首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of shallow-water (0.9 to 1.3 m) rhodoliths in back reef environments in southwest Puerto Rico is reported. The rhodoliths were generally cylindrical, discoidal or irregular in shape with an average longest dimension of 7.2 cm. They occurred at a maximum density of 524 m−2. The rhodoliths were composed of mostly coral nuclei with concentric laminations of aragonite-producing Cruoriella armorica (Peyssonneliaceae, Rhodophyta). Maximum Cruoriella accretion around coral nuclei was 30 mm although accretions of 1 to 20 mm were more common. Based on measurements of Cruoriella accretion, these shallow water rhodoliths are estimated to have minimum ages of 12 to 24 years. It is further estimated that approximately 2% of the rhodoliths are turned over daily. Accepted: 1 October 1999  相似文献   

2.
Laura Gutiérrez 《Oecologia》1998,115(1-2):268-277
Local patterns of adult distribution in organisms that disperse young as pelagic larvae can be determined at the time of recruitment through habitat selection or, shortly thereafter, through post-recruitment processes such as differential juvenile survivorship and interspecific competition. This study addresses the importance of habitat selection by recruits in establishing the local pattern of adult distribution in two sympatric Caribbean damselfish species, Stegastes dorsopunicans and S. planifrons. Both species inhabit shallow reefs but show little overlap in their distribution; S. dorsopunicans predominates in the reef crest and S. planifrons occurs primarily on the reef slope. Furthermore, S. dorsopunicans is associated with rocky substrate, while S. planifrons occupies live coral. The substrate cover follows a similar pattern with coral being much less common on the reef crest than on the reef slope. Monitoring recruitment every other day in reciprocal removal experiments and artificial reefs indicates that the observed pattern of local adult distribution is a product of habitat selection for both species. The presence or absence of conspecifics did not influence recruitment patterns for either species. Stegastes dorsopunicans recruited primarily to shallow, rocky areas, appearing to cue on both substratum type and depth. Stegastes planifrons recruited exclusively to coral substratum independent of depth. These results indicate that local adult patterns of distribution can be explained by habitat selection at recruitment, and that substrate type and depth may be important cues. Received: 27 May 1997 / Accepted: 4 January 1998  相似文献   

3.
 A spectacular mound-like reef formation (126 m in circumference, 10 m high) dominated by highly arched and record-size colonies of the unattached mushroom coral Halomitra pileus, along with 17 other species of the family Fungiidae, occurs in 31 m of water on the sedimentary lagoon floor of the Great Astrolabe Reef, Fiji. Core samples show radiocarbon dates which indicate that the formation hypothetically began building ∼4500 y ago, with a calculated mean accretion rate of 2.2 mm ⋅ y-1. The majority of fossil and living material is contributed by H. pileus colonies between 40–70 cm mean diameter, with some individuals up to 1.5 m in diameter. The size, fungiid diversity, and geological history of the bioherm is unprecedented and represents the first example of a coral reef constructed almost entirely by Fungiidae. Accepted: 29 July 1996  相似文献   

4.
Visual censuses of coral reef fishes in Nha Trang Bay Marine Protected Area (MPA) were conducted during September–October 2005. Nha Trang Bay MPA is relatively rich in reef fishes compared to other areas in Vietnam and the Pacific Ocean outside the ‘Coral Triangle,’ consistent with its biogeographic location in the western South China Sea. A total of 266 species of 40 families of coral reef fishes formed five distinct assemblages. Spatial variations in distribution and structure of the assemblages were associated with eight significant biological and physical variables which were cover of living hard corals, encrusting corals, branching corals, Acropora, Millepora, Montipora, depth and distance from the coast of the mainland. The six factors in front are likely related to provision of shelter and nutrition, while the distance factor is likely to represent a gradient in disturbance and impacts from various mainland sources including sedimentation and pollution discharge from nearby rivers. Local species richness ranged from 35 to 70 species 500 m−2 (mean: 51 ± 2 SE) for reef flat stations and from 23 to 68 species 500 m−2 (mean: 48 ± 4 SE) for reef slope stations. Total species richness at each site averaged 76 species (±4 SE), ranging from 56 to 110 species, dominated by wrasses, damselfishes, butterflyfishes, parrotfishes, surgeonfishes, groupers and goatfishes. Density of total fishes at each station ranged from 348 to 1,444 individuals 500 m−2 (mean: 722 ± 302 SE) for the reef flat stations and from 252 to 929 individuals 500 m−2 (mean: 536 ± 215.7 SE) for the reef slope stations. Overall mean density at each site averaged 628.9 (±238.4 SE) individuals 500 m−2. The highly protected sites supported higher mean density of fishes per site (ranged: 904.5–1,213 individuals 500 m−2 for Hon Mun and 1,167.5 individuals 500 m−2 for Hon Cau) compared to other sites (<800 individuals 500 m−2). Of the families included in the census, densities were dominated throughout the MPA by damselfishes and wrasses. Many target species, particularly groupers, snappers and emperors, were rare or absent and the low abundance of big fishes was consistent with over-harvesting. Similarly a low density of butterfly fishes and angelfishes is likely related to the supply for marine aquaria in Vietnam and overseas. This study provides an important baseline against which the success of present and future MPA management initiatives may be assessed.  相似文献   

