首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome aa3 from Nitrosomonas europaea   总被引:3,自引:0,他引:3  
Cytochrome c oxidase has been purified from the ammonia oxidizing chemoautotroph Nitrosomonas europaea by ion-exchange chromatography in the presence of Triton X-100. The enzyme has absorption maxima at 420 and 592 nm in the resting state and at 444 and 598 nm in the dithionite-reduced form; optical extinction coefficient (598 nm minus 640 nm) = 21.9 cm-1 nM-1. The enzyme has approximately 11 nmol of heme a and approximately 11 nmol of copper per mg of protein (Lowry procedure). There appear to be three subunits (approximate molecular weights 50,800, 38,400, and 35,500), two heme groups (a and a3), and two copper atoms per minimal unit. The EPR spectra of the resting and partially reduced enzyme are remarkably similar to the corresponding spectra of the mitochondrial cytochrome aa3-type oxidase. Although the enzyme had been previously classified as "cytochrome a1" on the basis of its ferrous alpha absorption maximum (598 nm), its metal content and EPR spectral properties clearly show that it is better classified as a cytochrome aa3. Neither the data reported here nor a review of the literature supports the existence of cytochrome a1 as an entity discrete from cytochrome aa3. The purified enzyme is reduced rapidly by ferrous horse heart cytochrome c or cytochrome c-554 from N. europaea, but not with cytochrome c-552 from N. europaea. The identity of the natural electron donor is as yet unestablished. With horse heart cytochrome c as electron donor, the purified enzyme could account for a significant portion of the terminal oxidase activity in vivo.  相似文献   

2.
The terminal component of the electron transport chain, cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase) was purified from Bacillus subtilis W23. The enzyme was solubilized with alkyglucosides and purified to homogeneity by cytochrome c affinity chromatography. The enzyme showed absorption maxima at 414 nm and 598 nm in the oxidized form and at 443 nm and 601 nm in the reduced form. Upon reaction with carbon monoxide of the reduced purified enzyme the absorption maxima shifted to 431 nm and 598 nm. Sodium dodecylsulfate polyacrylamide gel electrophoresis indicated that the purified enzyme is composed out of three subunits with apparent molecular weights of 57 000, 37 000 and 21 000. This is the first report on a bacterial aa3-type oxidase containing three subunits. The functional properties of the enzyme are comparable with those of the other bacterial cytochrome c oxidases. The reaction catalyzed by this oxidase was strongly inhibited by cyanide, azide and monovalent salts. Furthermore a strong dependence of cytochrome c oxidase activity on negatively charged phospholipids was observed. Crossed immunoelectrophoresis experiments strongly indicated a transmembranal localization of cytochrome c oxidase.  相似文献   

3.
A cytochrome oxidase was purified 52-fold from membranes of alkalophilic Bacillus firmus RAB by extraction with Triton X-100, ion-exchange and hydroxyapatite chromatography, and gel filtration. On denaturing gels, the purified enzyme dissociated into two subunits of 56,000 and 40,000 Mr as well as a cytochrome c with an Mr of approximately 14,000. Heme contents calculated for an enzyme with a molecular weight of 110,000 were found to be 2 mol of heme a and 1 mol of heme c per mol of cytochrome oxidase; approximately 2 mol of copper per mol of purified enzyme was also found. Enzyme activity was observed in assays using reduced yeast or horse heart cytochrome c. Activity of the purified enzyme was optimal at pH 6.0 and in the presence of added lipids. Impure, membrane-associated activity exhibited a broader pH range for optimal activity extending to alkaline values.  相似文献   

