首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of the extracellular bacteriolytic enzymes of Lysobacter sp. on gram-negative bacteria was studied. These enzymes were found to be able to hydrolyze the peptidoglycan that was isolated from the gram-negative bacteria, the hydrolysis being completely inhibited by the cell wall lipopolysaccharide of these bacteria. The native cells of the gram-negative bacteria became susceptible to the bacteriolytic enzymes after the permeability of the outer membrane of the cells had been altered by treating them with polymyxin B.  相似文献   

2.
3.
Toxic properties of the cell wall of gram-positive bacteria   总被引:4,自引:0,他引:4       下载免费PDF全文
The biological activity of Odontomyces viscosus, which has been reported to cause periodontal disease in hamsters, was examined. The microorganism was cultured anaerobically in Brain Heart Infusion broth, and the cells were harvested. The washed cells were injected intradermally into the abdomen of rabbits. After 72 hr, a well-defined, firm, raised nodule (about 1.0 by 1.5 cm) with an erythematous border was seen at the injection site. Suspensions of cell wall and cytoplasmic material were injected intradermally, and the lesions appeared only at the site of cell wall injection. The cell walls, which were then treated with trypsin, pepsin, and ribonuclease, again produced the characteristic lesion. These nodular dermal lesions persisted for a minimal time of 10 days. The enzymatically treated cell walls were then hydrolyzed with 1 n HCl, and such hydrolysis up to 1 hr failed to alter the toxic activity of the cell walls. Similar dermal nodular lesions were obtained by injection of enzymatically treated cell walls of strains of Staphylococcus aureus, Streptococcus groups B, C, E, F, K, Lactobacillus casei, and Actinomyces israelii. Treatment with hot and cold trichloroacetic acid solutions and proteolytic enzymes, or with formamide, yielded insoluble fractions which produced the characteristic nodular lesions. The size of the lesion resulting from injection of these fractions was proportional to the amount of the injected material. The active fraction, which does not appear susceptible to hydrolysis by lysozyme, is thought to be cell wall mucopeptide. Histological studies showed skin abscesses due to the toxic reaction; however, in addition to the acute inflammatory reaction, there was local eosinophilia.  相似文献   

4.
5.
The cell wall of Streptomyces sp. MB-8 contains a major teichoic acid, viz., 1,3-poly(glycerol phosphate) substituted with N-acetyl-alpha-D-glucosamine (the degree of substitution is 60%), a minor teichoic acid, viz., non-substituted poly(glycerol phosphate), and a family of Kdn (3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid)-containing oligomers of the following general structure: [carbohydrate structure: see text]. The composition of the oligomers was established using MALDI-TOF mass spectroscopy. The present study provides the second example of the identification of Kdn as a component of cell wall polymers of streptomycetes, which are the causative agents of potato scab.  相似文献   

6.
7.
The cell wall of Streptomyces sp. VKM An-2534, the causative agent of common scab in potato tubers, which does not synthesize thaxtomin and is phylogenetically close to phytopathogen Streptomyces setonii sp. ATCC 25497, contains two anionic carbohydrate-containing polymers. The major polymer is teichuronic acid, whose repeating unit is disaccharide --> 4)-beta-D-ManpNAc3NAcyA-(1 --> 3)-alpha-D-GalpNAc-(1-->, where Acy is a residue of acetic or L-glutamic acid. The polymer of such structure has been found in Gram-positive bacteria for the first time. The minor polymer is teichoic acid [1,5-poly(ribitol phosphate)], in which a part of the ribitol residues are glycosylated at C4 with beta-D-Glcp and, probably, with beta-D-GlcpNAc and some residues are O-acylated with Lys residues. The structures were proved by chemical and NMR spectroscopic methods. It is likely that the presence of acidic polysaccharides on the surface of the phytopathogenic streptomycete is necessary for its attachment to the host plant.  相似文献   

8.
The aim of this article was to investigate the interactions of metal cations in aqueous solutions with the biomass of the freshwater macroalga Vaucheria sp. This problem is important when elaborating new applications of biosorption, e.g. the production of mineral feed additives for livestock from the biomass of algae enriched with microelement ions. Potentiometric titration was applied as a quick and cheap screening test to search for new efficient biosorbents. It revealed a variety of functional groups capable of cation exchange on the macroalgal surface, including carboxyl, phosphate, hydroxyl or amino groups. Fourier transform infrared spectroscopy on natural and chromium‐loaded Vaucheria sp. confirmed that carboxyl groups played a dominant role in the biosorption. The study also showed that Ca(II), Na(I), K(I), and Mg(II) ions were released from the biomass after biosorption of Cu(II), Mn(II), Zn(II), and Co(II) ions, indicating that ion exchange was a key mechanism in the biosorption of metal ions by Vaucheria sp. biomass. It was noticed that the mass of the microelement cations bound by the macroalga was proportional to the total mass of light metal ions [Na(I), K(I), Ca(II), and Mg(II)] released from the biomass.  相似文献   

