首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of S-substituted 4-chloro-2-mercapto-5-methyl-benzenesulfonamides has been investigated as inhibitors of four isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), that is, the cytosolic, ubiquitous isozymes CA I and II, as well as the transmembrane, tumor-associated isozymes CA IX and XII. The new derivatives were inefficient inhibitors of isoform I (K(I)s in the range of 2.7-18.7 microM) but generally had low nanomolar affinity for the inhibition of the other three isoforms (K(I)s in the range of 2.4-214 nM against hCA II; 1.4-47.5 nM against hCA IX, and 1.7-569 nM against hCA XII, respectively). Some selectivity for the inhibition of the tumor-associated versus the cyctosolic isoform II with some of these compounds has also been evidenced. As CA IX is an important marker of tumor hypoxia and its predictive, prognostic, and druggability potentials for designing antitumor therapies were recently validated, detection of selective, potent CA IX inhibitors may be relevant in the fight against cancers overexpressing CA isozymes.  相似文献   

2.
Reaction of 4-(2-amino-pyrimidin-4-yl-amino)-benzenesulfonamide with alkyl/aryl-sulfonyl halides, acyl halides or arysulfonyl isocyanates afforded a series of derivatives which were tested for inhibition of three carbonic anhydrase (CA) isozymes. These compounds were designed in such a way as to (i) strongly inhibit several CA isozymes involved in aqueous humor secretion within the eye (such as CA II and CA IV), and (ii) to possess a pharmacological profile that allows easy penetration through the cornea, when administered as eye drops in solution or suspension, constituting thus a valuable therapeutic approach for glaucoma. Several of the obtained inhibitors showed low nanomolar affinities for the two isozymes involved in aqueous humor secretion, CA II and CA IV. Furthermore, in normotensive and hypertensive rabbits, some of them showed an effective and prolonged intraocular pressure (IOP) lowering when administered topically, as 2% suspensions/solutions.  相似文献   

3.
Reaction of 4-(2-amino-pyrimidin-4-yl-amino)-benzenesulfonamide with alkyl/aryl-sulfonyl halides, acyl halides or arysulfonyl isocyanates afforded a series of derivatives which were tested for inhibition of three carbonic anhydrase (CA) isozymes. These compounds were designed in such a way as to (i) strongly inhibit several CA isozymes involved in aqueous humor secretion within the eye (such as CA II and CA IV), and (ii) to possess a pharmacological profile that allows easy penetration through the cornea, when administered as eye drops in solution or suspension, constituting thus a valuable therapeutic approach for glaucoma. Several of the obtained inhibitors showed low nanomolar affinities for the two isozymes involved in aqueous humor secretion, CA II and CA IV. Furthermore, in normotensive and hypertensive rabbits, some of them showed an effective and prolonged intraocular pressure (IOP) lowering when administered topically, as 2% suspensions/solutions.  相似文献   

4.
Polyfluorinated CAIs show very good inhibitory properties against different carbonic anhydrase (CA) isozymes, such as CA I, II, and IV, but such compounds have not been tested for their interaction with the transmembrane, tumor-associated isozyme CA IX. Thus, a series of such compounds has been obtained by attaching 2,3,5,6-tetrafluorobenzoyl- and 2,3,5,6-tetrafluorophenylsulfonyl- moieties to aromatic/heterocyclic sulfonamides possessing derivatizable amino moieties. Some of these compounds showed excellent CA IX inhibitory properties and also selectivity ratios favorable to CA IX over CA II, the other physiologically relevant isozyme with high affinity for sulfonamide inhibitors. The first subnanomolar and rather selective CA IX inhibitor has been discovered, as the 2,3,5,6-tetrafluorobenzoyl derivative of metanilamide showed an inhibition constant of 0.8 nM against hCA IX, and a selectivity ratio of 26.25 against CA IX over CA II. Several other low nanomolar CA IX inhibitors were detected among the new derivatives reported here. The reported derivatives constitute valuable candidates for the development of novel antitumor therapies based on the selective inhibition of tumor-associated CA isozymes.  相似文献   

5.
Reaction of 3- and 4-carboxybenzenesulfonyl chloride with 5-amino-1,3,4-thiadiazole-2-sulfonamide/5-imino-4-methyl-delta(2)-1,3,4-thiadiazoline-2-sulfonamide afforded two series of benzolamide analogues to which the carboxyl moiety has been derivatized as esters or amides, in order to reduce their very polar character. The new derivatives showed low nanomolar affinity for three carbonic anhydrase (CA) isozymes, CA I, II and IV, and were effective as topical antiglaucoma agents in normotensive rabbits. Efficacy of several of the new sulfonamides reported was better than that of the standard drugs dorzolamide and brinzolamide, whereas their duration of action was prolonged as compared to that of the clinically used drugs.  相似文献   

