首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Denatured states of proteins, the starting points as well as the intermediates of folding in vivo, play important roles in biological function. In this context, we describe here urea unfolding and characterization of the denatured state of GTPase effector domain (GED) of dynamin created by 9.7 M urea. These are compared with similar data for guanidine induced denaturation reported earlier. The unfolding characteristics in the two cases, as measured by the optical probes, are significantly different, urea unfolding proceeding via an intermediate. The structural and motional characteristics, determined by NMR, of the two denatured states are also strikingly different. The urea-denatured state shows a combination of α- and β-preferences in contrast to the entirely β-preferences in the guanidine-denatured state. Higher 15N transverse relaxation rates suggest higher folding propensities in the urea-denatured state. The implications of these to GED folding are discussed.  相似文献   

2.
GTPase effector domain (GED) of dynamin forms megadalton-sized assembly in vitro, rendering its structural characterization highly challenging. To probe the core of the GED assembly, we performed H/D exchange in native state and analyzed the residual amides following dissociation by dimethyl sulfoxide (DMSO). The data indicated a hierarchy in solvent exposure: Ser2-Glu13, Glu23-Phe32, Asp37-Gln43, Val51-Met55, and Lys60-Asp64 followed by the remaining segments. This reflects the chain packing in the core of the assembly. The segment Leu65-Pro138 in the C-terminal half is largely in the interior of the core, while the N-terminal segment Asp37-Asp64 traverses into and out of the core. Next, we characterized the structural and motional behavior of the DMSO-denatured state. The stretches Gly9-Lys18, Asp37-Arg42, Lys68-Met74, and Ser136-Thr137 were seen to display alternate conformations in slow exchange. In the major population, both α and β propensities were seen along the polypeptide chain. Spectral density analysis of 15N R1, R2, and 1H-15N nuclear Overhauser effect collected at 600 and 800 MHz suggested the presence of four domains of slow motions, namely, A (Leu40-Tyr91), A′ (Leu124-Ile130); B (Asn97-Gln107), B′ (Tyr117-Leu120), two of which flank the region Arg109-Met116, for which no peaks are seen in the heteronuclear single quantum coherence spectrum. These domains would identify folding and association initiation sites of GED. Interestingly, they also coincide with the helical domain in the native state, suggesting that helix formation leads to self-association of GED.  相似文献   

3.
We used site-specific mutagenesis by targeting E179 and F190 on the structure of photoprotein Mnemiopsin 2 (Mn2) from Mnemiopsis leidyi. The tertiary structure of E179S and F190L mutants was made by the MODELLER program. Far-ultraviolet circular dichroism data showed that the overall secondary structural content of photoprotein is not changed upon mutation, however the helicity and stabilizing interactions in helical structure decreases in mutants as compared with the wild-type (WT) photoprotein. Fluorescence spectra data revealed that the tertiary structure of the mutants is more compact than that of WT Mn2. According to the heat-induced denaturation experiments data, the melting temperature (Tm) for the unfolding of tertiary structure of the F190L variant increases by 3°C compared with that of the WT and E179S mutant. Interestingly, the conformational enthalpy of the F190L mutant (86 kcal mol−1) is considerably lower than those in the WT photoprotein (102 kcal mol−1) and E179S mutant (106 kcal mol−1). The significant difference in the enthalpy of the thermal unfolding process could be explained by considering that the thermally denatured state of the F190L mutant is structurally less expanded than the WT and E179S variants. Bioluminescence activity data showed that the maximum characteristic wavelengths of the mutants undergo blue shift as compared with the WT protein. Initial intensity of the F190L and E179S variants was recorded to be 137.5% and 55.9% of the WT protein, respectively.  相似文献   