5.
To determine what happens to scleractinian corals that have been killed by black band disease (BBD), massive corals with BBD were monitored for 11 years on a shallow reef (<10 m depth) in St. John, US Virgin Islands. Small quadrats (0.039 m2) were used to compare the rates of scleractinian recruitment to the skeletons of corals killed by either BBD or physical disturbance (Hurricane Hugo 1989). Coral recruitment was also quantified on the adjacent fringing reef using larger quadrats (0.25 m2) to detect possible biases associated with using small, permanent quadrats to assess recruitment to BBD-killed corals. Of 28 tagged colonies with BBD in 1988, 43% were lost to Hurricane Hugo in 1989, 7% were lost to unknown causes between 1991 and 1992, and 14 were monitored annually for 11 years; of these, 71% were dead and still in their original growth position in 1998. Between 1988 and 1997, corals recruited to the BBD-killed surfaces at a rate of 1.1 ± 0.3 recruits · 0.039 m−2 · decade−1 (mean ± SE, n = 14), although mortality reduced the density to 0.3 ± 0.2 recruits · 0.039 m−2 by 1997. The rate of recruitment and the taxonomic composition of the coral recruits to BBD-killed corals were indistinguishable statistically from those to corals killed by Hurricane Hugo. This demonstrates that BBD creates space that is functionally the same as other dead coral surfaces in providing a substratum for coral recruitment. However, because coral recruits are dispersed widely, clumped in distribution and temporally variable in density on the fringing reef as a whole, it is unlikely that they will be found on monitored coral colonies that have been killed by BBD. While this hypothesis is consistent with the higher density of recruits on the fringing reef compared with BBD-killed corals, further studies are required to investigate alternative explanations such as the role of substratum age in favoring recruitment to surfaces other than those killed recently by BBD. Accepted: 26 August 1999  相似文献   

6.
Summary In a fringing reef at Aqaba at the northern end of the Gulf of Aqaba (29°26′N) growth rates, density, and the calcification rate ofPorites were investigated in order to establish calculations of gross carbonate production for the reefs in this area. Colony accretion ofPorites decreases with depth as a function of decreasing growth rates. The calcification rate ofPorites is highest in shallow water (0–5 m depth) with 0.9 g·cm−2·yr−1 and falls down to 0.5 g·cm−2·yr−1 below 30 m. Scleractinian coral gross production is calculated from potential productivity and coral coverage. It is mainly dependent on living coral cover and to a lesser extent on potential productivity. Total carbonate production on the reef ranged from 0 to 2.7 kg/m2 per year, with a reef-wide average of 1.6 kg/m2 perycar. Maximum gross carbonate production by corals at Aqaba occurs at the reef crest and in the middle fore-reef from 10 to 15 m water depth. Production is low in sandy reef parts. Below 30 m depth values still reach ca. 50% of shallow water values. Mean potential production of colonies and gross carbonate production of the whole reef community at Aqaba is lower than in tropical reefs. However, carbonate production is higher than in reef areas at the same latitude in the Pacific, indicating a northward shift of reef production in the Red Sea.  相似文献   

