首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hormonal control of axillary bud growth was investigated in cultured stem segments of Phaseolus vulgaris L. When the stem explants were excised and implanted with their apical end in a solid nutrient medium, outgrowth of the axillary buds-located at the midline of the segment-was induced. However, if indoleacetic acid (IAA) or naphthaleneacetic acid (NAA) was included in the medium, bud growth was inhibited. The exposure of the apical end to IAA also caused bud abscission and prevented the appearance of new lateral buds.In contrast to apically inserted segments, those implanted in the control medium with their basal end showed much less bud growth. In these segments, the auxin added to the medium either had no effect or caused a slight stimulation of bud growth.The IAA transport inhibitor N-1-naphthylphthalamic acid (NPA) relieved bud growth inhibition by IAA. This suggests that the effect of IAA applied at the apical end requires the transport of IAA itself rather than a second factor. With the apical end of the segment inserted into the IAA-containing medium, simultaneous basal application of IAA relieved to some extent the inhibitory effect of the apical IAA treatment. These results, together with data presented in a related article [Lim R and Tamas I (1989) Plant Growth Regul 8: 151–164], show that the polarity of IAA transport is a critical factor in the control of axillary bud growth.Of the IAA conjugates tested for their effect on axillary bud growth, indoleacetyl alanine, indoleacetic acid ethyl ester, indoleacetyl-myo-inositol and indoleacetyl glucopyranose were strongly inhibitory when they were applied to the apical end of the stem explants. There was a modest reduction of growth by indoleacetyl glycine and indoleacetyl phenylalanine. Indoleacetyl aspartic acid and indoleglyoxylic acid had no effect.In addition to IAA and its conjugates, a number of other plant growth substances also affected axillary bud growth when applied to the apical end of stem segments. Myo-inositol caused some increase in the rate of growth, but it slightly enhanced the inhibitory effect of IAA when the two substances were added together. Gibberellic acid (GA3) caused some stimulation of bud growth when the explants were from younger, rather than older plants. The presence of abscisic acid (ABA) in the medium had no effect on axillary bud growth. Both kinetin and zeatin caused some inhibition of axillary buds from younger plants but had the opposite effect on buds from older ones. Kinetin also enhanced the inhibitory effect of IAA when the two were applied together.In conclusion, axillary buds of cultured stem segments showed great sensitivity to auxins and certain other substances. Their growth responded to polarity effects and the interaction among different substances. Therefore, the use of cultured stem segments seems to offer a convenient, sensitive and versatile test system for the study of axillary bud growth regulation.  相似文献   

2.
Formation of xylem in sterile culture of isolated pine stem segments supplied with synthetic media continues only for 4–6 weeks. The stem segments originally do not contain an eluable inhibitor affecting elongation in the test of pine hypocotyl sections. After 4 weeks inhibition is detected. Supplying the medium with a methanolic extract from the cambial region of pine stem prolongs xylem production up to 15 weeks. IAA interacts synergistically with a natural stimulator of cambial activity.  相似文献   

3.
Small pieces of the green algal coenocyte Caulerpa are capable of regenerating complete new plants. This study investigated the effect of gravity on the site of differentiation of newly forming organs during regeneration. Pairs of 3.0-cm blade segments from C. prolifera and C. mexicana, as well as 3.0-cm rhizome segments of C. prolifera, were randomly assigned to either upright or inverted positions. This orientation was maintained throughout each experiment. Results revealed that the blade segments maintained a strict polarity of regeneration regardless of inversion and/or centrifugation. Rhizoids and rhizomes formed at the original basal end of the segment, while blades formed at the apical end. This polarity was seen throughout the length of long blades. Rhizome segments, on the other hand, failed to exhibit a strict polarity of regeneration with respect to gravity.  相似文献   

4.
广藿香不同外植体离体培养的研究   总被引:1,自引:0,他引:1  
以广藿香叶片、带节茎、不带节茎及根尖为材料进行离体培养,对影响离体再生的因素进行了研究。结果表明:BA有利于广藿香外植体出芽,浓度以0.1~0.5mg/L效果较好;不同外植体的出芽能力有较大差异,其中以叶片和带节茎出芽能力较强,出芽率均达100%;外植体在培养基上的接种方式对出芽也有一定影响,带节茎以形态学下端垂直插入,可以缩短出芽时间及增加单个外植体出芽的数量。无根苗生根以MT+IBA0.2mg/L培养基为好,苗的生长较为健壮。  相似文献   

