首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We employed the fluorescent calcium indicator Fura-2, loaded into intact retinas of the bullfrog Rana catesbeiana, to measure free calcium concentrations in the rod outer-segment cytosol. We determined that traditional methods of calculation yielded erroneous values of calcium. This error results from the presence of at least two distinct pools of Fura-2 in rod outer segments. Application of manganese quenches each pool, but quenching occurs at different rates. Using this fact, we show that the pools can be isolated by brief exposure to manganese and examined separately. One of these pools has the same fluorescent properties as the free salt of Fura-2 we use in our in vitro calibrations. The other source of fluorescence has more unusual properties. Although insensitive to calcium concentrations in the physiological range, it contributes significant anomalous fluorescence when cytosolic free calcium concentrations are elevated by application of IBMX. Nevertheless, the experimentally isolated, classic pool of Fura-2 is well behaved and allows us to calculate calcium concentrations relative to the Kd of Fura-2 by the usual ratio method. We show that when rods are exposed to saturating light, the free calcium concentration in their outer segments falls to a level not significantly different from zero within 20-30 s.  相似文献   

2.
Numerous hormones and neurotransmitters activate cells by increasing cytosolic calcium concentration ([Ca(2+)](i)), a key regulatory factor for many cellular processes. A pivotal feature of these Ca(2+) signals is the release of Ca(2+) from intracellular stores, which is followed by activation of extracellular calcium influx, allowing refilling of the stores by SERCA pumps associated with the endoplasmic reticulum. Although the mechanisms of calcium release and calcium influx have been extensively studied, the biology of the Ca(2+) stores is poorly understood. The presence of heterogeneous calcium pools in cells has been previously reported [1] [2] [3]. Although recent technical improvements have confirmed this heterogeneity [4], knowledge about the mechanisms underlying Ca(2+) transport within the stores is very scarce and rather speculative. A recent study in polarized exocrine cells [5] has revealed the existence of Ca(2+) tunneling from basolateral stores to luminal pools, where Ca(2+) is initially released upon cell activation. Here, we present evidence that, during stimulation, Ca(2+) transported into basolateral stores by SERCA pumps is conveyed toward the luminal pools driven by proton gradients generated by vacuolar H(+)-ATPases. This finding unveils a new aspect of the machinery of Ca(2+) stores.  相似文献   

3.
V V Petruniaka 《Tsitologiia》1987,29(8):875-883
Conditions and potentialities of electron-cytochemical techniques for calcium detection are analysed in terms of current evidence on the role of membranes in sequestration of intracellular calcium pools. In most cases these conditions did not allow to preserve a native localization of calcium because the lability of calcium pools enclosed within membranes and the action of electron microscopic fixatives on the membrane permeability to Ca2+ and Ca-precipitating agents were not taken into account. Considering these factors it is essential that both the fixator and Ca-precipitating agent could diffuse through membranes simultaneously. The modes to ensure this essential condition as well as the reasons and ways to avoid artifacts in cytochemical studies are given.  相似文献   

4.
Synaptic vesicles are clustered at the presynaptic terminal where they fuse and recycle in response to stimulation. Vesicles appear to be sorted into pools, but we do not yet understand how physiologically defined pools relate to morphological pools. The advent of dynamic imaging approaches has led to an appreciation of the regulation of vesicle mobility. Newly endocytosed vesicles are highly mobile but appear to become transiently trapped as they re-enter the recycling pool. Recent experiments indicate that endocytosis might have a constant rate, but limited capacity. How endocytosis is linked to exocytosis remains unclear, although calcium emerges as an important player.  相似文献   

5.
The effects of taurine in the mammalian nervous system are numerous and varied. There has been great difficulty in determining the specific targets of taurine action. The authors present a review of accepted taurine action and highlight recent discoveries regarding taurine and calcium homeostasis in neurons. In general there is a consensus that taurine is a powerful agent in regulating and reducing the intracellular calcium levels in neurons. After prolonged L-glutamate stimulation, neurons lose the ability to effectively regulate intracellular calcium. This condition can lead to acute swelling and lysis of the cell, or culminate in apoptosis. Under these conditions, significant amounts of taurine (mM range) are released from the excited neuron. This extracellular taurine acts to slow the influx of calcium into the cytosol through both transmembrane ion transporters and intracellular storage pools. Two specific targets of taurine action are discussed: Na+-Ca2+ exchangers, and metabotropic receptors mediating phospholipase-C.  相似文献   