4.
The effect of replacing a histidine ligand on the properties of the oxygen-evolving complex (OEC) and the structure of the Mn4Ca cluster in Photosystem II (PSII) is studied by x-ray absorption spectroscopy using PSII core complexes from the Synechocystis sp. PCC 6803 D1 polypeptide mutant H332E. In the x-ray crystallographic structures of PSII, D1-His332 has been assigned as a direct ligand of a manganese ion, and the mutation of this histidine ligand to glutamate has been reported to prevent the advancement of the OEC beyond the S2Yz intermediate state. The manganese K-edge (1s core electron to 4p) absorption spectrum of D1-H332E shifts to a lower energy compared with that of the native WT samples, suggesting that the electronic structure of the manganese cluster is affected by the presence of the additional negative charge on the OEC of the mutant. The extended x-ray absorption spectrum shows that the geometric structure of the cluster is altered substantially from that of the native WT state, resulting in an elongation of manganese-ligand and manganese-manganese interactions in the mutant. The strontium-H332E mutant, in which calcium is substituted by strontium, confirms that strontium (calcium) is a part of the altered cluster. The structural perturbations caused by the D1-H332E mutation are much larger than those produced by any biochemical treatment or mutation examined previously with x-ray absorption spectroscopy. The substantial structural changes provide an explanation not only for the altered properties of the D1-H332E mutant but also the importance of the histidine ligand for proper assembly of the Mn4Ca cluster.  相似文献   

5.
Mutations in PKD2 gene result in autosomal dominant polycystic kidney disease (ADPKD). PKD2 encodes polycystin-2 (TRPP2), which is a homologue of transient receptor potential (TRP) cation channel proteins. Here we identify a novel PKD2 mutation that generates a C-terminal tail-truncated TRPP2 mutant 697fsX with a frameshift resulting in an aberrant 17-amino acid addition after glutamic acid residue 697 from a family showing mild ADPKD symptoms. When recombinantly expressed in HEK293 cells, wild-type (WT) TRPP2 localized at the endoplasmic reticulum (ER) membrane significantly enhanced Ca2+ release from the ER upon muscarinic acetylcholine receptor (mAChR) stimulation. In contrast, 697fsX, which showed a predominant plasma membrane localization characteristic of TRPP2 mutants with C terminus deletion, prominently increased mAChR-activated Ca2+ influx in cells expressing TRPC3 or TRPC7. Coimmunoprecipitation, pulldown assay, and cross-linking experiments revealed a physical association between 697fsX and TRPC3 or TRPC7. 697fsX but not WT TRPP2 elicited a depolarizing shift of reversal potentials and an enhancement of single-channel conductance indicative of altered ion-permeating pore properties of mAChR-activated currents. Importantly, in kidney epithelial LLC-PK1 cells the recombinant 679fsX construct was codistributed with native TRPC3 proteins at the apical membrane area, but the WT construct was distributed in the basolateral membrane and adjacent intracellular areas. Our results suggest that heteromeric cation channels comprised of the TRPP2 mutant and the TRPC3 or TRPC7 protein induce enhanced receptor-activated Ca2+ influx that may lead to dysregulated cell growth in ADPKD.  相似文献   

6.

Background

This study was designed to determine whether the cardiac ryanodine receptor (RyR2) central domain, a region associated with catecholamine polymorphic ventricular tachycardia (CPVT) mutations, interacts with the RyR2 regulators, ATP and the FK506-binding protein 12.6 (FKBP12.6).

Methods

Wild-type (WT) RyR2 central domain constructs (G2236to G2491) and those containing the CPVT mutations P2328S and N2386I, were expressed as recombinant proteins. Folding and stability of the proteins were examined by circular dichroism (CD) spectroscopy and guanidine hydrochloride chemical denaturation.

Results

The far-UV CD spectra showed a soluble stably-folded protein with WT and mutant proteins exhibiting a similar secondary structure. Chemical denaturation analysis also confirmed a stable protein for both WT and mutant constructs with similar two-state unfolding. ATP and caffeine binding was measured by fluorescence spectroscopy. Both ATP and caffeine bound with an EC50 of ~ 200–400 μM, and the affinity was the same for WT and mutant constructs. Sequence alignment with other ATP binding proteins indicated the RyR2 central domain contains the signature of an ATP binding pocket. Interaction of the central domain with FKBP12.6 was tested by glutaraldehyde cross-linking and no association was found.

Conclusions

The RyR2 central domain, expressed as a ‘correctly’ folded recombinant protein, bound ATP in accord with bioinformatics evidence of conserved ATP binding sequence motifs. An interaction with FKBP12.6 was not evident. CPVT mutations did not disrupt the secondary structure nor binding to ATP.