6.
Reaction of diethylenetriamino pentaacetic acid (dtpa) dianhydride with aromatic/heterocyclic sulfonamides possessing a free amino/imino/hydrazino/hydroxy group afforded bis-sulfonamides containing metal-complexing, polyamino-polycarboxylic acid moieties in their molecule. The corresponding mono-sulfonamide derivatives of dtpa were also obtained by an alternative method, from the free acid. Zn(II) complexes of these new sulfonamides were then prepared. Many of these derivatives showed nanomolar affinity towards isozymes I, II and IV of carbonic anhydrase (CA). Some of the best inhibitors were applied as 2% water solutions/suspensions into the eye of normotensive or glaucomatous albino rabbits, when strong and long-lasting intraocular pressure (IOP) lowering was observed.  相似文献   

7.
Reaction of TBDMS-protected bile acids (cholic, chenodeoxycholic, deoxycholic, lithocholic, ursodeoxycholic acids) or dehydrocholic acid with aromatic/heterocyclic sulfonamides possessing free amino/hydroxy moieties, in the presence of carbodiimides, afforded after deprotection of the OTBDMS ethers, a series of sulfonamides incorporating bile acid moieties in their molecules. Many such derivatives showed strong inhibitory properties against three isozymes of carbonic anhydrase (CA, EC 4.2.1.1), that is CA I, II and IV, zinc enzymes playing critical roles in many pathologies, and which represent interesting targets for developing diverse pharmacological agents. Some of the most active derivatives, incorporating 1,3,4-thiadiazole-2-sulfonamide or benzothiazole-2-sulfonamide functionalities in their molecules, showed low nanomolar affinity for CA II and CAIV. Furthermore, the bioavailability of these derivatives in rabbits is comparable to that of acetazolamide, being in the range of 85-90%, showing them as promising candidates for systemically acting CA inhibitors.  相似文献   

8.
Reaction of histamine (Hst) with tetrabromophthalic anhydride and protection of its imidazole moiety with tritylsulfenyl chloride, followed by hydrazinolysis, afforded N-1-tritylsulfenyl histamine, a key intermediate which was further derivatized at its aminoethyl moiety. Reaction of the key intermediate with 4-tosylureido amino acids/dipeptides (ts-AA) in the presence of carbodiimides, afforded after deprotection of the imidazole moiety, a series of compounds with the general formula ts-AA-Hst (ts=4-MeC(6) H(4) SO(2) NHCO). Some structurally related dipeptide derivatives with the general formula ts-AA1-AA2-Hst, were also prepared, by in a similar way to the amino acyl compounds mentioned above. The new derivatives were examined as activators of three carbonic anhydrase (CA) isozymes, hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound form). Efficient activation was observed against all three isozymes, but especially against hCA I and bCA IV, with affinities in the 1-10 nanomolar range for the best compounds. hCA II was on the other hand activatable with affinities around 20-50 nM. This new class of CA activators might lead to the development of drugs/diagnostic agents for the CA deficiency syndrome, a genetic disease of bone, brain and kidneys.  相似文献   

9.
A series of Schiff's bases was prepared by reaction of 3-formyl-chromone or 6-methyl-3-formyl-chromone with aromatic sulfonamides, such as sulfanilamide, homosulfanilamide, 4-aminoethyl-benzenesulfonamide, a pyrimidinyl-substituted sulfanilamide derivative, sulfaguanidine and 4-amino-6-trifluoromethyl-benzene-1,3-disulfonamide. The zinc complexes of these sulfonamides have also been obtained. The new derivatives and their Zn(II) complexes were investigated for the inhibition of four physiologically relevant isozymes of carbonic anhydrase (CA, EC 4.2.1.1): the cytosolic isoforms I and II, as well as the tumor-associated, transmembrane isozymes CA IX and XII. Except for the sulfaguanidine-derived compounds which were devoid of activity against all isozymes, the other sulfonamides and their metal complexes showed interesting inhibitory activity. Against isozyme CA I, the inhibition constants were in the range of 13-100 nM, against isozyme CA II in the range of 1.9-102 nM, against isozyme CA IX in the range of 6.3-48nM, and against CA XII in the range of 5.9-50nM. Generally, the formyl-chromone derived compounds were better CA inhibitors as compared to the corresponding 6-methyl-chromone derivatives, and for the simple, benzenesulfonamide derivatives activity increased with an increase of the spacer from sulfanilamide to homosulfanilamide and 4-aminoethylbenzenesulfonamide derivatives, respectively. Some of these compounds may show applications for the development of therapies targeting hypoxic tumors in which CA IX and XII are often highly overexpressed.  相似文献   