6.
A major challenge to understanding low temperature calcium signatures in plants is defining how these signatures emerge from the interactions of different molecular components that are stored in different subcellular pools of a plant cell. Here we develop an integrative model that incorporates the interactions of Ca2?, H?, K?, Cl? and ATP in both cytosolic and vacuolar pools. Our analysis reveals how these four major ions along with ATP forms a complex network to relate the emergence of calcium signatures to other responses (e.g. pH response). Modelling results are in agreement with experimental observations for both cytosolic free calcium concentration ([Ca2?](c)) and pH. The model is further validated by experimentally measuring the response of [Ca2?](c) to six fluctuating (rather than constant) temperature profiles. We found that modelling results are in reasonable agreement with experimental observations, in particular, if the rate of reducing temperature is relatively high. In addition, we show that both calcium-induced calcium release (CICR) at the vacuolar membrane and transport of ions from the cytosolic pool to the vacuolar membrane play important roles in the interaction between cytosolic and vacuolar pools. In combination they control the amount and timing of calcium release from the vacuolar to cytosolic pool, shaping the specific calcium signature. The methodology and principles developed here establish an integrative view on the role of cytosolic and vacuolar pools in shaping calcium signatures in general, and they are universally applicable to study of the interactions of multiple subcellular pools.  相似文献   

7.
N G Morgan  R D Hurst 《FEBS letters》1988,227(2):153-156
The neuropeptide bombesin provoked a dose-dependent stimulation of 45Ca2+ efflux from pre-loaded islets of Langerhans. This response occurred rapidly, was not sustained and did not depend on the presence of extracellular calcium, suggesting that it resulted from the mobilization of intracellular calcium stores. Under conditions when large increases in 45Ca2+ efflux were observed, bombesin completely failed to stimulate the rate of insulin secretion. Similar results were also obtained with the muscarinic cholinergic agonist, carbachol. The data suggest that the release of calcium from intracellular pools is not sufficient to induce an increase in insulin secretion in normal islet cells.  相似文献   

8.
Since information in intracellular calcium signaling is often frequency encoded, it is physiologically critical and experimentally useful to have reliable, convenient, and non-invasive methods to entrain it. Because of cell-to-cell variability, synchronization of intracellular signaling across a population of genetically identical cells can still be difficult to achieve. For intrinsically oscillatory signaling pathways, such as calcium, upon continuous stimulation, cell-to-cell variability is manifested as differences in intracellular response frequencies. Even with entrainment using periodic stimulation, cell-to-cell variability is manifested as differences in the fidelity with which extracellular inputs are converted into intracellular signals. Here we present a combined theoretical and experimental analysis that shows how to appropriately balance stimulation strength, duration, and rest intervals to achieve entrainment with high fidelity stimulation-to-response ratios for G-protein-coupled receptor-triggered intracellular calcium oscillations. We further demonstrate that stimulation parameters that give high fidelity entrainment are significantly altered upon changes in intracellular enzyme levels and cell surface receptor levels. Theoretical analysis suggests that, at key threshold values, even small changes in these protein concentrations or activities can result in precipitous changes in entrainment fidelity, with implications for pathophysiology.  相似文献   

9.
Chlorotetracycline has been used in neutrophils and other cells as probe of the state of membrane-bound calcium. We report here that human neutrophils treated with chlorotetracycline response to soluble secretagogues by a prompt decrease in chlorotetracycline fluorescence. This response was observed within 2-5 s, making it one of the most immediate reactions in neutrophils to stimulation, and was obtained with three secretagogues studied: a chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine, a tumor promotor (phorbol myristate acetate) and a lectin (concanavalin A). The responses of neutrophils to the three stimuli differed both quantitatively and qualitatively. The calcium EGTA, did not effect the onset of the decrease in chlorotetracycline fluorescence, suggesting that the probe was measuring changes in intracellular calcium pools. The intracellular calcium antagonists, TMb-8, W-7 and trifluoperazine, did not block, but actually augmented, the fluorescence response. All four of these calcium antagonists blocked the recovery of chlorotetracycline fluorescence which was usually observed several minutes after stimulation with N-formyl-methionyl-leucyl-phenylalanine. This suggests that recovery was dependent upon both extracellular calcium and active calmodulin. The results are consistent with the hypothesis that changes in chlorotetracycline fluorescence reflect changes in a pool of membrane-bound 'trigger calcium', the release of which is an essential first step in stimulus-response coupling in human neutrophils.  相似文献   