7.
Spectral discrimination of coral reef benthic communities   总被引:8,自引:0,他引:8  
Effective identification and mapping of coral reef benthic communities using high-spatial and -spectral resolution digital imaging spectrometry requires that the different communities are distinguishable by their spectral reflectance characteristics. In Kaneohe Bay, Oahu, Hawaii, USA, we collected in situ a total of 247 spectral reflectances of three coral species (Montipora capitata, Porites compressa, Porites lobata), five algal species (Dictyosphaeria cavernosa, Gracilaria salicornia, Halimeda sp., Porolithon sp., Sargassum echinocarpum) and three sand benthic communities (fine-grained carbonate sand, sand mixed with coral rubble, coral rubble). Major reflectance features were identified by peaks in fourth derivative reflectance spectra of coral (at 573, 604, 652, 675 nm), algae (at 556, 601, 649 nm) and sand (at 416, 448, 585, 652, 696 nm). Stepwise wavelength selection and linear discriminant function analysis revealed that spectral separation of the communities is possible with as few as four non-contiguous wavebands. These linear discriminant functions were applied to an airborne hyperspectral image of a patch reef in Kaneohe Bay. The results demonstrate the ability of spectral reflectance characteristics, determined in situ, to discriminate the three basic benthic community types: coral, algae and sand. Accepted: 12 January 2000  相似文献   

8.
In this paper, the relationship between reef building (accretion) and depth in an optimal inter-island channel environment in Hawaii is analyzed. For accretion, the growth rate of Porites lobata is used as a proxy for the reef community, because it is the most abundant and dominant species of reef building coral in Hawaii. Optimal growth of P. lobata occurs at a depth of 6 m, below which both growth rate and abundance decrease with increasing depth. A lower depth limit for this species is found at about 80–100 m, yet reef accretion ceases at ~50 m depth. Below 50 m, rates of bio-erosion of colony holdfasts equal or exceed the growth of basal attachments, causing colonies to detach from the bottom. Continued bio-erosion further erodes and dislodges colonies leading to their breakdown and ultimately to the formation of coralline rubble and sand. Thus, within this channel environment in Hawaii, a threshold for reef building exists at ~ 50 m depth, where coral accretion is interrupted by bio-erosion. Conceptually viewed, this depth horizon is analogous to a vertical Darwin Point, although quite narrow in space and time. More importantly, it explains the history of reef morphology in the Au’au Channel where a chronological hiatus exists at a depth near 50 m. This hiatus separates shallower modern growth (about 100 years or less) from the deeper reef which is all due to accretion during the early Holocene or Pleistocene epochs.  相似文献   

9.
The distribution and biomass of two species of squid, the ommastrephid arrow squid Nototodarus sloanii and the onychoteuthid squid Moroteuthis ingens, were analysed off southern New Zealand. These two species are the most important and abundant species in this region of the South Pacific Ocean. Data were obtained from extensive NIWA research cruises over 10 years. There was a sharp demarcation between the distribution of the two species, with N. sloanii occurring predominantly shallower than 600 m, with the greatest biomass less than 300 m. In contrast, M. ingens had the highest biomass between 650 and 700 m and occurred down to 1400 m. The biomass of N. sloanii reached more than 3500 kg · km−2, with an average catch rate of over 186 kg · km−2. In contrast, the biomass of M. ingens was more than an order of magnitude less, with all catch weights less than 200 kg · km−2 and an average catch rate less than 17 kg · km−2. The separation of these two species appeared to be related to depth, temperature and, possibly, salinity. N. sloanii occurred predominantly in warmer, shallower subtropical waters while M. ingens occurred in deeper, cooler subantarctic and antarctic intermediate water masses. The Subtropical Front formed a major barrier between the distribution of these two squid species. Accepted: 1 April 2000  相似文献   

10.
Quantitative surveys of sessile benthos and fish populations associated with reef habitats across a 15–50 m depth gradient were performed by direct diver observations using rebreathers at Isla Desecheo, Puerto Rico. Statistically significant differences between depths were found for total live coral, total coral species, total benthic algae, total sponges and abiotic cover. Live coral cover was higher at the mid-shelf (20 m) and shelf-edge (25 m) stations, whereas benthic algae and sponges were the dominant sessile-benthic assemblage at mesophotic stations below 25 m. Marked shifts in the community structure of corals and benthic algae were observed across the depth gradient. A total of 119 diurnal, non-cryptic fish species were observed across the depth gradient, including 80 species distributed among 7,841 individuals counted within belt-transects. Fish species richness was positively correlated with live coral cover. However, the relationship between total fish abundance and live coral was weak. Abundance of several numerically dominant fish species varied independently from live coral cover and appeared to be more influenced by depth and/or habitat type. Statistically significant differences in the rank order of abundance of fish species at euphotic vs mesophotic stations were detected. A small assemblage of reef fishes that included the cherubfish, Centropyge argi, sunshine chromis, Chromis insolata, greenblotch parrotfish, Sparisoma atomarium, yellowcheek wrasse, Halichoeres cyanocephalus, sargassum triggerfish, Xanthichthys ringens, and the longsnout butterflyfish, Chaetodon aculeatus was most abundant or only present from stations deeper than 30 m, and thus appear to be indicator species of mesophotic habitats.  相似文献   