General significance

Part of the RyR2 central domain CPVT mutation cluster, can be expressed independently with retention of ATP binding.  相似文献   

7.
8.
Brugada syndrome (BrS) is a life-threatening, inherited arrhythmogenic syndrome associated with autosomal dominant mutations in SCN5A, the gene encoding the cardiac Na+ channel alpha subunit (Nav1.5). The aim of this work was to characterize the functional alterations caused by a novel SCN5A mutation, I890T, and thus establish whether this mutation is associated with BrS. The mutation was identified by direct sequencing of SCN5A from the proband’s DNA. Wild-type (WT) or I890T Nav1.5 channels were heterologously expressed in human embryonic kidney cells. Sodium currents were studied using standard whole cell patch-clamp protocols and immunodetection experiments were performed using an antibody against human Nav1.5 channel. A marked decrease in current density was observed in cells expressing the I890T channel (from −52.0±6.5 pA/pF, n = 15 to −35.9±3.4 pA/pF, n = 22, at −20 mV, WT and I890T, respectively). Moreover, a positive shift of the activation curve was identified (V 1/2 = −32.0±0.3 mV, n = 18, and −27.3±0.3 mV, n = 22, WT and I890T, respectively). No changes between WT and I890T currents were observed in steady-state inactivation, time course of inactivation, slow inactivation or recovery from inactivation parameters. Cell surface protein biotinylation analyses confirmed that Nav1.5 channel membrane expression levels were similar in WT and I890T cells. In summary, our data reveal that the I890T mutation, located within the pore of Nav1.5, causes an evident loss-of-function of the channel. Thus, the BrS phenotype observed in the proband is most likely due to this mutation.  相似文献   

9.
The effect of leucine-rich repeat kinase 2 (LRRK2) mutation I2020T on its kinase activity has been controversial, with both increased and decreased effects being reported. We conducted steady-state and pre-steady-state kinetic studies on LRRKtide and its analog LRRKtideS. Their phosphorylation differs by the rate-limiting steps: product release is rate-limiting for LRRKtide and phosphoryl transfer is rate-limiting for LRRKtideS. As a result, we observed that the I2020T mutant is more active than wild type (WT) LRRK2 for LRRKtideS phosphorylation, whereas it is less active than WT for LRRKtide phosphorylation. Our pre-steady-state kinetic data suggest that (i) the I2020T mutant accelerates the rates of phosphoryl transfer of both reactions by 3–7-fold; (ii) this increase is masked by a rate-limiting product release step for LRRKtide phosphorylation; and (iii) the observed lower activity of the mutant for LRRKtide phosphorylation is a consequence of its instability: the concentration of the active form of the mutant is 3-fold lower than WT. The I2020T mutant has a dramatically low KATP and therefore leads to resistance to ATP competitive inhibitors. Two well known DFG-out or type II inhibitors are also weaker toward the mutant because they inhibit the mutant in an unexpected ATP competitive mechanism. The I2020 residue lies next to the DYG motif of the activation loop of the LRRK2 kinase domain. Our modeling and metadynamic simulations suggest that the I2020T mutant stabilizes the DYG-in active conformation and creates an unusual allosteric pocket that can bind type II inhibitors but in an ATP competitive fashion.  相似文献   

10.
The initial events in protein aggregation involve fluctuations that populate monomer conformations, which lead to oligomerization and fibril assembly. The highly populated structures, driven by a balance between hydrophobic and electrostatic interactions in the protease-resistant wild-type Aβ21-30 peptide and mutants E22Q (Dutch), D23N (Iowa), and K28N, are analyzed using molecular dynamics simulations. Intrapeptide electrostatic interactions were connected to calculated pKa values that compare well with the experimental estimates. The pKa values of the titratable residues show that E22 and D23 side chains form salt bridges only infrequently with the K28 side chain. Contacts between E22-K28 are more probable in “dried” salt bridges, whereas D23-K28 contacts are more probable in solvated salt bridges. The strength of the intrapeptide hydrophobic interactions increases as D23N < WT < E22Q < K28A. Free-energy profiles and disconnectivity representation of the energy landscapes show that the monomer structures partition into four distinct basins. The hydrophobic interactions cluster the Aβ21-30 peptide into two basins, differentiated by the relative position of the DVG(23-25) and GSN(25-27) fragments about the G25 residue. The E22Q mutation increases the population with intact VGSN turn compared to the wild-type (WT) peptide. The increase in the population of the structures in the aggregation-prone Basin I in E22Q, which occurs solely due to the difference in charge states between the Dutch mutant and the WT, gives a structural explanation of the somewhat larger aggregation rate in the mutant. The D23N mutation dramatically reduces the intrapeptide interactions. The K28A mutation increases the intrapeptide hydrophobic interactions that promote population of structures in Basin I and Basin II whose structures are characterized by hydrophobic interaction between V24 and K28 side chains but with well-separated ends of the backbone atoms in the VGSN turn. The intrapeptide electrostatic interactions in the WT and E22Q peptides roughen the free-energy surface compared to the K28A peptide. The D23N mutation has a flat free-energy surface, corresponding to an increased population of random coil-like structures with weak hydrophobic and electrostatic interactions. We propose that mutations or sequences that enhance the probability of occupying Basin I would promote aggregation of Aβ peptides.  相似文献   