5.
Summary The net uptake and movement of radioactivity by 12-mm root segments of Zea mays have been studied as a function of time at 5, 15 and 25° C. Segments were supplied with an agar donor block containing 1 M IAA-1-14C or IAA-2-14C continuously or for a limited period of time (pulse-labelling). In the latter case the original donor block was replaced either by a plain agar block or by one containing 1 M unlabelled IAA. Receiver blocks were placed at the other end of the segments.The net uptake of radioactivity from the donor block at 15° C was greater at the basal end than at the apical end of the segment. At 5 and 15° C, the net uptake from a basal donor was virtually linear with time but at 25° C the rate of net accumulation decreased after about 10 h. Decarboxylation of IAA undoubtedly occurred at 15 and 25° C when the concentration in the tissue attained a high value.An acropetally polarised movement of radioactivity into the receiver blocks occurred regardless of whether the results were based on the actual amounts of radioactivity in the receiver block, or on the amounts in the receiver block expressed as a percentage of the net total radioactivity accumulated from the donor block. Only one radioactive substance was present in the receiver block and it ran to the same Rf as IAA in the isopropanol: ammonium: water solvent system.The amounts of radioactivity moving into that part of the root segment at least 6 mm distant from the end in contact with either an apical or a basal donor block were assessed. An acropetal polarity in the movement of radioactivity was observed on the basis of the actual amounts of radioactivity in these distal parts of the segments, but no such polarity was evident when the amounts of radioactivity were expressed as a percentage of the net total accumulated from the donor block. At least 3 radioactive substances were present in the tissue in addition to the substance running to the same Rf as IAA. The distribution of radioactivity in the segment cannot therefore be used to assess the distribution of IAA.Acropetal movement of radioactivity into an apical receiver block is not dependent upon the continued uptake of IAA at the basal end of the segment. No distinct pulses of radioactivity were detected moving through the root segments.Only a small part of the radioactivity in the root segment appears to be located in the polar transport system, while the bulk is not. The polarity found in the movement of the bulk radioactivity within the segment seems to be related to the polarity in IAA uptake from the donor blocks.  相似文献   

6.
Calcium flux in sunflower (Helianthus annuus L. cv Russian mammoth) hypocotyl was measured with a Ca2+ electrode as the increase or decrease in Ca2+ in an aqueous solution (10 micromolar CaCl2) in contact with either the basal or apical end of 20 millimeter segments. Ca2+ efflux was significantly higher at the apical end compared with the basal end; this apparent polarity was maintained even when the segments were inverted. No significant difference was observed in the cation exchange capacity of apical and basal cell walls that could explain the difference in Ca2+ efflux at opposite ends of the hypocotyl segment. The presence of exogenous indoleacetic acid (IAA) in the segment medium resulted in the promotion of both Ca2+ efflux and segment elongation. However, osmotic inhibition of the IAA-induced elongation did not result in inhibiting the IAA-induced Ca2+ efflux. Ca2+ efflux was inhibited by cyanide. Lowering the temperature from 25°C also caused the gradual reduction of Ca2+ efflux; at 5°C the hypocotyl segments showed a net absorption of Ca2+ from the segment medium. These findings support the suggestion that: (a) the observed Ca2+ efflux in hypocotyl segments is probably the manifestation of the system which maintains the transmembrane Ca2+ gradient at the cellular level. (b) The acropetal polarity of Ca2+ efflux may be the result of the involvement of Ca2+ in the basipetal transport of IAA.  相似文献   

7.
Serial segments of internodal stem tissue were isolated from Pisum sativum L. shoots and incubated in a medium containing N6(2-isosopentenyl) [3H]adenine. The recovery of radioactive derivatives separated using HPLC indicated a gradient of cytokinin metabolic activity in the stem. This gradient of activity was found to be greatest at the basal node in young seedlings but was high both at upper and lower nodes in older plants. An attempt to correlate this phenomenon with the basipetally decreasing concentration of indole-3-acetic acid in the stem led to an experiment in which stem segments were pretreated in indole-3-acetic acid solutions before incubating in a medium containing N6(2-isosopentenyl) [3H]adenine. Indole-3-acetic acid was found to have a marked effect on cytokinin metabolism in isolated stem segments. These results are discussed in relation to apical dominance in the shoot.  相似文献   

