首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic and physiological similarities between mice and humans have focused considerable attention on rodents as potential models of human health and disease. Together with the wealth of resources, knowledge, and technologies surrounding the mouse as a model system, these similarities have propelled this species to the forefront of biomedical research. The advent of genomic manipulation has quickly led to the creation and use of genetically engineered mice as powerful tools for cutting edge studies of human disease research including the discovery, refinement, and utility of many currently available therapeutic regimes. In particular, the creation of genetically modified mice as models of human disease has remarkably changed our ability to understand the molecular mechanisms and cellular pathways underlying disease states. Moreover, the mouse models resulting from gene transfer technologies have been important components correlating an individual’s gene expression profile to the development of disease pathologies. The objective of this review is to provide physician-scientists with an expansive historical and logistical overview of the creation of mouse models of human disease through gene transfer technologies. Our expectation is that this will facilitate on-going disease research studies and may initiate new areas of translational research leading to enhanced patient care.  相似文献   

2.
基因编辑猪在生物医学研究中的应用   总被引:1,自引:0,他引:1  
黄耀强  李国玲  杨化强  吴珍芳 《遗传》2018,40(8):632-646
  相似文献   

3.
The last decade has seen many exciting technological breakthroughs that greatly expanded the toolboxes for biological and biomedical research, yet few have had more impact than induced pluripotent stem cells and modern-day genome editing. These technologies are providing unprecedented opportunities to improve physiological relevance of experimental models, further our understanding of developmental processes, and develop novel therapies. One of the research areas that benefit greatly from these technological advances is the three-dimensional human organoid culture systems that resemble human tissues morphologically and physiologically. Here we summarize the development of human pluripotent stem cells and their differentiation through organoid formation. We further discuss how genetic modifications, genome editing in particular, were applied to answer basic biological and biomedical questions using organoid cultures of both somatic and pluripotent stem cell origins. Finally, we discuss the potential challenges of applying human pluripotent stem cell and organoid technologies for safety and efficiency evaluation of emerging genome editing tools.  相似文献   

4.
Functional genomics in the post-genome era   总被引:24,自引:0,他引:24  
As the biomedical research community enters the post-genome era, studying gene expression patterns and phenotypes in model organisms will be an important part of analyzing the role of genes in human health and disease. New technologies involving DNA chips will improve the ability to evaluate the differential expression of a large number of genes simultaneously. Also, new approaches for generating mutations in mice will significantly decrease the cost and increase the rate of generating mutant lines that model human disease.  相似文献   

5.
俞东红  曹华  王心睿 《生物工程学报》2021,37(11):3961-3974
随着人类生物学研究的不断深入,需建立新的模型系统为研究提供了有力的工具。虽然传统的研究模型已被广泛应用,但难以准确反映组织、器官在机体中的生理现象。类器官 (Organoid) 是来源于干细胞或器官祖细胞的三维细胞聚集体,可分化和自组织形成具有人体相应器官的部分特定功能和结构。由于类器官具有人源性,可模拟器官发育和形成,在体外长期扩增中具有基因组稳定性,并能够形成活体生物库进行高通量筛选等优势,成为近年来备受关注的体外模型。目前,利用类器官模型结合新兴的基因编辑、器官芯片、单细胞RNA测序技术等,能够突破传统模型的瓶颈,在器官水平上为疾病模型的建立、药物研发、精准医疗以及再生医学等提供有价值的信息。文中就类器官分类及特性、研究应用、与其他技术结合应用及展望这4个方面进行综述。  相似文献   

6.
7.
Recent advances in bioengineering technologies have made it possible to collect high-quality reproducible data quantitatively in a wide range of laboratory animal species, including rodents. Several of these technologies are incorporated into a plan called Miniaturization, which aims to design, develop, and maintain rodent animal models to study the pathophysiology and therapy of human diseases. Laser Doppler flowmetry, digital sonomicrometry, bioelectrical impedance, and microdialysis are some of the most widely used methods under the plan because they cause minimal pain and distress, reduce the number of animals used in biomedical research, and allow chronic, nonterminal assessment of physiological parameters in rodents. An overview of each of these technologies and their major applications in rodents used for biomedical research is provided.  相似文献   

