首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The south Texas Gulf coast is a unique ecosystem that contains a number of different bay systems. We used random amplification of polymorphic DNA (RAPD) markers to assess genetic diversity, differentiation and genetic distance between populations from two different bays that differed significantly in terms of flowering rate and disturbance. We found that while each bay contained a number of unique RAPD profiles, the average genetic diversity in each population was low. Genetic distance between the two populations was also low (Fst = 0.084) and the majority (92%) of the genetic variation was attributed to differences between individuals within populations. The population from the Laguna Madre location, however, was polymorphic for a larger number of markers, had a higher average genetic diversity and a larger number of unique RAPD profiles. The higher level of flowering at this location most likely accounts for the higher diversity.  相似文献   

2.
Tropical turtle grass beds (Thalassia testudinum) were investigated in an UNESCO Biosphere Reserve in St. Johns Island, United States Virgin Islands. Four coastal bays were studied to assess floral characteristics, benthic invertebrate density and secondary production. These bays varied with respect to oceanic exposure and anthropogenic stresses. Results indicate that Coral Bay Harbor, the most anthropogenetically impacted site, had the highest T. testudinum biomass, but the lowest floral diversity. Its faunal community was dominated by small polychaetes with significantly lower secondary production. The most protected site (Hurricane Hole) maintained the highest floral and faunal species richness, faunal density, faunal diversity, and secondary production. The other two bays, Great Lameshur and Little Lameshur, demonstrated intermediate plant biomass and species richness, faunal density and secondary production. Each of these bays, however, had high oceanic exposure due to their orientation which also demonstrated a sediment size shift to larger particles compared to the other sites. One unique finding was a significant increase in the shoot:root ratio in Little Lameshur where green turtle (Chelonia mydas) grazing was frequently observed, suggesting a potential top-down structuring force in this bay.  相似文献   

3.
Starch grains are a ubiquitous component of plants that have been used in tandem with phytoliths, pollen, and macrofossils to reconstruct past floral diversity. This tool has yet to be fully explored for aquatic plants, specifically seagrasses, which lack phytoliths and are rarely preserved as macrofossils or pollen. If starch grains in seagrasses are morphologically distinct, this method has the potential to improve seagrass identification in the fossil record in such cases where its starch is preserved (e.g. scratches and occlusal surfaces of tooth enamel from seagrass consumers). The goals of this study were twofold: (1) to determine if starch is present in seagrass material and (2) to assess how starch grain morphology differs between different seagrasses.This study focused on four abundant and ecologically distinct seagrasses from the Caribbean: Halodule wrightii, Ruppia maritima, Syringodium filiforme, and Thalassia testudinum. Starch grains were observed in all species except S. filiforme. Grains from H. wrightii are typically observed in side-on orientation, are sub-round to angular, and are fairly small (3-19 μm, end-on). Grains of R. maritima are small spherical grains (4-8 μm) that have a centric hilum and a straight extinction cross with a median angle between the arms of 90°. Grains from T. testudinum are large (9-31 μm, end-on), conical in side-on and round/sub-round in end-on orientation, have a slightly eccentric hilum with an obvious particle, and prominent lamellae.Visual assessment and comparative statistics demonstrate that the morphology of starch grains from T. testudinum, R. maritima, and H. wrightii are significantly different. With more extensive research, there is potential for the positive identification of starch grains from an unknown seagrass. The ability to identify seagrass from starch grains could facilitate the identification of seagrasses in the fossil record and supply information on seagrass evolution and distribution, climate effects on seagrass distribution, and the diets of seagrass consumers.  相似文献   