10.
Unsubstituted aromatic, heterocyclic and perfluoroalkylic sulfonamides possessing the general formula RSO 2 NH 2 act as powerful inhibitors of the zinc enzyme carbonic anhydrase (CA). Unsaturated primary/substituted sulfonamides have never been investigated for their interaction with the enzyme. Here it is shown that such compounds, and more precisely allyl-sulfonamide and trans -styrene sulfonamide possessing the above general formula (with R=CH 2 =CH-CH 2 - and C 6 H 5 -CH=CH-, respectively) behave as nanomolar inhibitors of the physiologically relevant isozymes CA I and CA II. Some other derivatives of these two leads (incorporating Si(IV), Ge(IV) and B(III) moieties among others) were also synthesized and investigated for their interaction with CA, but showed decreased affinity for both isozymes. The structure-activity relationship for this class of CA inhibitors is discussed. Furthermore, it was observed that allylsulfonyl chloride is a strong CA inactivator, probably by reacting with amino acid residues critical for the catalytic cycle.  相似文献   

11.
Carbonic anhydrase inhibitors: sulfonamides as antitumor agents?   总被引:6,自引:0,他引:6  
Novel sulfonamide inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) were prepared by reaction of aromatic or heterocyclic sulfonamides containing amino, imino, or hydrazino moieties with N,N-dialkyldithiocarbamates in the presence of oxidizing agents (sodium hypochlorite or iodine). The N,N-dialkylthiocarbamylsulfenamido-sulfonamides synthesized in this way behaved as strong inhibitors of human CA I and CA II (hCA I and hCA II) and bovine CA IV (bCA IV). For the most active compounds, inhibition constants ranged from 10(-8) to 10(-9) M (for isozymes II and IV). Three of the derivatives belonging to this new class of CA inhibitors were also tested as inhibitors of tumor cell growth in vitro. These sulfonamides showed potent inhibition of growth against several leukemia, non-small cell lung, ovarian, melanoma, colon, CNS, renal, prostate and breast cancer cell lines. With several cell lines. GI50 values of 10-75 nM were observed. The mechanism of antitumor action with the new sulfonamides reported here remains obscure, but may involve inhibition of CA isozymes which predominate in tumor cell membranes (CA IX and CA XII), perhaps causing acidification of the intercellular milieu, or inhibition of intracellular isozymes which provide bicarbonate for the synthesis of nucleotides and other essential cell components (CA II and CA V). Optimization of these derivatives from the SAR point of view, might lead to the development of effective novel types of anticancer agents.  相似文献   

12.
An inhibition study of the human cytosolic isozymes I, and II, the mitochondrial isoform VA, and the tumor-associated, transmembrane isozyme IX of carbonic anhydrase (CA, EC 4.2.1.1) with a library of aromatic/heteroaromatic/polycyclic difluoromethanesulfonamides is reported. Most of the inhibitors were derivatives of benzenedifluoromethanesulfonamide incorporating substituted-phenyl moieties, or were methylsulfonamide and difluoromethyl-sulfonamide derivatives of the sulfamates COUMATE and EMATE, respectively. Except for the methylsulfonamide-COUMATE derivative which behaved as a potent CA II inhibitor (K(I) of 32nM), these sulfonamides were moderate inhibitors of all isozymes, with inhibition constants in the range of 96-5200nM against hCA I, of 80-670nM against hCA II, and of 195-9280nM against hCA IX, respectively. Remarkably, some derivatives, such as 3-bromophenyl-difluoromethanesulfonamide, showed a trend to selectively inhibit the mitochondrial isoform CA VA, showing selectivity ratios for inhibiting CA VA over CA II of 3.53; over CA I of 6.84 and over CA IX of 9.34, respectively, although it is a moderate inhibitor (K(I) of 160nM). Some of these derivatives may be considered as leads for the design of isozyme selective CA inhibitors targeting the mitochondrial isozyme CA VA, with potential use as anti-obesity agents.  相似文献   