4.
The aa3-type cytochrome c oxidases purified from Nitrobacter agilis, Thiobacillus novellus, Nitrosomonas europaea, and Pseudomonas AM 1 were compared. They have haem a and copper atom as the prosthertic groups and show alpha and gamma absorption peaks at around 600 and 440 nm, respectively. Each oxidase molecule is composed of two kinds of subunits. The N. agilis oxidase has 2 moles of haem a and 2 atoms of copper in the minimal structural unit composed of one molecule each of the two kinds of subunits, while the T. novellus enzyme seems to contain one molecule of the haem and one atom of the metal in the unit. The N. europaea oxidase shows very low affinity for carbon monoxide. Each oxidase reacts rapidly with some eukaryotic cytochromes c as well as with its native cytochrome c. The cytochrome c oxidase activity of the N. agilis oxidase is 50% inhibited by 1 microM KCN, while 50% inhibition of the activity requires 100 microM KCN in the case of the N. europaea enzyme.  相似文献   

5.
The iron-oxidizing activity of a moderately thermophilic iron-oxidizing bacterium, strain TI-1, was located in the plasma membrane. When the strain was grown in Fe2+ (60 mM)-salts medium containing yeast extract (0.03%), the plasma membrane had iron-oxidizing activity of 0.129 mumol O2 uptake/mg/min. Iron oxidase was solubilized from the plasma membrane with 1.0% n-octyl-beta-D-glucopyranoside (OGL) containing 25% (v/v) glycerol (pH 3.0) and purified 37-fold by a SP Sepharose FF column chromatography. Iron oxidase solubilized from the plasma membrane was stable at pH 3.0, but quite unstable in the buffer with the pH above 6.0 or below 1.0. The optimum pH and temperature for iron oxidation were 3.0 and 55 degrees C, respectively. Solubilized enzyme from the membrane showed absorption peaks characteristic of cytochromes a and b. Cyanide and azide, inhibitors of cytochrome c oxidase, completely inhibited iron-oxidizing activity at 100 microM, but antimycin A, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO) and myxothiazol, inhibitors of electron transport systems involved with cytochrome b, did not inhibit enzyme activity at 10 microM. The absorption spectrum of the most active enzyme fraction from SP Sepharose FF column chromatography (4.76 mumol O2 uptake/mg/min) compared with lower active fractions from the chromatography (0.009 and 2.10 mumol O2 uptake/mg/min) showed a large alpha-peak of cytochrome a at 602 nm and a smaller alpha-peak of cytochrome b at 560 nm. The absorption spectrum of pyridine ferrohemochrome prepared from the most highly purified enzyme showed an alpha-peak characteristic of heme a at 587 nm, but not the alpha-peak characteristic of heme c at 550 nm. The cytochrome a, but not cytochrome b, in the most highly purified enzyme fraction was reduced by the addition of ferrous iron at pH 3.0, indicating that electrons from Fe2+ were transported to cytochrome a, but not cytochrome b. These results strongly suggest that cytochrome a, but not cytochromes b and c, is involved in iron oxidation of strain TI-1.  相似文献   

6.
Cytochrome oxidase is purified from rat liver and beef heart by affinity chromatography on a matrix of horse cytochrome c-Sepharose 4B. The success of this procedure, which employs a matrix previously found ineffective with beef or yeast oxidase, is attributed to thorough dispersion of the enzyme with nonionic detergent and a low density of cross-linking between the lysine residues of cytochrome c and the cyanogen bromide activated Sepharose. Beef heart oxidase is purified in one step from mitochondrial membranes solubilized with lauryl maltoside, yielding an enzyme of purity comparable to that obtained on a yeast cytochrome c matrix [Azzi, A., Bill, K., & Broger, C. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2447-2450]. Rat liver oxidase is prepared by hydroxyapatite and horse cytochrome c affinity chromatography in lauryl maltoside, yielding enzyme of high purity (12.5-13.5 nmol of heme a/mg of protein), high activity (TN = 270-400 s-1), and very low lipid content (1 mol of DPG and 1 mol of PI per mol of aa3). The activity of the enzyme is characterized by two kinetic phases, and electron transfer can be stimulated to maximal rates as high as 650 s-1 when supplemented with asolectin vesicles. The rat liver oxidase purified by this method does not contain the polypeptide designated as subunit III. Comparisons of the kinetic behavior of the enzyme in intact membranes, solubilized membranes, and the purified delipidated form reveal complex changes in kinetic parameters accompanying the changes in state and assay conditions, but do not support previous suggestions that subunit III is a critical factor in the binding of cytochrome c at the high-affinity site on oxidase or that cardiolipin is essential for the low-affinity interaction of cytochrome c. The purified rat liver oxidase retains the ability to exhibit respiratory control when reconstituted into phospholipid vesicles, providing definitive evidence that subunit III is not solely responsible for the ability of cytochrome oxidase to produce or respond to a membrane potential or proton gradient.  相似文献   