10.
Localization of myoplasmic free calcium was measured in fura2-loaded single rat myocardial cells to determine whether the mechanism of norepinephrine desensitization includes redistribution of calcium. Fluorescence intensities at each pixel were quantitated by use of a photon-counting, microchannel plate camera. From these images, values of calcium-dependent fluorescence intensity averages in whole cells, areas of calcium release (as zones of high intracellular calcium concentrations), and ratios of fluorescence intensity in central vs. peripheral sites were determined. Stimulation by 1 nM norepinephrine caused an increase in total free intracellular calcium and an activation of intracellular calcium release sites from subsarcolemmal pools initially and later from centrally located calcium pools. Subsequent addition of 100 nM norepinephrine failed to cause significant intracellular calcium release from centrally located pools. In contrast, forskolin exposure still released high concentrations of calcium from these central pools. These results indicate that pretreatment with even a relatively small concentration of norepinephrine causes markedly decreased subsequent intracellular calcium release from centrally located sarcoplasmic reticulum because of a refractoriness of the link between receptor activation and calcium release.  相似文献   

11.
Calcium plays a critical part in the regulation of cell growth, and growth factors stimulate calcium entry into cells through calcium-permeable channels. However, the molecular nature and regulation of calcium-permeable channels are still unclear at present. Here we report the molecular characterization of a calcium-permeable cation channel that is regulated by insulin-like growth factor-I (IGF-I). This channel, which we name growth-factor-regulated channel (GRC), belongs to the TRP-channel family and localizes mainly to intracellular pools under basal conditions. Upon stimulation of cells by IGF-I, GRC translocates to the plasma membrane. Thus, IGF-I augments calcium entry through GRC by regulating trafficking of the channel.  相似文献   

12.
The early events related to intracellular signals after prolactin (PRL) activation in T lymphocytes are not clearly established. The aim of this work was to study the effect of PRL in cytosolic calcium levels in human T lymphocytes. By using the dye FURA-2 AM, the variations in cytosolic Ca(2+) were studied in peripheral human T lymphocytes isolated from extracted blood from healthy donors. Fifty nanograms per milliliter PRL induces a small increase in cytosolic calcium. When the cells are preincubated overnight (16-20 h) in the presence of PRL, the increase in calcium is higher. This high increase is due to the release from intracellular pools and to the influx from the extracellular media. That is, after overnight incubation with PRL, calcium influx in T cells follows the capacitative model. Since PRL receptor (PRL-R) activation involves the tyrosine kinase pathway, we check calcium effect in the presence of genistein, a known inhibitor of tyrosine kinases. When cells are preincubated in the presence of 10 microM genistein, and PRL is immediately added, no increase in cytosolic calcium is observed. The presence of genistein also completely blocks the increase in cytosolic calcium stimulated by PRL after overnight incubation with PRL. In the presence of PRL and N,N-dimethyl-D-erythro-sphingosine (DMS), a stimulus that increases cytosolic calcium in T cells by tyrosine kinase stimulation, a high, even insignificant, calcium influx is induced. However, when the cells are incubated overnight in the presence of PRL, and then DMS is added, a significant increase in cytosolic calcium levels takes place. This increase is associated with an increase in calcium release from intracellular pools and an increase in calcium uptake. Genistein reduces the influx of external calcium induced by DMS after short incubation with PRL and significantly inhibits both, calcium pools empty, and calcium influx is induced by DMS after overnight incubation with PRL. In summary, PRL induces calcium influx in normal T lymphocytes. The influx is magnified after long PRL exposures, intracellular Ca(2+) pool-dependent, and activated through tyrosine kinases.  相似文献   

13.
Since calcium is involved in both excitation-secretion and excitation-contraction coupling, it was of interest to evaluate its involvement in atrial natriuretic factor (ANF) release from atrial cardiocytes. In medium containing physiological levels of calcium (1.4 mM), the secretion of ANF from primary atrial cells was stimulated from 3- to 6-fold by a variety of agents including KCl, phenylephrine, and endothelium (ET). However, in medium containing 2 nM calcium, KCl was incapable of increasing ANF secretion above basal levels, while the stimulatory effects of phenylephrine and ET were only partially diminished. Nifedipine or verapamil could mimic the effects of the 2 nM calcium medium on KCl-, phenylephrine-, and ET-stimulated ANF secretion. Kinetic studies indicated that during the initial 5 min of ET-stimulated secretion the cells exhibited little requirement for extracellular calcium; however, the requirement was more apparent during the sustained secretion observed between 10 min and 2 h of secretagogue exposure. Additionally, the stimulation of ANF secretion by ET increased to a maximum of about 15-fold over basal by 10-min after ET application; subsequent to this time there was an apparent functional desensitization wherein the rate of secretion decreased by approximately 3-4-fold and remained at this level for the duration of secretagogue exposure up to 2 h. All forms of stimulated secretion could be inhibited through ionomycin-mediated depletion of intracellular calcium pools. Taken together, these results indicate that atrial cardiocytes require both extracellular and intracellular calcium to support maximal rates of stimulated ANF secretion, and that intracellular calcium pools may be used during the early phase of secretion, while the extracellular source of calcium may be important for the sustained phase of secretion.  相似文献   