9.
Using lysozyme-lysate of Micrococcus lysodeikticus cell wall coupled with Sepharose, several bacteriolytic enzymes were purified from crude preparations of animal and microbial origin. Quail egg-white, human milk and salivary lysozymes [EC 3.2.1.17] were adsorbed onto the adsorbent at pH 5-7 and eluted with 2M NaCl at pH 10. By means of these treatments, lysozymes were purified 20-250 fold with activity recoveries of 60-80%, and the quail lysozyme thus purified was shown to be discelectrophoretically homogeneous. Some bacteriolytic enzymes of microbial origin were also highly purified by using this affinity adsorbent. A bacterial lysozyme from Bacillus sp. ML-208 showed high affinity for the ligand and was not eluted under the conditions mentioned above, but was recovered by elution with 2M guanidine-HCl at pH 5.8, resulting in a 500-fold increase in the specific activity. A Pseudomonas-lytic enzyme from Streptomyces sp. P-51 was easily released from the adsorbent by elution with 0.5M NaCl at pH 5.0. A staphylolytic F2 enzyme from S. griseus S-35 and a chitinase [EC 3.2.1.14] from yam, both of which were completely inert toward M. lysodeikticus cell wall, passed through the adsorbent column. A modified ligand, in which muramic acid and glucosamine residues were N,O-acetylated, failed to adsorb any of these animal and bacterial lysozymes. Some of the enzymatic properties and bacteriolytic action spectra of these purified enzymes are also described in this paper in comparison with those of hen egg-white lysozyme.  相似文献   

10.
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.  相似文献   

11.
The biochemical properties of the D-glutamate-adding enzymes (MurD) from Escherichia coli, Haemophilus influenzae, Enterococcus faecalis, and Staphylococcus aureus were investigated to detect any differences in the activity of this enzyme between gram-positive and gram-negative bacteria. The genes (murD) that encode these enzymes were cloned into pMAL-c2 fusion vector and overexpressed as maltose-binding protein-MurD fusion proteins. Each fusion protein was purified to homogeneity by affinity to amylose resin. Proteolytic treatments of the fusion proteins with factor Xa regenerated the individual MurD proteins. It was found that these fusion proteins retain D-glutamate-adding activity and have Km and Vmax values similar to those of the regenerated MurDs, except for the H. influenzae enzyme. Substrate inhibition by UDP-N-acetylmuramyl-L-alanine, the acceptor substrate, was observed at concentrations greater than 15 and 30 microM for E. coli and H. influenzae MurD, respectively. Such substrate inhibition was not observed with the E. faecalis and S. aureus enzymes, up to a substrate concentration of 1 to 2 mM. In addition, the two MurDs of gram-negative origin were shown to require monocations such as NH4+ and/or K+, but not Na+, for optimal activity, while anions such as Cl- and SO4(2-) had no effect on the enzyme activities. The activities of the two MurDs of gram-positive origin, on the other hand, were not affected by any of the ions tested. All four enzymes required Mg2+ for the ligase activity and exhibited optimal activities around pH 8. These differences observed between the gram-positive and gram-negative MurDs indicated that the two gram-negative bacteria may apply a more stringent regulation of cell wall biosynthesis at the early stage of peptidoglycan biosynthesis pathway than do the two gram-positive bacteria. Therefore, the MurD-catalyzed reaction may constitute a fine-tuning step necessary for the gram-negative bacteria to optimally maintain its relatively thin yet essential cell wall structure during all stages of growth.  相似文献   