8.
An efficient system to regenerate shoots on excised leaves of greenhouse-grown wild lowbush blueberry (Vaccinium angustifolium Ait.) was developed in vitro. The effect of thidiazuron (TDZ) on adventitious bud and shoot formation from apical, medial, and basal segments of the leaves was tested. Leaf cultures produced multiple buds and shoots with or without an intermediary callus phase on 2.3–4.5 μM TDZ within 6 wk of culture initiation. The greatest shoot regeneration came from young expanding basal leaf segments positioned with the adaxial side touching the culture medium and maintained for 2 wk in darkness. Callus development and shoot regeneration depended not only on the polarity of the explants but also on the genotype of the clone that supplied the explant material. TDZ-initiated cultures were transferred to medium containing 2.3–4.6 μM zeatin and produced usable shoots after one additional subculture. Elongated shoots were dipped in 39.4 mM indole-3-butyric acid powder and planted on a peat:perlite soilless medium at a ratio of 3:2 (v/v), which yielded an 80–90% rooting efficiency. The plantlets were acclimatized and eventually established in the greenhouse with 75–85% survival.  相似文献   

9.
Summary The reasons underlying the initial increase and subsequent decrease in the amount of radioactivity in the receiver block at the apical end of a Zea root segment supplied with a basal donor block containing labelled IAA have been investigated.The phenomenon was observed in segments supplied with IAA-1-14C, IAA-2-14C and IAA-5-3H. An acropetal polarity in the movement of radioactivity into the receiver blocks was observed using donor blocks containing IAA-5-3H at concentrations as low as 10-10M.The decrease in the amount of radioactivity in the receiver block begins after 6–8 h of transport at 25° C, and is unaffected by renewal of the donor block every 2 h, or the presence of 2% sucrose in the donor and receiver blocks.The net export of radioactivity into the receiver block at the apical end of the segment virtually ceases after 6–8 h of transport at 25° C, and is not prolonged by the presence of 2% sucrose in the donor and receiver blocks. At 10° C, net export of radioactivity continues for at least the first 50 h of transport, and the amount of radioactivity in a continuously applied receiver block continues to increase over this period.Receiver blocks removed from the apical end of segments after 8 h of transport and placed on planchettes show little or no decrease in the amount of radioactivity they contain as a function of time, in marked contrast to those left in contact with the segment.There is a marked, and metabolically dependent, resorption of radioactivity from the receiver block at the apical end of the segment after about 8 h of transport at 25° C; most of the resorbed radioactivity remains in the apical 2–4 mm of the segment.There is a loss of radioactive CO2 from segments supplied with a basal donor block containing 10-6M IAA-1-14C at 25° C, the emission beginning after 6–8 h of transport. Segments similarly supplied with 10-6M IAA-2-14C did not begin to lose radioactive CO2 until after about 10–12 h of transport.The ability of the segments to transport radioactivity in a polar manner declines with time after they are excised from the root, regardless of whether their cut ends are kept in the intervening period in contact with plain agar blocks, or ones containing unlabelled IAA at 10-6M. By the 6th h after excision at 25° C no transport of radioactivity through the segments and into the receiver blocks could be detected in either the aropetal or basipetal direction.The decrease in radioactivity in the receiver block after transport periods of 6–8 h at 25° C is therefore due to (1) a cessation of net export of radioactivity into the block, and (2) the onset of a metabolically-dependent, net resorption of radioactivity. At this time substantial amounts of radioactive CO2 begin to be evolved from segments supplied with IAA-1-14C, whereas with IAA-2-14C radioactive CO2 is not evolved for a further 4–6 h.  相似文献   

10.
The morphogenic pathway of adventitious bud and shoot regenerationat the ends of Troyer citrange epicotyl cuttings is determinedby polarity and explant orientation. In explants planted verticallywith the basal end inserted in the medium, bud formation atthe apical end occurs by direct organogenesis. Bud growth andsubsequent shoot formation is markedly increased by the additionof 6-benzyladenine (BA) to the medium. This growth regulatoralso increases the number of buds formed. When they come intocontact with the culture medium, both the apical end and thebasal end of the cuttings form a vigorous callus with many xyllaryelements, more numerous in the calli from the basal end. Inthese calli, buds differentiate by a process of indirect organogenesis.This indirect regeneration pathway requires the addition of6-benzyladenine to the medium, and the number of buds formedis higher at the apical end than at the basal end of the cuttings.This pathway of regeneration is reduced as the position of thecuttings during incubation deviates from the normal uprightvertical position. Thus, for the basal end of the cuttings,the number of buds and shoots formed is higher when the explantsare placed vertically than when they lie on the surface of themedium. For the apical end, this number is higher in explantsplaced horizontally than when inserted vertically in the mediumin an inverted position. Copyright 1999 Annals of Botany Company Troyer citrange, Citrus sinensis x Poncirus trifoliata, explant orientation, histology, hormone dependence, morphogenesis, organogenesis, polarity, xylogenesis.  相似文献   