7.
Cytochrome c oxidase (cytochrome aa3-type) [EC 1.9.3.1] was purified from Pseudomonas AM 1 to an electrophoretically homogeneous state and some of its properties were studied. The oxidase showed absorption peaks at 428 and 598 nm in the oxidized form, and at 442 and 604 nm in the reduced form. The CO compound of the reduced enzyme showed peaks at 432 and 602 nm. The enzyme molecule was composed of two kinds of subunits with molecular weights of 50,000 and 30,000 and it contained equimolar amounts of heme a and copper atom. The enzyme rapidly oxidized Candida krusei and horse ferrocytochromes c as well as Pseudomonas AM 1 ferrocytochrome c. The reactions catalyzed by the enzyme were strongly inhibited by KCN.  相似文献   

8.
Nitrite reductase [nitric-oxide : (acceptor) oxidoreductase,EC 1.7.2.1 [EC] ] from a denitrifying phototrophic bacterium, Rhodopseudomonassphaeroides forma sp. denitrificans, was purified. The molecularweight of the enzyme, estimated by gel-filtration, was 80,000.Sodium dodecyl sulfate polyacrylamide gel electrophoresis ofthe purified enzyme showed a single 39,000 molecular weightband, indicating that the enzyme was composed of two subunitsof identical molecular weight. The oxidized form of the enzymeexhibited maximum absorption at 280 nm, 450 nm and 590 nm, andthe reduced form only at 280 nm. The ESR spectrum of a frozensolution of the oxidized enzyme showed a typical spectrum patternof a copper protein, suggesting that two types of Cu2+ existedwithin the enzyme. Estimates with an atomic absorption spectrophotometer,revealed two copper atoms per molecule. The optimum pH of theenzyme was 7.0. Km for nitrite was estimated to be 51 µM,and the optimum temperature, 30?C. The enzyme was inhibitedby CO, potassium cyanide and diethyldithiocarbamate and activatedby monoiodoacetate. Phenazine methosulfate, 2,6-dichlorophenolindophenol,horse heart cytochrome c, and cytochrome c2 from this bacteriumwere suitable electron donors. The enzyme also showed cytochromec oxidase activity. (Received May 4, 1978; )  相似文献   

9.
The oxidase cho of Methylobacillus flagellatus KT was purified to homogeneity by nondenaturing gel electrophoresis, and the kinetic properties and substrate specificity of the enzyme were studied. Ascorbate and ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) were oxidized by cbo with a pH optimum of 8.3. When TMPD served as electron donor for the oxidase cho, the optimal pH (7.0 to 7.6) was determined from the difference between respiration rates in the presence of ascorbate/TMPD and of only ascorbate. The kinetic constants, determined at pH 7.0, were as follows: oxidation by the enzyme of reduced TMPD at pH 7.0 was characterized by KM = 0.86 mM and Vmax = 1.1 mumol O2/(min mg protein), and oxidation of reduced cytochrome c from horse heart was characterized by KM = 0.09 mM and Vmax = 0.9 mumol O2/(min mg protein) Cyanide inhibited ascorbate/TMPD oxidase activity (Ki = 4.5-5.0 microM). The soluble cytochrome cH (12 kDa) partially purified from M. flagellatus KT was found to serve as the natural electron donor for the oxidase cbo.  相似文献   