8.
基因编辑技术及其在基因治疗中的应用   总被引:1,自引:0,他引:1  
  相似文献   

9.
Advances in swine biomedical model genomics   总被引:1,自引:0,他引:1  
This review is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease progression. The pig model allows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, and collection of repeated peripheral samples and, at kill, detailed mucosal tissues. The ability to use pigs from the same litter, or cloned or transgenic pigs, facilitates comparative analyses and genetic mapping. The availability of numerous well defined cell lines, representing a broad range of tissues, further facilitates testing of gene expression, drug susceptibility, etc. Thus the pig is an excellent biomedical model for humans. For genomic applications it is an asset that the pig genome has high sequence and chromosome structure homology with humans. With the swine genome sequence now well advanced there are improving genetic and proteomic tools for these comparative analyses. The review will discuss some of the genomic approaches used to probe these models. The review will highlight genomic studies of melanoma and of infectious disease resistance, discussing issues to consider in designing such studies. It will end with a short discussion of the potential for genomic approaches to develop new alternatives for control of the most economically important disease of pigs, porcine reproductive and respiratory syndrome (PRRS), and the potential for applying knowledge gained with this virus for human viral infectious disease studies.  相似文献   

10.
The rat is the most extensively studied model organism and is broadly used in biomedical research. Current rat disease models are selected from existing strains and their number is thereby limited by the degree of naturally occurring variation or spontaneous mutations. We have used ENU mutagenesis to increase genetic variation in laboratory rats and identified a recessive mutant, named tornado, showing aberrant circling behavior, hyperactivity, and stereotypic head shaking. More detailed analysis revealed profound deafness due to disorganization and degeneration of the organ of Corti that already manifests at the onset of hearing. We set up a single nucleotide polymorphism (SNP)-based mapping strategy to identify the affected gene, revealing strong linkage to the central region of chromosome 1. Candidate gene resequencing identified a point mutation that introduces a premature stopcodon in Myo7a. Mutations in human MYO7A result in Usher syndrome type 1B, a severe autosomal inherited recessive disease that involves deafness and vestibular dysfunction. Here, we present the first characterized rat model for this disease. In addition, we demonstrate proof of principle for the generation and cloning of human disease models in rat using ENU mutagenesis, providing good perspectives for systematic phenotypic screens in the rat.  相似文献   

11.
转基因家兔模型制作方法   总被引:6,自引:0,他引:6  
作为生物医学研究重要的实验动物模型,转基因家兔已经被广泛应用在人类心脑血管疾病、艾滋病以及癌症等生物医学研究领域,特别是利用转基因家兔模型在人类动脉粥样硬化实验研究中已经取得了令人注目的成绩。本文结合我们自己制作转基因家兔的经验、研究成果以及文献资料,详细介绍了利用原核显微注射法、直接将外源基因注入受精卵雄原核中的转基因家兔制作技术,回顾了利用转基因家兔模型在生物医学研究中取得的重要进展。  相似文献   

12.
Nutrition research, like most biomedical disciplines, adopted and often uses experimental approaches based on Beadle and Tatum’s one gene—one polypeptide hypothesis, thereby reducing biological processes to single reactions or pathways. Systems thinking is needed to understand the complexity of health and disease processes requiring measurements of physiological processes, as well as environmental and social factors, which may alter the expression of genetic information. Analysis of physiological processes with omics technologies to assess systems’ responses has only become available over the past decade and remains costly. Studies of environmental and social conditions known to alter health are often not connected to biomedical research. While these facts are widely accepted, developing and conducting comprehensive research programs for health are often beyond financial and human resources of single research groups. We propose a new research program on essential nutrients for optimal underpinning of growth and health (ENOUGH) that will use systems approaches with more comprehensive measurements and biostatistical analysis of the many biological and environmental factors that influence undernutrition. Creating a knowledge base for nutrition and health is a necessary first step toward developing solutions targeted to different populations in diverse social and physical environments for the two billion undernourished people in developed and developing economies.  相似文献   