13.
Reaction of histamine (Hst) with tetrabromophthalic anhydride and protection of its imidazole moiety with tritylsulfenyl chloride, followed by hydrazinolysis, afforded N-1-tritylsulfenyl histamine, a key intermediate which was further derivatized at its aminoethyl moiety. Reaction of the key intermediate with 4-tosylureido amino acids/dipeptides (ts-AA) in the presence of car-bodiimides, afforded after deprotection of the imidazole moiety, a series of compounds with the general formula ts-AA-Hst (ts = 4-MeC6H4SO2NHCO). Some structurally related dipeptide derivatives with the general formula ts-AA l-AA2-Hst, were also prepared, by in a similar way to the amino acyl compounds mentioned above. The new derivatives were examined as activators of three carbonic anhydrase (CA) isozymes, hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound form). Efficient activation was observed against all three isozymes, but especially against hCA I and bCA IV, with affinities in the 1-10 nanomolar range for the best compounds. hCA II was on the other hand activatable with affinities around 20-50 nM. This new class of CA activators might lead to the development of drugs/diagnostic agents for the CA deficiency syndrome, a genetic disease of bone, brain and kidneys.  相似文献   

14.
A new series of thioureido-substituted sulfonamides were prepared by reacting 4-isothiocyanato- or 4-isothiocyanatoethyl-benzenesulfonamide with amines, hydrazines, or amino acids bearing moieties that can lead to an enhanced hydrosolubility, such as 2-dimethylamino-ethylamine, fluorine-containing aromatic amines/hydrazines, an aminodiol, heterocyclic polyamines (derivatives of morpholine and piperazine), 4-aminobenzoic acid, or natural amino acids (Gly, Cys, Asn, Arg, and Phe). The new compounds showed good inhibitory properties against three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, with K(I)s in the range of 24-324 nM against the cytosolic isoform CA I, of 6-185 nM against the other cytosolic isozyme CA II, and of 1.5-144 nM against the transmembrane isozyme CA XII. Some of the new derivatives were also very effective in reducing elevated intraocular pressure in hypertensive rabbits as a glaucoma animal model. Considering that this is the first study in which potent CA II/CA XII inhibitors are designed and investigated in vivo, it may be assumed that the target isozymes of the antiglaucoma sulfonamides are indeed the cytosolic CA II and the transmembrane CA XII.  相似文献   

15.
Abstract

Reaction of twenty aromatic/heterocyclic sulfonamides containing a free amino, imino, hydra-zino or hydroxyl group, with tosyl isocyanate or 3,4-dichlorophenyl isocyanate afforded two series of derivatives containing arylsulfonylureido or diarylureido moieties in their molecule respectively. The new derivatives were assayed as inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II (cytosolic forms) and IV (membrane-bound form). Potent inhibition was observed against all three isozymes but especially against CA I, which is generally 10-75 times less susceptible to inhibition by the classical sulfonamides in clinical use as compared to the other major red cell isozyme, CA II, or the membrane-bound one, CA IV. The derivatives obtained from tosyl isocyanate were generally more potent than the corresponding ones obtained from 3,4-dichlorophenyl isocyanate. This is the first reported example of selective inhibition of CA I and might lead to more selective drugs/diagnostic agents from this class of pharmacologically relevant compounds.  相似文献   

16.
The inhibition of the last human carbonic anhydrase (CA, EC 4.2.1.1) isozyme (hCA XIV) discovered has been investigated with a series of sulfonamides, including some clinically used derivatives (acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide, and zonisamide), as well as the sulfamate antiepileptic drug topiramate. The full-length hCA XIV is an enzyme showing a medium-low catalytic activity, quite similar to that of hCA XII, with the following kinetic parameters at 20 degrees C and pH 7.5, for the CO2 hydration reaction: k(cat) = 3.12 x 10(5) s(-1) and k(cat)/K(M) = 3.9 x 10(7) M(-1) s(-1). All types of activities have been detected for the investigated compounds, with several micromolar inhibitors, including zonisamide, topiramate, and simple sulfanilamide derivatives (K(I)-s in the range of 1.46-6.50 microM). In addition, topiramate and zonisamide were observed to behave as weak hCA XII inhibitors, while zonisamide was an effective hCA IX inhibitor (K(I) of 5.1 nM). Some benzene-1,3-disulfonamide derivatives or simple five-membered heteroaromatic sulfonamides showed K(I)-s in the range of 180-680 nM against hCA XIV, whereas the most effective of such inhibitors, including 3-chloro-/bromo-sulfanilamide, benzolamide-like, ethoxzolamide-like, and acetazolamide/methazolamide-like derivatives, showed inhibition constant in the range of 13-48 nM. The best hCA XIV inhibitor was aminobenzolamide (K(I) of 13 nM), but no CA XIV-selective derivatives were evidenced. There are important differences of affinity of these sulfonamides/sulfamates for the three transmembrane CA isozymes, with CA XII showing the highest affinity, followed by CA IX, whereas CA XIV usually showed the lowest affinity for these inhibitors.  相似文献   