10.
Two major fragments of horse heart cytochrome c involving the sequences (1-38) and (60-104) were found to produce a stable complex. The two fragments were devoid of any cytochrome c activity. The complex exhibited a hardly measurable electron transfer capacity with respect to cytochrome c oxidase and missed the 695 nm absorption band. The introduction of tryptophan in position 59 restored the intrinsic activity of the complex to the level of native cytochrome c. This was concluded from the convergence of the Eady-Hofstee plots which extrapolate to the same Vmax at high substrate concentrations. The absorption spectrum of the complex in the ferriform contained a clear absorption band at 695 nm (84% of that found with native cytochrome c). The investigation proves the indispensability of tryptophan in position 59 for the transfer of an electron to cytochrome c oxidase and supports the conclusions of Parr et al. about the existence of two consecutive processes in the folding of the two fragments (vide infra).  相似文献   

11.
1. A three-component enzyme system that catalyses the oxidation of methane to methanol has been highly purified from Methylosinus trichosporium. 2. The components are (i) a soluble CO-binding cytochrome c, (ii) a copper-containing protein and (iii) a small protein; the mol. wts. are 13 000, 47 000 and 9400 respectively. The cytochrome component cannot be replaced by similar cytochrome purified from Pseudomonas extorquens or by horse heart cytochrome c. 3. The stoicheiometry suggests a mono-oxygenase mechanism and the specific activity with methane as substrate is 6 micronmol/min per mg of protein. 4. Other substrates rapidly oxidized are ethane, n-propane, n-butane and CO. Dimethyl ether is not a substrate. 5. The purified enzyme system utilizes ascorbate or, in the presence of partially purified M. trichosporium methanol dehydrogenase, methanol as electron donor but not NADH or NADPH. 6. Activity is highly sensitive to low concentrations of a variety of chelating agents, cyanide, 2-mercaptoethanol and dithiothreitol. 7. Activity is highly pH-dependent (optimum 6.9-7.0) and no component of the enzyme is stable to freezing. 8. The soluble CO-binding cytochrome c shows oxidase acitivity and the relationship between this and the oxygenase activity is discussed.  相似文献   

12.
Human cytochrome c oxidase was purified in a fully active form from heart and skeletal muscle. The enzyme was selectively solubilised with octylglucoside and KCl from submitochondrial particles followed by ammonium sulphate fractionation. The presteady-state and steady-state kinetic properties of the human cytochrome c oxidase preparations with either human cytochrome c or horse cytochrome c were studied spectrophotometrically and compared with those of bovine heart cytochrome c oxidase. The interaction between human cytochrome c and human cytochrome c oxidase proved to be highly specific. It is proposed that for efficient electron transfer to occur, a conformational change in the complex is required, thereby shifting the initially unfavourable redox equilibrium. The very slow presteady-state reaction between human cytochrome c oxidase and horse cytochrome c suggests that, in this case, the conformational change does not occur. The proposed model was also used to explain the steady-state kinetic parameters under various conditions. At high ionic strength (I = 200 mM, pH 7.4), the kcat was highly dependent on the type of oxidase and it is proposed that the internal electron transfer is the rate-limiting step. The kcat value of the 'high-affinity' phase, observed at low ionic strength (I = 18 mM, pH 7.4), was determined by the cytochrome c/cytochrome c oxidase combination applied, whereas the Km was highly dependent only on the type of cytochrome c used. Our results suggest that, depending on the cytochrome c/cytochrome c oxidase combination, either the dissociation of ferricytochrome c or the internal electron transfer is the rate-limiting step in the 'high-affinity' phase at low ionic strength. The 'low-affinity' kcat value was not only determined by the type of oxidase used, but also by the type of cytochrome c. It is proposed that the internal electron-transfer rate of the 'low-affinity' reaction is enhanced by the binding of a second molecule of cytochrome c.  相似文献   