14.
Summary Stimulations or inhibitions by various agents of45Ca efflux from prelabeled cells or tissues display distinct and reproducible profile patterns when the results are plotted against time as fractional efflux ratios (FER). FER is the fractional efflux of45Ca from stimulated cells divided by the fractional efflux from a control unstimulated group. These profile patterns fall into three categories: peak patterns, exponential patterns, and mixed patterns. Each category can be positive (stimulation) or negative (inhibition). The interpretation of these profiles is difficult because45Ca efflux depends on three variables: the rate of calcium transport out of the cell, the specific activity of the cell compartment from which the calcium originates, and the concentration of free calcium in this compartment. A computer model based on data obtained by kinetic analyses of45Ca desaturation curves and consisting of two distinct intracellular pools was designed to follow the concentration of the traced substance (40Ca), the tracer (45Ca), and the specific activity of each compartment before, during, and after the stimulation or the inhibition of calcium fluxes at various pool boundaries. The computer model can reproduce all the FER profiles obtained experimentally and bring information which may be helpful to the interpretation of this type of data. Some predictions of the model were tested experimentally, and the results support the views that a peak pattern may reflect a sustained change in calcium transport across the plasma membrane, that an exponential pattern arises from calcium mobilization from an internal subcellular pool, and that a mixed pattern may be caused by a simultaneous change in calcium fluxes at both compartment boundaries.  相似文献   

15.
The properties of the calcium efflux system in the yeast Saccharomyces cerevisiae were investigated. After growing the cells overnight in medium containing 45Ca, the cells were transferred to medium containing glucose, Hepes buffer (pH 5.2) and monovalent cations. The presence of potassium or sodium in the medium induced efflux of calcium from the cells. The magnitude of the efflux was dependent on the concentration of these cations in the medium. The time course of calcium efflux was analyzed, and two types of exchangeable calcium pools, which turned over at different rates, were detected: ‘Fast turnover’ and ‘slow turnover’. Increase in the concentration of monovalent cations in the medium caused an increase in the fraction of cellular calcium which turned over at a fast rate, and activation of calcium efflux from the ‘slow turnover’ calcium pool. The specific changes in the parameters of calcium efflux induced by monovalent cations were different from those reported previously to be induced by divalent cations. Both processes, i.e. activation of calcium efflux by monovalent and by divalent cations, were found to be additive, indicating that they operate via different mechanisms. Experiments using the respiratory inhibitor Antimycin A, showed that stimulation of calcium efflux by monovalent cations is energy dependent. Lanthanum ions which are known to inhibit calcium influx into yeast cells, inhibitted the activation of calcium efflux by both divalent and monovalent cations. Determination of the cationic composition of the cells indicated that the stimulation of calcium efflux was accompanied by influx of potassium or sodium into the cells.  相似文献   

16.
The force-interval relationship was studied on myocardium preparations from chick embryos and hatched chickens. It is shown that the force-interval relationships of myocardium change during ontogenesis. A negative staircase (a decrease in the isometric force with increasing stimulation rate) in the chick embryo myocardium and a positive steady-state relationship in hatched stage myocardium were revealed. Changes in the force after switching from one stimulation frequency to another, the effects of poststimulation potentiation, as well as responses to the introduction of pauses and extrasystols at a constant stimulation rate were recorded. All the effects observed in the transient processes in preparations from hatched stage myocardium were more pronounced than in embryo myocardium. Our previous mathematical model of calcium recirculation in cardiomyocytes was adapted for simulating the main features of force-interval relationships in embryonal and relatively developed myocardium. The main source of regulatory calcium in the model of hatched stage myocardium is sarcoplasmic reticulum. In the model of embryo myocardium, it was postulated, based on data available in literature, that the main regulator of contractile response of the muscle is calcium that enters cardiomyocytes from extracellular medium. To describe force-interval relationships, by this model, the decreasing dependence of the entry of extracellular calcium on the intervals between stimuli was introduced.  相似文献   

