. crystallinum plants an age-dependent increase in energy dissipation from PSII was documented under high irradiance, as illustrated by non-photochemical quenching (NPQ). Obtained data suggest that in this halophytic species several photoprotective strategies are strictly salinity-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号