4.
5.
Seagrass leaves are often densely covered by epiphytic algae which can suppress seagrass productivity and has been implicated in declines of seagrass meadows worldwide. The net effect of epiphytes on seagrass growth and morphology depends on the independent and interactive effects of a variety of factors, including nutrient availability and the intensity of grazing on epiphytes. Here I report the results of a mesocosm experiment designed to test the effects of nutrient addition and within-functional group variation (grazer species composition and the source population of seagrass) on the strength of the interactions among grazers, epiphytes, and turtle grass (Thalassia testudinum). Turtle grass ramets from two sites in the northern Gulf of Mexico were cleared of epiphytes and transplanted into common-garden mesocosms. Replicate ramets were grown in a split-split plot design with two levels of dissolved nutrients and four different grazer species combinations (Tozeuma carolinense alone, Pagurus maclaughlinae alone, both species together, and no grazers present). As expected, grazers had a significant negative effect on epiphyte biomass/leaf area and a significant positive effect on turtle grass growth in the mesocosms. The two species were more similar in their direct effects on epiphyte biomass than in their indirect effects on turtle grass growth; this may reflect differences in epiphyte community composition under different grazer treatments. The effect of nutrient addition on turtle grass growth depended critically on the intensity of grazing: in the presence of grazers, turtle grass tended to produce a greater biomass of new leaf tissue in the tanks with nutrients added than in the control tanks. However, when grazers were absent, the direction of the effect was reversed, and plants with nutrients added grew less than the control plants. The two source populations of turtle grass differed significantly in epiphyte biomass/leaf area accrued in the mesocosms as well as in the strength of the effect of grazers on turtle grass growth. This suggests that population differentiation in seagrass interactions with epiphytes, as well as spatial and temporal variation in resources and grazer community composition, can greatly effect the role of epiphytes in limiting seagrass productivity.  相似文献   

6.
The dominant seagrass in Florida Bay, Thalassia testudinum Banks ex König, is a stenohaline species with optimum growth around marine salinity (30-40 PSU). Previous studies have examined the responses of mature short shoots of T. testudinum to environmental stresses. Our goal was to assess responses of seedlings to changes in water chemistry in Florida Bay that might occur as part of the Comprehensive Everglades Restoration Plan (CERP). Specifically, we examined seedling survival, growth, photosynthesis, respiration and osmolality in response to hypo- and hyper-salinity conditions, as well as possible synergistic effects of depleted and elevated ammonium concentrations. The study was conducted in mesocosms on T. testudinum seedlings collected during August 2003 near Florida Bay. Hyper- and hypo-saline conditions were detrimental to the fitness of T. testudinum seedlings. Plants at 0 and 70 PSU exhibited 100% mortality and a significant decrease in survival was observed in the 10, 50 and 60 PSU treatments. Increased levels of ammonium further decreased growth in the lower salinity treatments. Seedlings in 30 and 40 PSU had the greatest growth. Quantum yield and relative electron transport rate, measured using PAM fluorometry, showed a decrease in photosynthetic performance on either side of the 30-40 PSU optimum. Tissue osmolality decreased significantly with decreased salinity but tissue remained consistently hyperosmotic to the media across all salinity treatments. Maintaining negative water potential and allocating more energy to osmoregulation may decrease the productivity of this species in salinity-stress conditions. Our results suggest that the salinity-tolerance limits of this seagrass at the seedling stage are not as broad as those reported for mature plants. Increased fresh water inflow, especially if co-occurring with an increase in water-column ammonium, could negatively affect successful recruitment of T. testudinum seedlings in northern regions of Florida Bay.  相似文献   

7.
Halophila baillonii Ascherson was found in Belize, Central America in 2003 and 2005. The observation extends the known range of this seagrass species to the western Caribbean. H. baillonii was previously recorded only in the eastern Caribbean and at one Pacific site in Panama. Both fruits and flowers of H. baillonii were observed at two locations in Belize in 2005. H. baillonii in Belize is an important food for manatee, forms a productive seagrass-based ecosystem, and is adversely affected by shoreline development and watershed run-off.  相似文献   