11.
The ferric form of truncated hemoglobin II from Thermobifida fusca (Tf-trHb) and its triple mutant WG8F-YB10F-YCD1F at neutral and alkaline pH, and in the presence of CN have been characterized by resonance Raman spectroscopy, electron paramagnetic resonance spectroscopy, and molecular dynamics simulations. Tf-trHb contains three polar residues in the distal site, namely TrpG8, TyrCD1 and TyrB10. Whereas TrpG8 can act as a potential hydrogen-bond donor, the tyrosines can act as donors or acceptors. Ligand binding in heme-containing proteins is determined by a number of factors, including the nature and conformation of the distal residues and their capability to stabilize the heme-bound ligand via hydrogen-bonding and electrostatic interactions. Since both the RR Fe–OH and Fe–CN frequencies are very sensitive to the distal environment, detailed information on structural variations has been obtained. The hydroxyl ligand binds only the WT protein giving rise to two different conformers. In form 1 the anion is stabilized by H-bonds with TrpG8, TyrCD1 and a water molecule, in turn H-bonded to TyrB10. In form 2, H-bonding with TyrCD1 is mediated by a water molecule. Unlike the OH ligand, CN binds both WT and the triple mutant giving rise to two forms with similar spectroscopic characteristics. The overall results clearly indicate that H-bonding interactions both with distal residues and water molecules are important structural determinants in the active site of Tf-trHb. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

12.
A peculiar feature of the psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis (PhSOD) is the presence in its amino acid sequence of a reactive cysteine (Cys57). To define the role of this residue, a structural characterization of the effect of two PhSOD mutations, C57S and C57R, was performed. Thermal and denaturant-induced unfolding of wild type and mutant PhSOD followed by circular dichroism and fluorescence studies revealed that C→R substitution alters the thermal stability and the resistance against denaturants of the enzyme, whereas C57S only alters the stability of the protein against urea. The crystallographic data on the C57R mutation suggest an involvement of the Arg side chain in the formation of salt bridges on protein surface. These findings support the hypothesis that the thermal resistance of PhSOD relies on optimization of charge–charge interactions on its surface. Our study contributes to a deeper understanding of the denaturation mechanism of superoxide dismutases, suggesting the presence of a structural dimeric intermediate between the native state and the unfolded state. This hypothesis is supported by the crystalline and solution data on the reduced form of the enzyme.  相似文献   

13.
Rhodopsin is the visual photoreceptor responsible for dim light vision. This receptor is located in the rod cell of the retina and is a prototypical member of the G-protein-coupled receptor superfamily. The structural details underlying the molecular recognition event in transducin activation by photoactivated rhodopsin are of key interest to unravel the molecular mechanism of signal transduction in the retina. We constructed and expressed rhodopsin mutants in the second and third cytoplasmic domains of rhodopsin – where the natural amino acids were substituted by the human M3 acetylcholine muscarinic receptor homologous residues – in order to determine their potential involvement in G-protein recognition. These mutants showed normal chromophore formation and a similar photobleaching behavior than WT rhodopsin, but decreased thermal stability in the dark state. The single mutant V1383.53 and the multiple mutant containing V2275.62 and a combination of mutations at the cytoplasmic end of transmembrane helix 6 caused a reduction in transducin activation upon rhodopsin photoactivation. Furthermore, combination of mutants at the second and third cytoplasmic domains revealed a cooperative role, and partially restored transducin activation. The results indicate that hydrophobic interactions by V1383.53, V2275.62, V2506.33, V2546.37 and I2556.38 are critical for receptor activation and/or efficient rhodopsin–transducin interaction.  相似文献   