13.
Kinetic characterization of cytochrome c oxidase from Bacillus subtilis   总被引:2,自引:0,他引:2  
Bacillus subtilis aa3-type cytochrome c oxidase is capable of oxidizing cytochrome c from different origins. The kinetic properties of the enzyme are influenced by ionic strength. The affinity for Saccharomyces cerevisiae cytochrome c declines with increasing ionic strength whereas the Vmax remains almost constant. An increase of Vmax is observed when the enzyme is incorporated in artificial membranes. Negatively charged phospholipids allow high turnover rates of the aa3-type oxidase. The effect of ionic strength on oxidation of horse heart cytochrome c results in significant changes of both Km and Vmax. These effects can be explained by disturbances of enzyme-substrate interactions and are not related to changes in the aggregation state of the enzyme. The respiration control index of the enzyme reconstituted in artificial membranes appeared to be dependent on phospholipid composition, protein/lipid ratios and also on the external pH. The action of the ionophores nigericin and valinomycin, at various pH values, on the enzyme activity and proton-permeability measurements of the membranes indicate that both components of the proton-motive force, the membrane potential and the pH gradient, can in principle regulate enzyme activity in the reconstituted state.  相似文献   

14.
The effects of hydrazine on ferrocytochrome c oxidation by cytochrome oxidase and on spectral properties of the enzyme were studied. Hydrazine was found to modify the spectral properties of lipid-depleted preparations of cytochrome oxidase dissolved in 1% cholate and to inhibit the cytochrome c oxidase activity of the enzyme, whereas the kinetic properties of lipid-enriched and Tween preparations were unchanged by hydrazine. Cytochrome oxidase was found to possess a hydrazine oxidase activity. This activity was not coupled with the specific cytochrome c oxidase activity. The effect of pH on the observed changes was studied. Hydrazine was found to yield protein bands in the optical spectra of cytochrome oxidase as 580 nm, 537 nm and 845 nm. It is concluded that hydrazine interacts with the oxygen-binding site of cytochrome oxidase. The effect of hydrazine on the formation of the "ferryl" form (Fe4+a3/Cu2+b) of the enzyme is discussed.  相似文献   

15.
Cytochrome c oxidase (cytochrome aa3-type) [EC 1.9.3.1] was purified from Nitrobacter agilis to an electrophoretically homogeneous state and some of its properties were studied. The enzyme showed absorption peaks at 422, 598, and 840 nm in the oxidized form, and at 442 and 606 nm in the reduced form. The CO compound of the reduced enzyme showed peaks at 436 and 604 nm, and the latter peak had a shoulder at 599 nm. The enzyme possessed 1 mol of heme a and 1.6 g-atom of copper per 41,000 g, and was composed of two kinds of subunits of 51,000 and 31,000 daltons. These results show that the structurally minimal unit of the enzyme molecule is composed of one molecule each of the two subunits and contains 2 molecules of heme a and 2-3 atoms of copper. the enzyme rapidly oxidized ferrocytochromes c of several eukaryotes as well as N. agilis ferrocytochrome c-552. The reactions catalyzed by the enzyme were strongly inhibited by KCN. The reduction product of oxygen catalyzed by the enzyme was concluded to be water on the basis of the ratio of ferrocytochrome c oxidized to molecular oxygen consumed.  相似文献   

16.
It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.  相似文献   

17.
从茶叶酶学研究的特殊性出发,设计了有效的纯化路线,并以茶树鲜叶为材料,首次制备出高比活性茶叶铜锌超氧化物歧化酶。经测该酶的分子量约为31kD。在274nm处,该酶有一吸收峰。在8mol/L尿素溶液中,此酶活性仍不受影响。经胰蛋白酶处理后,未见有活性丧失.纯化的酶经等电聚焦分析,呈现三条蛋白区带,其PI值分别是5.02,5.23和5.46。  相似文献   