8.
The interactive effects of light, nutrients, and simulated herbivory on the structure and functioning of a subtropical turtlegrass bed were analyzed monthly from May to October 2001 in Perdido Bay, FL. For each of the three factors, two levels were evaluated in a factorial design with four replicates per treatment. The variables included: light, at ambient and 40% reduction; nutrients, at ambient and 2× ambient concentrations; and herbivory, with no herbivory and simulated effects of a density of 15 sea urchins/m2. In practice, light levels turned out to be 40% of surface PAR for ambient conditions, and 16% for shaded plots. Biomass removed as herbivory represented, on average, slightly less than 20% of the above-ground biomass. Separate three-way ANOVAs found no significant three-way interactions for any of the response variables, and few two-way interactions. There were no significant nutrient effects on turtlegrass above-ground biomass, although nutrient additions produced significant decreases in epibiont biomass, and net above-ground primary production (NAPP); significant increases in below-ground biomass during the peak of the growing season. Shoot density and average number of leaves per shoot increased significantly, while the C/N ratio of the oldest leaf in the enriched plots decreased significantly. Light reduction significantly negatively affected all response variables, except below-ground biomass, shoot density and leaf length. Herbivory had isolated and inconsistent significant effects on below-ground biomass, shoot density, average number of leaves per shoot, and leaf length and width. Overall, our results indicate that nutrients are not limiting in Perdido Bay, and that nutrient additions had mostly detrimental effects. Light appeared to be the most important variable limiting seagrasses growth and abundance, and as with terrestrial plants, seagrasses seemed to respond more to light and nutrients than to herbivory. However, it is essential that additional tests of the single and interactive effects of the three key factors of light, nutrients and herbivory be done to evaluate the generality of our work, since our study is the first of its kind in seagrass meadows.  相似文献   

9.
The northern geographic limit for Halophila johnsonii and Halophila decipiens has been reported as Sebastian Inlet, within the Indian River Lagoon, Florida. Surveys conducted in August 2007 determined the new northern limit to be 21.5 km north of the previously known limit. This new northern limit is a 10% range extension for H. johnsonii, a federally threatened species. We conclude that these range extensions are recent, based on (1) the small size of patches; (2) unusually good water clarity conditions due to a recent drought; (3) recent mild/warmer winters; and (4) a recent mechanism for transporting propagules, the numerous hurricanes of 2004. Although this recent range extension is considered ephemeral, similar range extensions may have occurred in the past and may occur again in the future under favorable conditions given the high capacity of these two species for dispersal to favorable sites. The northern limits of these species should not be viewed as static locations; rather, they must be considered dynamic features.  相似文献   

10.
We examined C:N:P ratios of seagrass leaves and epiphytic algae from the eastern shoreline of Grand Bay (Alabama, USA) and the entire shoreline of Big Lagoon (Florida, USA) during the summer of 2001 and March 2003, and used contour plotting of N:P ratios in both locations to examine spatial trends in our data. Results indicated phosphorus limitation for seagrass and epiphytes in each bay. In addition, C:N, C:P, and N:P ratios in both locations showed differences between summer and wintertime values for seagrasses; however, the only epiphytic elemental ratios to differ were C:P and N:P ratios in Grand Bay. Within Grand Bay, phosphorus limitation was stronger in epiphytes than seagrasses, with the largest amount of variation in N:P ratios occurring adjacent to the only developed land on the shoreline. In Big Lagoon, two distinct areas were present in N:P contour plots: the eastern end of the bay that was influenced by water from the Gulf of Mexico and Santa Rosa Sound, and the western end of the bay that was most influenced by Perdido Bay and a developed area along the northern shoreline. Detection of phosphorus limitation within Big Lagoon was not surprising, as both input sources to Big Lagoon are known to be low in phosphorus. However, phosphorus limitation in Grand Bay was unexpected, as both “feeder systems” (Mobile Bay and the Mississippi Sound) have high ambient phosphorus levels. As a result, C:N:P ratios from seagrasses and epiphytes may not accurately reflect ambient nutrient levels in Grand Bay due to decreased availability of some forms of phosphorus or increased competition for the uptake of phosphorus. Overall, our C:N:P analysis suggested that not only was P limitation greater than N limitation in Grand Bay and Big Lagoon, but patterns of nutrient limitation varied both temporally and geographically for inter- and intra-bay comparisons.  相似文献   

11.
12.
A new species of Weltrichia (Williamsoniaceae: Bennettitales) is described from the Middle Jurassic of Oaxaca. The specimens come from the Tecomazuchil Formation in the Ayuquila region, at the border between the Oaxaca and Puebla states. Fossils are preserved as impressions and compressions, in a fine-grained sublitharenite sequence deposited in a fluvial environment. Preserved diagnostic characters include: large size; a cup-shaped receptacle showing seven radially arranged and basically fused microsporophylls bearing synangia. Microsporophylls are ornamented with longitudinal striations and fine brittled hairs on the edge of their wide base, and taper into a narrow distal tip. In the adaxial part of the microsporophylls seven to nine synangia are observed. These characters differentiate the new species Weltrichia mixtequensis from all previously recorded species from Mexico or elsewhere. The presence of this new species in the Middle Jurassic strata of the Ayuquila region add to the scarce fossil record of microsporangiate structures in the Jurassic flora of Mexico.  相似文献   