11.
Using the same methodology and identical sites, we repeat a study dating from 1973 and quantify cover of hard coral species, soft corals, sponges, hard substratum and soft substratum, and density of a commercially important reef fish species, the graysby Cephalopholis cruentata, along a depth-gradient of 3–36 m on the coral reefs of Curaçao. The objective was to determine the multi-decade change in benthic coral reef cover and structural complexity, and their effect on densities of an associated reef fish species. Total hard coral cover decreased on average from 52% in 1973 to 22% in 2003, representing a relative decline of 58%. During this time span, the cover of hard substratum increased considerably (from 11 to 58%), as did that of soft corals (from 0.1 to 2.2%), whereas the cover of sponges showed no significant change. Relative decline of hard coral cover and of reef complexity was greatest in shallow waters (near the coast), which is indicative of a combination of anthropogenic influences from shore and recent storm damage. Cover of main reef builder coral species (Agaricia spp., Siderastrea siderea, Montastrea annularis) decreased more than that of other species, and resulted in a significant decrease in reef complexity. Although density of C. cruentata was highly correlated to cover of Montastrea and Agaricia in 1973, the loss of coral cover did not show any effect on the total density of C. cruentata in 2003. However, C. cruentata showed a clear shift in density distribution from shallow water in 1973 to deep water in 2003. It can be concluded that the reefs of Curaçao have degraded considerably in the last three decades, but that this has had no major effect on the population size of one commercially important coral-associated fish species.  相似文献   

12.
An assessment of natural stocks of the commercially important black pearl oyster, Pinctada margaritifera, was conducted in the lagoon of Takapoto Atoll, French Polynesia. The sampling methodology combined estimates of reef area from remote sensing, depth profiles across the lagoon, and in situ sampling using scuba. Confidence limits around estimates of mean oyster density began to stabilize after ten dives, and did not decrease further after 30. Densities of oysters increased steadily with depth, ranging from a mean of 1 per 100 m2 at 0–10 m to 8/100 m2 at 30–40 m. More than half of the stock occurred at depths greater than 30 m. The total stock was estimated to be 4.3 ± 0.67 million, equivalent to 834 metric tonnes (including shells). Accepted: 15 June 1999  相似文献   

13.
 Kikai-jima in the central Ryukyu Islands of Japan is fringed by exposed terraces of Holocene reefs, which formed as a result of periodic local tectonic uplift associated with subduction/collision. The terraces form four topographically distinct features (TI-IV) around the island and represent reefs that grew to sea level at 9000–6065 y BP, 6065–3390 y BP, 3790–2630 y BP, and 2870 to 1550 y BP. The modern reef terrace has been growing since approximately 1550 y BP. The reef terraces were uplifted sequentially around 6050 y BP (4 m), 3390–3790 y BP (2.5 m), 2630–2870 y BP (1 m) and 1550 y BP (2.5 m). Five sites were studied to define reef development in response to periodic relative sea level fall and different stillstand recovery periods. Thirty coral genera and 70 species were recorded from four distinct shallow reef flat to upper reef slope and one deeper reef slope coral assemblage. Significant lateral variations in total coral abundance, genera number, diversity, and the coverage density of Acropora spp. and Faviids occur both within and between the terraces. Stratigraphically, drill core and outcrop data recorded shallowing upward sequences characterised by tabulate Acropora spp. overlying massive Porites sp. and Faviids. The biological variations may represent growth strategies responding to initial colonisation, episodic perturbation (relative sea level fall) and differing recovery times during stillstands, and indicate a reef ecosystem stable and strong enough to recover after substantial perturbations. However, this study suggests that relatively small geological changes have had substantial biological effects, and modelling indicates that such changes would have been more profound had a third factor, such as substrate angle, varied more dramatically. In such a case, the drowning growth strategy exhibited in the drill core transect may have been more prevalent, and reefs would be struggling to grow around Kikai-jima today. Accepted: 27 May 1998  相似文献   