18.
Cytochrome o, solubilized from the membrane of Azotobacter vinelandii, has been purified to homogeneity as judged by ultracentrifugation and polyacrylamide gel electrophoresis. The detergent-containing cytochrome o is composed of one polypeptide chain with a molecular weight of 28 000-29 000, associated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme exists as a dimer by gel filtration analysis. The amino analysis which reveals the majority of residues are of hydrophobic nature. The cytochrome o oxidase contains protoheme as its prosthetic group and about 20-40% of phospholipids. The phospholipids are identified as phosphatidylethanolamine and phosphatidylglycerol by radioautographic analysis using 2-dimensional thin-layer chromatography. No copper or nonheme iron can be detected in the purified oxidase preparation by atomic absorption and chemical analyses. Oxidation-reduction titration shows this membrane-bound cytochrome o to be a low-potential component, and Em was determined to be -18 mV in the purified form and -30 mV in the membrane-bound form. Both forms bind CO with a reduced absorption peak at 559 and 557-558 nm in the native and solubilized forms, respectively. A high-spin (g = 6.0) form is assigned to the oxidized cytochrome o by electron paramagnetic resonance analysis, and KCN abolishes this high-spin signal. CO titration of purified cytochrome o in the anaerobic conditions shows the enzyme binds one CO per four protohemes and a dissociation constant is estimated to be 3.2 microM for CO. Cyanide reacts with purified cytochrome o in both oxidized and CO-bound forms, identified by specific spectral compounds absorbed at the Soret region. Cytochrome c, often co-purified with cytochrome c from the membrane, cannot serve as a reductant for cytochrome o in vitro, due to the apparent potential difference of about 300 mV. Upon separation, both cytochrome o and cytochrome c4 show a great tendency of aggregation. Furthermore, the oxidase activity (measured by tetramethyl-p-phenylenediamine oxidation rate) decreases as the cytochrome c concentration is decreased by ammonium sulfate fractionation. All these suggest the structural and functional complex nature of cytochrome c4 and cytochrome o in the membrane of A. vinelandii.  相似文献   

19.
We purified membrane-bound cytochrome c-550 [cytochrome c-550(m)] to an electrophoretically homogeneous state from Nitrobacter winogradskyi. The cytochrome showed peaks at 409 and 525 nm in the oxidized form and peaks at 416, 521, and 550 nm in the reduced form. The molecular weight of the cytochrome was estimated to be 18,400 on the basis of protein and heme c contents and 18,600 by gel filtration. The N-terminal amino acid sequence of cytochrome c-550(m) was determined to be A-P-T-S-A-A-D-A-E-S-F-N-K-A-L-A-S-A-?-A-E-?-G-A-?-L-V-K-P. We previously purified soluble cytochrome c-550 cytochrome c-550(s)] from N. winogradskyi and determined its complete amino acid sequence (Y. Tanaka, Y. Fukumori, and T. Y. Yamanaka, Biochim. Biophys. Acta 707:14-20, 1982). Although the sequence of cytochrome c-550(m) was completely different from that of cytochrome c-550(s), ferrocytochrome c-550(m) was rapidly oxidized by the cytochrome c oxidase of the bacterium. Furthermore, the liposomes into which nitrite cytochrome c oxidoreductase, cytochrome c oxidase, and nitrite were incorporated showed nitrite oxidase activity in the presence of cytochrome c-550(m). These results suggest that cytochrome c-550(m) may be an alternative electron mediator between nitrite cytochrome c oxidoreductase and cytochrome c oxidase.  相似文献   

20.
Soluble cytochrome c-552 was purified from Thiobacillus ferrooxidans to an electrophoretically homogeneous state. The cytochrome showed absorption peaks at 276, 411 and 523 nm in the oxidized form and peaks at 315, 417, 523 and 552 nm in the reduced form. The molecular weight of the cytochrome was estimated to be 13,800 on the basis of the amino acid composition and heme content, and 14,000 from SDS-polyacrylamide gel electrophoresis analysis. Its midpoint redox potential at pH 7.0 was determined to be +0.36 V. The N-terminal amino acid sequence of the cytochrome was determined as follows: A-G-G-A-G-G-P-A-P-Y-R-I-S-?-D-?-M-V-?-S-G-M-P-G-. Ferrocytochrome c-552 was oxidized by the membrane fraction of T. ferrooxidans, and the oxidation rate was more rapid at pH 3.0 than at pH 6.5. Ferricytochrome c-552 was reduced by Fe(II)-cytochrome c oxidoreductase with Fe2+ at pH 3.5, while horse ferricytochrome c was not reduced by the enzyme under the same reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号