13.
The potential of alleviated fishing pressure measures established at the Marine Natural Reserve of Cerbère-Banyuls to affect phenological characters of P. oceanica, the main canopy-forming seagrass, was studied. Our results show differences in some leaf parameters between meadows under fishing prohibition measures compared to those without. In addition shallow P. oceanica meadows inside MPAs had lower non-structural carbohydrate content, yet are able to maintain themselves and, moreover, with an increased density. On the other hand, sexual reproduction was reduced inside protected areas.  相似文献   

14.
One of the largest contiguous seagrass ecosystems in the world is located on the shallow continental shelf adjacent to the west coast of Florida, USA and is comprised of seasonally ephemeral Halophila decipiens meadows. Little is known about the demography of the west Florida shelf H. decipiens, which may produce 4.56 × 108 g C day−1 or more during the peak growing season. We documented seagrass distribution, biomass, and productivity, and density of sediment seed reserves, seedlings, flowers and fruits on the southeastern portion of the west Florida shelf by sampling along a transect at three stations in 10, 15, and 20 m water depth. Biomass, flower, fruit, seedling, and seed bank densities tended to be highest at stations in 10–15 m water depth and lowest at 20 m. Flowers and fruit were most prevalent during summer cruises (June and August 1999, July 2000). Seedling germination occurred during summer, fall (October 1999), and winter (January 2000) sampling events, with the highest seedling densities present during the winter. Seed bank density remained consistent through time. A Category I hurricane with sustained winds of 120 km h−1 passed over the stations, but only limited impact on H. decipiens biomass was observed. The presence of a persistent seed bank provides for recovery after storm disturbance, annual reestablishment of populations, and continual maintenance of the 20,000 km2 of deep water seagrass habitat present on the west Florida shelf.  相似文献   

15.
Rasineni GK  Guha A  Reddy AR 《Plant science》2011,181(4):428-438
The photosynthetic response of trees to rising CO2 concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO2 responses in trees have either doubled the gas concentration (>700 μmol mol−1) or used single large addition of CO2 (500-600 μmol mol−1). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO2 concentration (460 μmol mol−1). Net photosynthetic rate of Gmelina was ∼30% higher in plants grown in elevated CO2 compared with ambient CO2-grown plants. The elevated CO2 concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in FV/FM, ABS/CSm, ET0/CSm and RuBPcase activity. The study also revealed that elevated CO2 conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered ∼2100 g tree−1 carbon after 120 days of treatment when compared to ambient CO2-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatory down-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 μmol mol−1 CO2.  相似文献   

16.
尾叶桉无性系生长、干形和抗枝瘿姬小蜂综合选择   总被引:1,自引:0,他引:1  
对尾叶桉60个无性系进行了生长量和桉树枝瘿姬小蜂的敏感性调查。结果表明, 生长性状在无性系单株间存在显著的相关性,而尾叶桉受姬小蜂的危害情况与生长性状间无显著相关性。对遗传参数的估算表明, 尾叶桉无性系抗桉树枝瘿姬小蜂水平有较高的重复力,可以通过无性系选择获得抗蜂、速生的尾叶桉无性系。最终通过独立淘汰法选择出6个优良的尾叶桉无性系。  相似文献   