13.
14.
多能性干细胞是一类具有体外无限自我复制和分化为体内多种细胞类型能力的多潜能细胞,是研究基因功能、建立疾病模型和促进再生医学领域发展的一种重要工具。自1981年小鼠胚胎干细胞建立以来,科学家们已经先后成功地建立了灵长类、人、大鼠的胚胎干细胞和小鼠、大鼠的上胚层干细胞等。但是,目前研究表明,维持人、灵长类胚胎干细胞的多能性信号通路与维持小鼠、大鼠胚胎干细胞的截然不同,而与维持小鼠、大鼠上胚层干细胞的信号通路比较类似。因此,该文对目前研究较多的维持小鼠胚胎干细胞、人胚胎干细胞和小鼠上胚层干细胞的多能性信号通路进行了综述,希望能够对其它物种的多能性干细胞研究提供有益的借鉴。  相似文献   

15.
Epigenetic regulation of gene expression has become relevant to nearly all areas of biomedical research. The emergence of technologies that allow for examination of the epigenome combined with identification of key protein complexes that mediate the myriad chromatin modifications that occur have greatly enhanced the versatility and efficacy of tools with which to study normal development and disease states. The evolutionarily conserved polycomb group genes (PcG) have been identified as a predominant mechanism by which gene silencing occurs during development, differentiation, and disease. While molecular events that target PcG complexes have been well defined in some non‐vertebrate models, the details of locus specificity and functional diversity of mammalian PcG proteins have not yet unresolved. Here we discuss recent findings that offer novel mechanistic events and add complexity to our understanding of PcG function in vertebrates. J. Cell. Physiol. 226: 1719–1721, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
本文从4个方面综述并讨论了血管病变机制与血管功能调控研究的重要意义、现状与发展趋势:(1)血管病变的机制研究是重大的社会需求,而且是国际医学领域关注的重要热点问题;(2)血管病变机制与血管功能调控研究的现状、前沿热点和关键科学问题;(3)血管稳态与重构的调控机制研究面临的困难与挑战;(4)中国在血管病变相关重大疾病研究领域的主要方向.通过对血管生物医学领域具有普遍性、前沿性的重要科学问题进行讨论,提出阐明血管稳态和重构的调控机制是研究血管病变机制的关键.研究中应注重多学科交叉,利用基因组学、生物信息学、再生医学、影像学、组织工程与材料工程等领域的新进展,建立各种新方法、新技术和新的模式生物,为研究以血管病变为病理基础的多种重大疾病的机制、及实现早期预警和防治奠定基础.  相似文献   

18.
The recent development of the CRISPR/Cas9 system as an efficient and accessible programmable genome-editing tool has revolutionized basic science research. CRISPR/Cas9 system-based technologies have armed researchers with new powerful tools to unveil the impact of genetics on disease development by enabling the creation of precise cellular and animal models of human diseases. The therapeutic potential of these technologies is tremendous, particularly in gene therapy, in which a patient-specific mutation is genetically corrected in order to treat human diseases that are untreatable with conventional therapies. However, the translation of CRISPR/Cas9 into the clinics will be challenging, since we still need to improve the efficiency, specificity and delivery of this technology. In this review, we focus on several in vitro, in vivo and ex vivo applications of the CRISPR/Cas9 system in human disease-focused research, explore the potential of this technology in translational medicine and discuss some of the major challenges for its future use in patients.  相似文献   

19.
The zebrafish has emerged as a versatile model organism for biomedical research, yet its potential has been limited by a lack of conditional reverse-genetic tools. Here we report a chemically inducible gene expression technology that has orthogonality to vertebrate signaling processes, high induction levels, and rapid kinetics. Coupled with tissue-specific promoters, this system provides multidimensional control of gene expression and will enable new models of human disorders and diseases.  相似文献   

20.
Achieving the potential of zebrafish models in biomedical research is contingent on the development of reverse-genetic resources. This review describes current technologies for genetic perturbations in zebrafish, including an ecdysone receptor-based system that permits conditional transgene expression. Such methodologies promise to enable new zebrafish models for interrogating human physiology and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号