11.
The effects of several concentrations of indole-3-acetic acid (IAA) and sucrose on xylogenic cambial activity and secondary xylem differentiation were investigated in isolated stem segments of Quercus robur L. supplied with liquid medium in aseptic conditions. After 5 weeks of culture auxin controlled cambial cell division and the number and size of vessel elements even without sugar in the medium. Sucrose modified these IAA effects, although little cambial activity occurred without auxin. The xylem increment correlated with changes of auxin concentration with the optimum at 28.5 μ M IAA. The formation of wide vessels was correlated with the optimal concentration of auxin. The frequency of vessel differentiation increased with auxin concentration. High concentrations of sucrose (0.24 M and 0.96 M ) reduced both the number of vessels and their diameter. The frequency of vessel formation was inhibited more than the vessel size by changes of sugar concentration. The vessels formed under low concentrations of IAA were circular in transverse section. With increase in IAA concentration the shape of the vessel cross-section changed to oval with the largest dimension in the radial direction.  相似文献   

12.
Cambial activity and vessel differentiation of the Quercus robur stem were investigated in relation to concentration of growth regulators and sucrose, seasonal changes in the sensitivity of cambial cells, and axial polarity of the stem. Basipetal efflux of natural auxin was measured in the oak stem cambial region. IAA, GA3, kinetin and sucrose affected cambial activity and/or initiation of vessel differentiation differently, depending upon concentration. Depending upon the season, kinetin increased or reduced the stimulation of cambial activity caused by IAA and GA3, but it did not affect the differentiation of vessels. Supply of sucrose in higher concentrations reduced the number of differentiated vessels but did not decrease the stimulation of cambial divisions.Unlike stimulation of cambial activity by GA3, auxin stimulation of cambial divisions and differentiation of vessels were highly dependent upon stem polarity, 2,3,5-triiodobenzoic acid (TIBA) inhibited formation of vessels, but not cambial activity. The oscillations in basipetal efflux of natural auxin from the cambial stem region of successive 6 mm long sections substantiate the hypothesis that the histogenesis of xylem tissue in ring-porous species is under control of the vectoriat field that is associated with oscillatory phenomena in polar auxin transport.  相似文献   

13.
Summary The cytoplasm of maize coleoptile cells was displaced to either the apical or basal ends of the cells by centrifuging (1750xg for 10 min) segments in which protoplasmic streaming had been stopped by pretreatment with cytochalasin B. Centrifugation toward the base of the segment promotes the subsequent basipetal transport of indole-3-acetic acid, whereas apical centrifugation dramatically inhibits this transport. Apical centrifugation neither promotes acropetal transport nor reverses the polarity of auxin transport. Experiments in which the amyloplasts were separated from the bulk of the cytoplasm indicate that the basipetal transport is independent of both the position and pressure exerted by the amyloplasts but is strongly dependent on the amount of cytoplasm at the basal end of the cells. These effects of centrifugation on auxin transport lead to the conclusion that the metabolic component of the transport is a polar secretion of auxin localized in the basal plasma membrane of each cell.  相似文献   