17.
The Abildgaardieae tribe within the family Cyperaceae comprises six or seven genera, among which Abildgaardia, Bulbostylis and Fimbristylis pose a challenge regarding their morphological delimitation. Molecular phylogenetic analyses including species of Abildgaardieae are rare, but in most of those studies, Abildgaardia and Fimbristylis appear as more closely related to each other than to the Bulbostylis genus. Duration of the style base has been one of the most widely used characters for delimiting these three genera. The style base is a persistent structure in most species of Bulbostylis and deciduous in Abildgaardia and Fimbristylis. The reasons why the style base may persist or fall off have been scarcely discussed. The assumption that abscission layers are present in the style base of all three genera and the fact that tracheids have been observed in the style base of Bulbostylis suggest that this structure might have histological complexity. In view of this, a complete ontogenetic and anatomical study of the gynoecium has been carried out for all these three genera. It turned out that the style base is histologically simple in Abildgaardia, Bulbostylis and Fimbristylis and shows similar structure and development in all three genera. The fact that the style base has a shorter duration in Abildgaardia and Fimbristylis than in Bulbostylis might be related to the lower number of sclerotised cells that make up such structures in the mature fruit of the former two genera. Abscission of the style and style base may be the result of much simpler reasons than the differentiation of an abscission layer, resulting merely from mechanical shear force effects. Differences among genera have been observed in the shape of the style base and the development of the style. The histological simplicity of the style base is consistent with the homoplastic appearance of this structure in genera that are not closely related (e.g. Rhynchospora). Because of this, while the presence of the thickened style base seems to be a synapomorphy in species of Abildgaardieae, its persistence on or detachment from the fruit might have emerged repeatedly during this clade evolution and might not be a suitable character for genera delimitation.  相似文献   

18.
Juvenile or adult Artemia sp. are often used as live prey for the rearing of early life stages of some crustacean, fish and cephalopod species. The improvements of both Artemia growth and its biochemical composition are key issues for the suitable use of Artemia biomass in these rearing processes. In this study we evaluated the growth and survival rates of Artemia fed with the cryptophyte Rhodomonas lens in comparison with different microalgal species commonly used in aquaculture: the prasinophyte Tetraselmis suecica, the prymnesiophyte Isochrysis galbana Parke, and the eustigmatophyte Nannochloropsis gaditana. Microalgae were cultured semi-continuously in nutrient saturated conditions and with a daily renewal rate of 30% of the volume of cultures, to obtain biomass of controlled and optimized composition. Considerable differences in Artemia growth were observed, as well as in the survival rate. At day 8 of rearing, Artemia fed R. lens had the highest length (4.9 ±0.6 mm, P < 0.001), followed by individuals fed T. suecica (4.2 ± 0.7 mm), I. galbana (3.6 ± 0.7 mm) and finally those fed N. gaditana (1.5 ± 0.2 mm). The survival rate of Artemia fed N. gaditana (18 ± 3%) was much lower (P < 0.001) than values found for the remaining groups (69 to 88%). The growth rate of Artemia obtained with R. lens was in general much higher than with other microalgal diets previously reported in the literature. The higher protein content of R. lens could explain the higher growth obtained with this species, but differences of Artemia growth with the different diets could not be explained solely on the basis of the gross composition of microalgae. Factors such as cell size and digestibility all seem to contribute to the results observed. Another trial was carried out to investigate differences in Artemia growth and on its biochemical composition when fed the best two diets: R. lens or T. suecica. The fatty acid (FA) and total amino acid (AA) composition of both microalgal species and the composition of Artemia were assessed as well. As found in the first experiment individuals fed R. lens (group ARHO) grew faster than those fed T. suecica (group ATET), attaining 3.6 ± 0.3 mm and 3.2 ± 0.4 mm (P < 0.001), respectively, after 5 days of rearing. The much higher AA content obtained in R. lens may be on the basis of the higher growth obtained with this species. Protein and carbohydrate levels in Artemia juveniles were very similar in both groups (64-68% of dry weight, and 8-10%, respectively). Lipid was slightly lower in ARHO (12%) than in ATET (15%, P < 0.01). Regarding the FA composition, juveniles from group ARHO contained higher levels of eicosapentaenoic acid (EPA, 6.2%) than juveniles from ATET (4.1%, P < 0.01), whereas docosahexaenoic acid (DHA) was only found in juveniles from ARHO (1.1%). Taking into account that the daily productivity of R. lens culture was higher than, or at least equal, the remaining microalgal species this cryptophyte is confirmed as an excellent diet to optimize the growth of Artemia, as well as to improve its biochemical composition.  相似文献   

19.
20.
In an outdoor mesocosm experiment of 80 weeks, the effect of nitrogen and phosphorus addition was tested on growth of Typha domingensis Presl. rhizomes in a matrix of Schoenoplectus americanus (Pers.) Volkart ex Schinz and Keller, under loading rates of 0.23 gm−2 d−1 of nitrogen, 0.17 gm−2 d−1 of P, both nutrient together and control conditions, to assess the potential expansion of T. domingensis in response to nutrient inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号