14.
Harpins – a group of proteins that elicit hypersensitive response (HR) in non-host plants – are secreted by certain Gram-negative plant pathogenic bacteria upon interaction with the plant. In the present study, the microenvironment and solvent accessibility of the sole tryptophan residue (Trp-167) in harpin HrpZPss, secreted by Pseudomonas syringae pv. syringae, have been characterized by fluorescence spectroscopic studies. Emission λmax of the native protein at 328 nm indicates that Trp-167 is buried in a hydrophobic region in the interior of the protein matrix. Significant quenching (53%) was seen with the neutral quencher, acrylamide at 0.5 M concentration, whereas quenching by ionic quenchers, I (∼10%) and Cs+ (negligible) was considerably lower. In the presence of 6.0 M guanidine hydrochloride (GdnHCl) the emission λmax shifted to 350.5 nm, and quenching by both neutral and ionic quenchers increased significantly, suggesting complete exposure of the indole side chain to the aqueous medium. Fluorescence studies on the thermal unfolding of HrpZPss are fully consistent with a complex thermal unfolding process and high thermal stability of this protein, inferred from previous differential scanning calorimetric and dynamic light scattering studies. However, the protein exhibits low resistance to chemical denaturants, with 50% unfolding seen in the presence of 1.77 M GdnHCl or 3.59 M urea. The ratio of m value, determined from linear extrapolation model, for GdnHCl and urea-induced unfolding was 1.8 and suggests the presence of hydrophobic interactions, which could possibly involve leucine zipper-like helical regions on the surface of the protein.  相似文献   

15.
《FEBS letters》2014,588(23):4364-4368
O2 reduction was investigated in photosystem I (PS I) complexes isolated from cyanobacteria Synechocystis sp. PCC 6803 wild type (WT) and menB mutant strain, which is unable to synthesize phylloquinone and contains plastoquinone at the quinone-binding site A1. PS I complexes from WT and menB mutant exhibited different dependencies of O2 reduction on light intensity, namely, the values of O2 reduction rate in WT did not reach saturation at high intensities, in contrast to the values in menB mutant. The obtained results suggest the immediate phylloquinone involvement in the light-induced O2 reduction by PS I.  相似文献   

16.
Crystal structures of nitric oxide synthases (NOS) isoforms have shown the presence of a strongly conserved heme active-site residue, Tyr588 (numbering for rat neuronal NOS, nNOS). Preliminary biochemical studies have highlighted its importance in the binding and oxidation to NO of natural substrates L-Arg and Nω-hydroxy-l-arginine (NOHA) and suggested its involvement in mechanism. We have used UV-visible and EPR spectroscopy to investigate the effects of the Tyr588 to Phe mutation on the heme-distal environment, on the binding of a large series of guanidines and N-hydroxyguanidines that differ from L-Arg and NOHA by the nature of their alkyl- or aryl-side chain, and on the abilities of wild type (WT) and mutant to oxidize these analogues with formation of NO. Our EPR experiments show that the heme environment of the Tyr588Phe mutant differs from that of WT nNOS. However, the addition of L-Arg to this mutant results in EPR spectra similar to that of WT nNOS. Tyr588Phe mutant binds L-Arg and NOHA with much weaker affinities than WT nNOS but both proteins bind non α-amino acid guanidines and N-hydroxyguanidines with close affinities. WT nNOS and mutant do not form NO from the tested guanidines but oxidize several N-hydroxyguanidines with formation of NO in almost identical rates. Our results show that the Tyr588Phe mutation induces structural modifications of the H-bonds network in the heme-distal site that alter the reactivity of the heme. They support recent spectroscopic and mechanistic studies that involve two distinct heme-based active species in the two steps of NOS mechanism.  相似文献   

17.
The human eye lens is composed of fiber cells packed with crystallins up to 450 mg/ml. Human γD-crystallin (HγD-Crys) is a monomeric, two-domain protein of the lens central nucleus. Both domains of this long lived protein have double Greek key β-sheet folds with well packed hydrophobic cores. Three mutations resulting in amino acid substitutions in the γ-crystallin buried cores (two in the N-terminal domain (N-td) and one in the C-terminal domain (C-td)) cause early onset cataract in mice, presumably an aggregated state of the mutant crystallins. It has not been possible to identify the aggregating precursor within lens tissues. To compare in vivo cataract-forming phenotypes with in vitro unfolding and aggregation of γ-crystallins, mouse mutant substitutions were introduced into HγD-Crys. The mutant proteins L5S, V75D, and I90F were expressed and purified from Escherichia coli. WT HγD-Crys unfolds in vitro through a three-state pathway, exhibiting an intermediate with the N-td unfolded and the C-td native-like. L5S and V75D in the N-td also displayed three-state unfolding transitions, with the first transition, unfolding of the N-td, shifted to significantly lower denaturant concentrations. I90F destabilized the C-td, shifting the overall unfolding transition to lower denaturant concentrations. During thermal denaturation, the mutant proteins exhibited lowered thermal stability compared with WT. Kinetic unfolding experiments showed that the N-tds of L5S and V75D unfolded faster than WT. I90F was globally destabilized and unfolded more rapidly. These results support models of cataract formation in which generation of partially unfolded species are precursors to the aggregated cataractous states responsible for light scattering.  相似文献   