14.
Summary We have labelled single physiologically-characterized primary auditory neurones in the bobtail lizard and traced them to their innervation sites within the basilar papilla. The distribution of stained fibre terminals shows that low frequencies (up to a characteristic frequency, CF, of about 0.8 kHz) are processed in the smaller apical segment of the papilla and medium to high frequencies in the much longer basal segment. It is possible that the frequency ranges of these segments partly overlap in individual animals.The tonotopic organization of the basal segment is well described by an exponential relationship; the CF increases towards the basal end. Systematic, peripheral recordings from the auditory nerve very close to the papilla confirm this tonotopicity for the basal segment.The apical segment of the papilla shows an unusual tonotopic organization in that the CF appears to increase across the epithelium, from abneural to neural. A tonotopicity in this direction has not previously been demonstrated in vertebrates.All stained neurones branched within the basilar papilla to innervate, typically, between 4 and 14 hair cells. The branching patterns of fibres innervating in the apical and basal papillar segment, respectively, show characteristic differences. Apical fibres tend to innervate hair cells with the same morphological polarity and often branch extensively along the segment. Basal fibres, in contrast, typically innervate about equal numbers of hair cells of opposing polarity and are more restricted in their longitudinal branching.Abbreviation CF characteristic frequency  相似文献   

15.
Intact primary roots of Zea mays seedlings, apical 6-mm segmentsisolated from the intact primary roots and 5-mm detipped segments,prepared from the 6-mm apical segments by removal of the apical1-mm meristematic region, were incubated in potassium-phosphatebuffer that contained various concentrations of kinetin, 6-benzylaminopurine(BAP) or zeatin. These cytokinins inhibited the growth of intactprimary roots but they promoted the growth of both tipped anddetipped apical segments. In other words, they promoted thegrowth of root segments irrespective of the presence or absenceof apical meristematic regions. Detipped segments were stoodvertically, with their apical or basal cutends in contact withan agar plate that contained the abovementioned buffer and variousconcentrations of kinetin, BAP or zeatin so that cytokininswere supplied either from the apical or basal cut-ends. Cytokininssupplied from the top promoted the growth of the segments, whilethose supplied from the base did not. These results indicate that the response of roots to the exogenouslyapplied cytokinins is not influenced by the presence of theroot meristem but is significantly affected by the way in whichcytokinins are supplied. (Received October 17, 1995; Accepted August 28, 1995)  相似文献   

16.
The formation of new xylem in the spring is preceded by bud development. In decapitated pine stem the formation of xylem is arrested until the outgrowth of interfascicular buds takes place. When indole-3yl-acetic acid (IAA) is applied to the cut surfaces of decapitated stems it induces the formation of a xylem ring on the whole length of 5-ycar old trees. Naphthaleneacetic acid (NAA) causes the formation of xylem; however, the width of the growth ring is several times broader at the point of application than at the base of the leader. Cis- and trans-cinnamic acids, coumarin, L-tryptophan, kinetin (Kin), benzylaminopurine (BAP) and gibberellic acid (GA) alone do not induce cambial divisions; however, GA and the cytokinins given jointly with IAA or NAA accelerated the basipetal stimulus which has been induced by the auxins, resulting in normal xylem formation. 2,3,5-Triiodobonzoic acid (TIBA) given jointly with IAA-induced formation of compression wood in the apical part of the stem and narrow diameter tracheids at the base. When carboxyl labelled IAA or NAA are applied to pine segments it is found that the basipetal movement of IAA is much quicker than that of NAA. GA and the cytokinins increase the rate of transport of both auxins, whereas TIBA arrests the bulk of auxin in the apical part of the stem.  相似文献   

17.
In isolated leaves ofBryophylluni crenatum the intensity of marginal bud formation decreases from the apex towards the blade base, which is associated with the decreasing content of enioganous gibberallins. As proved by Dostál (1930), the formation of marginal buds on transversely divided blade of the isolated leaf increases in comparison with the non-divided control leaf. The results of our experiments have revealed that the increase in the formation of marginal buds in the blade transversely divided into the apical, middle and basal parts is connected with the increasing level of endogenous gibberellins, especially in the apical part. This rising level appears as early as 7 days following blade division,i.e. at the time preceding the formation of marginal bud bases. InBryophyllum crenatum plants the level of endogenous cytokinins was estimated in apical, middle and basal leaves, as well as in adjacent internodia. Maximum content was found out in the leaves from the middle stem part, which is probably associated with the capacity of this part to form marginal buds spontaneously also in intact plants. However, prior to flowering the maximum of cytokinin activity is shifted to the apical stem part.  相似文献   