14.
 Fringing reef development is limited around 22° S along the inner Great Barrier Reef, although there is substantial development north and south of this latitude. This study examined the relationships among coral communities and the extent of reef development. Reefs were examined to determine coral composition, colony abundance, colony size and growth form between the latitudes 20°S and 23°S. Major reef framework builders (scler- actinian genus Acropora and families Faviidae and Poritidae) dominated reefs north and south of 22°S, but declined significantly at 22°S where foliose and encrusting corals (Turbinaria and Montipora spp.) were most common. Porites spp. were present at 22° S but had encrusting morphologies. Consistently high turbidity at this latitude, caused by a 10 m tidal range and strong tidal flows, resuspends silts from the shallow shelf, and appears to have precluded reef development throughout the Holocene, by limiting the abundance, stunting the growth, and shortening the life expectancies of reef framework corals. The distinctions between ‘natural’ and ‘human-induced’ degradation may be interpreted on the basis of the relationship between Holocene development and current benthic community longevity. A mismatch between substantial past reef building capacity (a broad and/or thick reef) and non-existent or limited present reef-building capacity could signify anything from a long-period, natural cycle to an unprecedented deterioration in ecosystem function caused by human influence. Accepted: 29 July 1996  相似文献   

15.
 The distribution and abundance of soft coral genera on reefs of the central Great Barrier Reef was investigated in relation to reef position, recent history of disturbance, wave exposure, substratum slope and depth. Eighty-five 25 m long transects were surveyed at 10 m depth on windward sides of 14 mid- and outer-shelf reefs. A further 75 transects in different zones on one mid-shelf reef (Davies Reef) between 5 and 30 m depth were investigated. The crown-of-thorns starfish Acanthaster planci had caused large-scale mortality of scleractinians on eight of these reefs five to ten years prior to the study, and as a result, scleractinian cover was only 35–55% of that on the six unimpacted reefs. On the impacted reefs, stony corals with massive and encrusting growths form had smaller average colony diameters but similar or slightly lower numerical abundance. In contrast, mean colony size, cover and abundance of branching stony corals showed no difference between impacted and unimpacted reefs. Twenty-four genera of soft corals (in eight families) were recorded, and none showed different abundance or cover in areas of former A. planci impact, compared to unaffected sites. Similarly, no difference was detected among locations in the numbers or area cover of sponges, tunicates, zoanthids, Halimeda or other macro-algae. Mean soft coral cover was 2 to 5% at 10 m on sheltered mid-shelf reefs, and 12 to 17% on more current-exposed reefs. Highest cover and abundances generally occurred on platforms of outer-shelf reefs exposed to relatively strong currents but low wave energy. On Davies Reef, cover and colony numbers of the families Nephtheidae and Xeniidae were low within the zone of wave impact, in flow-protected bays and lagoons, on shaded steep slopes, and at depths above 10 and below 25 m. In contrast, distributions of genera of the family Alcyoniidae were not related to these physical parameters. The physical conditions of a large proportion of habitats appear “sub-optimal” for the fastest growing taxa, possibly preventing an invasion of the cleared space. Thus, in the absence of additional stress these shallow-water fore-reef zones appear sufficiently resilient to return to their pre-outbreak state of scleractinian dominance. Accepted: 20 August 1996  相似文献   

16.
Adult bluespotted rockcod Cephalopholis cyanostigma, a coral‐reef grouper, were acclimated to either ambient (mean ± s.d. 406 ± 21 μatm; 1 atmos = 101325 Pa) or high pCO2 (945 ± 116 μatm) conditions in a laboratory for 8–9 days, then released at the water surface directly above a reef (depth c. 5 m) and followed on video camera (for 191 ± 21 s) by scuba divers until they sought cover in the reef. No differences were detected between groups in any of the six measured variables, which included the time fish spent immobile after release, tail beat frequency during swimming and the time required to locate and enter the protective shelter of the reef.  相似文献   