18.
Long QT syndrome (LQTS) 1 is the most common type of inherited LQTS and is linked to mutations in the KCNQ1 gene. We identified a KCNQ1 missense mutation, KCNQ1 G325R, in an asymptomatic patient presenting with significant QT prolongation (QTc, 448–600 ms). Prior clinical reports revealed phenotypic variability ranging from the absence of symptoms to syncope among KCNQ1 G325R mutation carriers. The present study was designed to determine the G325R ion channel phenotype and its association with the clinical LQTS presentation. Electrophysiological testing was performed using the Xenopus oocyte expression system. KCNQ1 G325R channels were non-functional and suppressed wild type (WT) currents by 71.1%. In the presence of the native cardiac regulatory ß-subunit, KCNE1, currents conducted by G325R and WT KCNQ1 were reduced by 52.9%. Co-expression of G325R and WT KCNQ1 with KCNE1 shifted the voltage-dependence of IKs activation by 12.0 mV, indicating co-assembly of mutant and WT subunits. The dysfunctional biophysical phenotype validates the pathogenicity of the KCNQ1 G325R mutation and corresponds well with the severe clinical presentation revealed in some reports. However, the index patient and other mutation carriers were asymptomatic, highlighting potential limitations of risk assessment schemes based on ion channel data.  相似文献   

19.
Ribonuclease HII from hyperthermophile Thermococcus kodakaraensis (Tk-RNase HII) is a kinetically robust monomeric protein. The conformational stability and folding kinetics of Tk-RNase HII were measured for nine mutant proteins in which a buried larger hydrophobic side chain is replaced by a smaller one (Leu/Ile to Ala). The mutant proteins were destabilized by 8.9 to 22.0 kJ mol− 1 as compared with the wild-type protein. The removal of each -CH2- group burial decreased the stability by 5.1 kJ mol− 1 on average in the mutant proteins of Tk-RNase HII examined. This is comparable with the value of 5.3 kJ mol− 1 obtained from experiments for proteins from organisms growing at moderate temperature. We conclude that the hydrophobic residues buried inside protein molecules contribute to the stabilization of hyperthermophilic proteins to a similar extent as proteins at normal temperature. In the folding experiments, the mutant proteins of Tk-RNase HII examined exhibited faster unfolding compared with the wild-type protein. These results indicate that the buried hydrophobic residues strongly contribute to the kinetic robustness of Tk-RNase HII. This is the first report that provides a practical cause of slow unfolding of hyperthermostable proteins.  相似文献   

20.
Bacteriorhodopsin (BR), a specialized nanomachine, converts light energy into a proton gradient to power Halobacterium salinarum. In this work, we analyze the mechanical stability of a BR triple mutant in which three key extracellular residues, Glu9, Glu194, and Glu204, were mutated simultaneously to Gln. These three Glu residues are involved in a network of hydrogen bonds, in cation binding, and form part of the proton release pathway of BR. Changes in these features and the robust photocycle dynamics of wild-type (WT) BR are apparent when the three extracellular Glu residues are mutated to Gln. It is speculated that such functional changes of proteins go hand in hand with changes in their mechanical properties. Here, we apply single-molecule dynamic force spectroscopy to investigate how the Glu to Gln mutations change interactions, reaction pathways, and the energy barriers of the structural regions of WT BR. The altered heights and positions of individual energy barriers unravel the changes in the mechanical and the unfolding kinetic properties of the secondary structures of WT BR. These changes in the mechanical unfolding energy landscape cause the proton pump to choose unfolding pathways differently. We suggest that, in a similar manner, the changed mechanical properties of mutated BR alter the functional energy landscape favoring different reaction pathways in the light-induced proton pumping mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号