12.
The Gram-negative bacterium Lysobacter sp. XL1 secretes various proteins, including bacteriolytic enzymes (L1-L5), into the culture medium. These proteins are able to degrade Gram-positive bacteria. The mechanism of secretion of extracellular proteins by Lysobacter sp. XL1 has not been studied hitherto. Electron microscopic investigations revealed the phenomenon of the formation of extracellular vesicles by Lysobacter sp. XL1. These vesicles contained components of the Lysobacter sp. XL1 outer membrane, and demonstrated bacteriolytic activity against Gram-positive and Gram-negative bacteria: Staphylococcus aureus 209-P and Erwinia marcescens EC1, respectively. Western blotting analysis with antibodies to homologous bacteriolytic endopeptidases L1 and L5 showed that endopeptidase L5 was secreted into the culture medium by means of vesicles, unlike its homolog, endopeptidase L1. When inside the vesicles, endopeptidase L5 actively lysed the Gram-negative bacterium Erwinia marcescens; outside the vesicles, it lost this ability. The secretion of bacteriolytic endopeptidase L5 through the outer membrane vesicles is of great biological significance: because of this ability, Lysobacter sp. XL1 can compete in nature with both Gram-positive and Gram-negative bacteria.  相似文献   

13.
Myeloperoxidase (MPO), obtained from the granular fraction of bovine neutrophils at low concentrations (3 nm), exerted antibiotic influence on E. coli. After treatment with the MPO3 - H2O2 - Cl- system the number of living cells in the suspension dropped to 4.7% of the initial value. The preliminary treatment of MPO with antibodies at high concentrations, thus preventing MPO from being adsorbed on the surface of bacterial cells without suppressing its enzymatic catalytic activity, resulted in the considerable decrease of its bactericidal effect. These results suggest that the adsorption of MPO on the surface of target cells is the essential condition of its antimicrobial action.  相似文献   

14.
A new teichoic acid was identified in the cell walls of Streptomyces griseoviridis VKM Ac-622T, Streptomyces sp. VKM Ac-2091, and Actinoplanes campanulata VKM Ac-1319T. The polymer is poly(glycosylglycerol phosphate). The repeating units of the polymer, alpha-galactopyranosyl-(1-->3)-2-acetamido-2-deoxy-beta-galactopyran+ ++ osyl-(1-->1)-glycerols, are in phosphodiester linkage at C-3 of glycerol and C-6 of galactose. The structures of cell wall teichoic acids in the strains Streptomyces chryseus VKM Ac-200T and "Streptomyces subflavus" VKM Ac-484 similar in morphology and growth characteristics are also identical: 1,5-poly(ribitol phosphate) substituted at C-4(2) by 2-acetamido-2-deoxy-beta-glucopyranosyl residues and 1,3-poly(glycerol phosphate). The taxonomic aspects of these results are discussed.  相似文献   

15.
Teichoic acids (TAs) are major wall and membrane components of most gram-positive bacteria. With few exceptions, they are polymers of glycerol-phosphate or ribitol-phosphate to which are attached glycosyl and D-alanyl ester residues. Wall TA is attached to peptidoglycan via a linkage unit, whereas lipoteichoic acid is attached to glycolipid intercalated in the membrane. Together with peptidoglycan, these polymers make up a polyanionic matrix that functions in (i) cation homeostasis; (ii) trafficking of ions, nutrients, proteins, and antibiotics; (iii) regulation of autolysins; and (iv) presentation of envelope proteins. The esterification of TAs with D-alanyl esters provides a means of modulating the net anionic charge, determining the cationic binding capacity, and displaying cations in the wall. This review addresses the structures and functions of D-alanyl-TAs, the D-alanylation system encoded by the dlt operon, and the roles of TAs in cell growth. The importance of dlt in the physiology of many organisms is illustrated by the variety of mutant phenotypes. In addition, advances in our understanding of D-alanyl ester function in virulence and host-mediated responses have been made possible through targeted mutagenesis of dlt. Studies of the mechanism of D-alanylation have identified two potential targets of antibacterial action and provided possible screening reactions for designing novel agents targeted to D-alanyl-TA synthesis.  相似文献   

16.
17.
18.
19.
The effects of several cationic polymers (poly-L-lysines, protamine, and histone) on rabbit gall bladder epithelial cells were studied to explore possible roles for negative sites in the membrane. The tissue was bathed for 30 min at 37°C in Ringer''s solutions containing from 0.1 to 100.0 µg/ml of cationic polymers, and subsequently was fixed with 1% OsO4 and examined with the electron microscope. All cationic polymers, at appropriate concentrations, produced similar changes in membrane structure. Adjacent membranes frequently were fused. Membrane structures such as microvilli lost rigidity. Cell membranes showed an apparent increase in permeability as judged by osmotically traumatized cells. These results indicate that fixed anionic sites play significant roles in stabilizing epithelial membrane structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号