18.
The flux of Ca2+ at the apical or basal ends of short sunflower (Helianthus annuus L.) hypocotyl segments was monitored using a Ca2+-specific electrode. A higher Ca2+ efflux was observed at the apical end relative to the basal end, indicating a net polar flux of Ca2+. The extreme low mobility of Ca2+ in the isolated segment makes it likely that the observed Ca2+ fluxes are of localized origin, that is, from the parenchyma cells close to the exposed cut ends and may represent acropetal transport of Ca2+ at the cellular level. The rate of Ca2+ efflux depended on the concentration of Ca in the seedling medium. Incubation of hypocotyl segments in 10 mm CaCl2 for 24 h did not eliminate the net acropetal flux of Ca2+ at the apical end.  相似文献   

19.
The transport of radiolabeled indoleacetic acid (IAA), and some of its conjugates, was investigated in nodal stem segments of Phaseolus vulgaris L. Donor agar blocks containing either [2-acetyl-14C]-IAA; [2-acetyl-14C]-indole-3-acetyl-L-aspartate (IAAsp); [2-acetyl-14C]-indole-3-acetyl-L-glycine (IAGly); or [2-acetyl-14C]-indole-3-acetyl-L-alanine (IAAla) were placed on either the apical or basal cut surface of stem segments each bearing an axillary bud at the midline. In some experiments, a receiver block was placed on the end opposite to the donor. After transport was terminated, the segments were divided into five equal sections plus the bud, and the radioactivity of donors, receivers and each part of the stem segment was counted.For all four substances tested, the amount of 14C transported to the axillary bud from the base was the same or greater than that from the apical end. After basipetal transport, the distribution of 14C in the segment declined sharply from apex to base. The inverse was true for acropetal transport. Transport for the three IAA conjugates did not differ substantially from each other.The IAA transport inhibitor, N-1-naphthylphthalamic acid (NPA), inhibited basipetal 14C-IAA transport to the base of the stem segment but did not alter substantially the amount of 14C-IAA recovered from the bud. Transport of 14C-IAA from the apical end to all parts of the stem segment declined when the base of the section was treated with nonradioactive IAA. Taken together with data presented in the accompanying article [Tamas et al. (1989) Plant Growth Regul 8: 165–183], these results suggest that the transport of IAA plays a role in axillary bud growth regulation, but its effect does not depend on the accumulation of IAA in the axillary bud itself.  相似文献   

20.
The papillae basilares of 12 species of lizards from seven different families were studied by SEM. The iguanids, Sceloporus magister and S. occidentalis, have typical “iguanid type” papillae with central short-ciliated unidirectional hair cell segments and apical and basal long-ciliated bidirectional hair cell segments. These species of Sceloporus are unique among iguanids in that the bidirectional segments consist of but two rows of hair cells. The agamids, Agama agama and Calotes nigrolabius, have an “agamid-anguid type” papilla consisting of an apical short-ciliated unidirectional hair cell segment and a longer basal bidirectional segment. Agama agama is unusual in having a few long-ciliated hair cells at the apical end of the apical short-ciliated segment. The agamid, Uromastix sp., has an “iguanid type” papilla with a central short-ciliated unidirectional segment and apical and basal bidirectional segments. The anguid, Ophisaurus ventralis, has an “iguanid” papillar pattern with the short-ciliated segment centrally located. All the short-ciliated hair cells of the above species are covered by a limbus-attached tectorial network or cap and the long-ciliated hair cells, only by loose tectorial strands. The lacertids, Lacerta viridis and L. galloti, have papillae divided into two separate segments. The shorter apical segment consists of opposingly oriented, widely separated short-ciliated cells covered by a heavy tectorial membrane. The apical portion of the longer basal segment consists of unidirectionally oriented hair cells, while the greater part of the segment has opposingly oriented hair cells. The xantusiids, Xantusia vigilis and X. henshawi, have papillae made up of separate small apical segments and elongated basal segments. The apical hair cells are largely, but not exclusively, unidirectional and are covered by a heavy tectorial cap. The basal strip is bidirectional and the hair cells are covered by sallets. The kinocilial heads are arrowhead-shaped. The papilla of the cordylid, Cordylus jonesii, is very similar to that of Xantusia except that the apical segment is not completely separated from the basal strip. The papilla of the Varanus bengalensis is divided into a shorter apical and a longer basal segment. The hair cells of the entire apical and the basal three quarters of the basal segment are opposingly oriented, not with reference to the midpapillary axis but randomly to either the neural or abneural direction. The apical quarter of the basal segment contains unidirectional, abneurally oriented hair cells. The entire papilla is covered by a dense tectorial membrane. The functional correlations of the above structural variables are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号