17.
The external stimulation of many cells by a hormone, for example, often leads to an oscillating cytosolic calcium concentration. This periodic behavior is now designated the cytosolic calcium oscillator. A theoretical model is presented that describes this behavior on the basis of inositol(1,4,5)trisphosphate-induced calcium oscillations. In contrast to other models only a single positive feedback loop is taken into account to obtain oscillations. The model includes important innovations compared to other approaches. It includes the contribution of extracellular calcium and its modification after the stimulation of the cell. Furthermore, the signal pathway that leads to cytosolic calcium oscillations is described in more detail than in other models. This enables investigations on the influence of additional parameters like external electromagnetic fields on the signal transduction pathway. The model and the calculations are based on the theory of nonlinear self-sustained oscillators.  相似文献   

18.
Though only actual local free Ca2+ concentrations, [Ca2+], rather than total Ca concentrations, [Ca], govern cellular responses, analysis of total calcium fluxes would be important to fully understand the very complex Ca2+ dynamics during cell stimulation. Using Paramecium cells we analyzed Ca2+ mobilization from cortical stores during synchronous (< or = 80 ms) exocytosis stimulation, by quenched-flow/cryofixation, freeze-substitution (modified for Ca retention) and X-ray microanalysis which registers total calcium concentrations, [Ca]. When the extracellular free calcium concentration, [Ca2+]e, is adjusted to approximately 30 nM, i.e. slightly below the normal free intracellular calcium concentration, [Ca2+]i = 65 nM, exocytosis stimulation causes release of 52% of calcium from stores within 80 ms. At higher extracellular calcium concentration, [Ca2+]e = 500 microM, Ca2+ release is counterbalanced by influx into stores within the first 80 ms, followed by decline of total calcium, [Ca], in stores to 21% of basal values within 1 s. This includes the time required for endocytosis coupling (350 ms), another Ca2+-dependent process. To confirm that Ca2+ mobilization from stores is superimposed by rapid Ca2+ influx and/or uptake into stores, we substituted Sr2+ for Ca2+ in the medium for 500 ms, followed by 80 ms stimulation. This reveals reduced Ca signals, but strong Sr signals in stores. During stimulation, Ca2+ is spilled over preformed exocytosis sites, particularly with increasing extracellular free calcium, [Ca2+]e. Cortically enriched mitochondria rapidly gain Ca signals during stimulation. Balance calculations indicate that total Ca2+ flux largely exceeds values of intracellular free calcium concentrations locally required for exocytosis (as determined previously). Our approach and some of our findings appear relevant also for some other secretory systems.  相似文献   

19.
The community structure of 15 species of the genus Hydroporus was investigated in various pools with the multivariate software DECORANA, TWINSPAN and CANOCO. Abiotic values measured at 22 bog pools were correlated to DECORANA-data. Typical communities in the Ohemoor (near Hamburg) are related to the factors shaddow, absorption, calcium, and sodium. Data of coexisting Hydroporus species (including other small Dytiscidae, Haliplidae, Noteridae) from 93 pools (near Seedorf/Schleswig-Holstein) could be devided into 4 typical communities (bog, wood, sand-pit, agricultural areas).  相似文献   

20.
A model is presented that highlights the principal factors determining the form and extent of contraction in arteries upon stimulation of their sympathetic nerve supply. This model incorporates a previous quantitative model of the process of noradrenaline (NAd) diffusion into the vascular media and reuptake into sympathetic varicosities during nerve stimulation (J. Theor. Biol. 226 (2004) 359). It is also dependent on a model of how the subsequent activation of metabotropic receptors initiates a G-protein cascade, resulting in the production of inositol trisphosphate (IP3) and an increase in intracellular calcium concentration, [Ca2+]i, in the smooth muscle cells (J. Theor. Biol. 223 (2003) 93). In the present work we couple this rise in [Ca2+]i to the increase in phosphorylated myosin bound to actin in the cells and hence determine the force development in arteries due to nerve stimulation. The model accounts for force development as a function of [Ca2+]i and for the rate of change of force as a function of the rate of change of [Ca2+]i in single smooth muscle cells. It also accounts for the characteristic time course of the force developed by the media of the rat-tail artery upon nerve stimulation. This consists of a rapid rise to a transient peak followed by a sustained plateau of contraction during the stimulation period, after which the contraction slowly decays back to baseline at a rate dependent on the strength of the stimulation. The model indicates that the transient peak is primarily due to the partial block of the IP3 receptor by the rise in [Ca2+]i and that the main determinant of the equilibrium condition indicated by the plateau phase is the rate of pumping of calcium into the sarcoplasmic reticulum. The relatively slow decline of contraction at the end of nerve stimulation is primarily a consequence of the slow rates of removal of NAd from the media by diffusion and reuptake into the sympathetic varicosities. The model thus provides a quantitative account of vascular smooth muscle contraction upon sympathetic nerve stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号