17.
Landlocked Arctic charr (Salvelinus alpinus) populations in sub-Arctic and Arctic Greenland lakes were sampled with multi-mesh-sized survey gillnets. The study covered a range of small shallow lakes (0.01 km2, maximum depth <3.3 m) to large deep lakes (43 km2, maximum depth >200 m). Arctic charr were found in one to three different forms in lakes with maximum depths >3 m. A dwarf form occurred in all lakes inhabited by Arctic charr and was the only form in lakes with maximum depths <8 m. In deeper lakes with maximum depths >20 m and a surface area <0.5 km2, larger charr were found, although in low numbers, the length-frequency distribution being unimodal with a tail towards large sizes. In lakes with a maximum depth >20 m, large-sized charr were more abundant, and the length-frequency distribution of the population was bimodal, with a first mode around 10–12 cm and a second mode around 26–37 cm. In a single large and deep lake, a distinct medium-sized pelagic zooplankton-eating charr form occurred. Maximum size of individual charr was significantly positively correlated with lake maximum depth and volume, and the mean size of large-sized charr was significantly positively correlated with lake volume. Our study indicates that the charr population structure became more complex with increasing lake size. Moreover, the population structure seemed to be influenced by lake-water transparency and the presence or absence of three-spined stickleback (Gasterosteus aculeatus). Accepted: 31 January 2000  相似文献   

18.
Juveniles of many coral reef fish species are thought to either follow the same bathymetric distribution patterns as the adults, or to occupy shallower waters. However, our knowledge base suffers a dearth of data from the deep reefs (>40 m). In a recent survey of the deep reefs of the northern Gulf of Aqaba (<65 m), we examined the bathymetric distribution of 26 diurnal zooplanktivorous species. In sharp contrast to the general trend known from the literature and from this research, the abundance of juvenile zebra angelfish, Genicanthus caudovittatus, peaked at deeper waters (60–65 m) compared with the adults (30 m). This suggests that the deeper reefs may serve as nursery grounds for the zebra angelfish. Peak juvenile abundance coincided with relatively low predator abundances. This raises the question, which factors constrain the bathymetric distribution of the remaining species. Our findings stress the potential importance of deep coral reef research for understanding the ecological patterns and processes that govern reef community structure.  相似文献   

19.
The effect of depth on the distribution and sex-specific energy allocation patterns of a common coral reef fish, Chrysiptera rollandi (Pomacentridae), was investigated using depth-stratified collections over a broad depth range (5–39 m) and a translocation experiment. C. rollandi consistently selected rubble habitats at each depth, however abundance patterns did not reflect the availability of the preferred microhabitat suggesting a preference for depth as well as microhabitat. Reproductive investment (gonado-somatic index), energy stores (liver cell density and hepatocyte vacuolation), and overall body condition (hepato-somatic index and Fulton’s K) of female fish varied significantly among depths and among the three reefs sampled. Male conspecifics displayed no variation between depth or reef. Depth influenced growth dynamics, with faster initial growth rates and smaller mean asymptotic lengths with decreasing depth. In female fish, relative gonad weight and overall body condition (Fulton’s K and hepato-somatic index) were generally higher in shallower depths (≤10 m). Hepatic lipid storage was highest at the deepest sites sampled on each reef, whereas hepatic glycogen stores tended to decrease with depth. Depth was found to influence energy allocation dynamics in C. rollandi. While it is unclear what processes directly influenced the depth-related patterns in energy allocation, this study shows that individuals across a broad depth gradient are not all in the same physiological state and may contribute differentially to the population reproductive output. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Mesophotic coral reefs (30–150 m) have been assumed to be physically and biologically connected to their shallow-water counterparts, and thus may serve as refugia for important taxonomic groups such as corals, sponges, and fish. The recent invasion of the Indo–Pacific lionfish (Pterois volitans) onto shallow reefs of the Caribbean and Bahamas has had significant, negative, effects on shallow coral reef fish populations. In the Bahamas, lionfish have extended their habitat range into mesophotic depths down to 91 m where they have reduced the diversity of several important fish guilds, including herbivores. A phase shift to an algal dominated (>50% benthic cover) community occurred simultaneously with the loss of herbivores to a depth of 61 m and caused a significant decline in corals and sponges at mesophotic depths. The effects of this invasive lionfish on mesophotic coral reefs and the subsequent changes in benthic community structure could not be explained by coral bleaching, overfishing, hurricanes, or disease independently or in combination. The significant ecological effects of the lionfish invasion into mesophotic depths of coral reefs casts doubt on whether these communities have the resilience to recover themselves or contribute to the recovery of their shallow water counterparts as refugia for key coral reef taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号