17.
A series of sulfonylated hydroxamates were synthesized and evaluated as dual inhibitors of both human carbonic anhydrases (hCAs) and matrix metalloproteinases (MMPs), two metalloenzyme families involved in carcinogenesis and tumor invasion processes. The new derivatives were tested on three CA isozymes, the cytosolic isozymes I and II, and the transmembrane, tumor-associated isozyme IX, and also on human gelatinases (MMP-2 and MMP-9). Some of the new derivatives proved to be potent and selective inhibitors of CA II, but only compounds 3b and 6b, devoid of the arylsulfonyl moiety, proved to have a better inhibitory activity on hCA IX than on hCA I and II, in the micromolar range.  相似文献   

18.
A series of 4-substituted-2,3,5,6-tetrafluorobenezenesulfonamides were synthesized and their binding potencies as inhibitors of recombinant human carbonic anhydrase isozymes I, II, VII, XII, and XIII were determined by the thermal shift assay, isothermal titration calorimetry, and stop-flow CO2 hydration assay. All fluorinated benzenesulfonamides exhibited nanomolar binding potency toward tested CAs and fluorinated benzenesulfonamides posessed higher binding potency than non-fluorinated compounds. The crystal structures of 4-[(4,6-dimethylpyrimidin-2-yl)thio]-2,3,5,6-tetrafluorobenzenesulfonamide in complex with CA II and CA XII, and 2,3,5,6-tetrafluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide in complex with CA XIII were determined. The observed dissociation constants for several fluorinated compounds reached subnanomolar range for CA I isozyme. The affinity and the selectivity of the compounds towards tested isozymes are presented.  相似文献   

19.
A new series of 1,3,4-thiadiazole-2-thione derivatives have been prepared and assayed for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic human isozymes I and II, and the transmembrane, tumor-associated hCA IX. Against hCA I the investigated thiones, showed inhibition constants in the range of 2.55-222 microM, against hCA II in the range of 2.0-433 microM, and against hCA IX in the range of 1.25-148 microM. Compound 5c, 4-(4,5-dihydro-5-thioxo-1,3,4-thiadiazol-2-yl)-1-(5-nitro-2-oxoindolin-3-ylidene)semicarbazide showed interesting inhibition of the tumor-associated hCA IX with K(I) value of 1.25 microM, being the first non-sulfonamide type inhibitor of such activity. This result is rather important taking into consideration the known antitumor activity of thiones. In addition, docking of the tested compounds into CA II active site was performed in order to predict the affinity and orientation of these compounds at the isozyme active site. The results showed similar orientation of the target compounds at CA II active site compared with reported sulfonamide type CAIs with the thione group acting as a zinc-binding moiety.  相似文献   

20.
Based on the X-ray crystallographic structure of the adduct of human carbonic anhydrase II (hCA II) with the weak activator histamine (Briganti, F., Mangani, S., Orioli, P., Scozzafava, A., Vernaglione, G. and Supuran, C.T. (1997) Biochemistry, 36, 10,384-10,392), a novel class of tight-binding CA activators was designed by using histamine (Hst) as lead molecule. Thus, N-1-tritylsulfenyl Hst was synthesized by reaction of Hst with tetrabromophthalic anhydride followed by protection of its imidazole moiety with tritylsulfenyl chloride. After hydrazinolysis, it afforded a key intermediate which was derivatized at the aliphatic amino group. Reaction of the key intermediate with 4-fluorophenylsulfonylureido amino acids (fpu-AA) or 2-toluenesulfonylureido amino acids (ots-AA) in the presence of carbodiimides, afforded after deprotection, a series of compounds with the general formula fpu/ots-AA-Hst (fpu = 4-FC6H4SO2NHCO; ots = 2-MeC6H4SO2NHCO). Some structurally related dipeptides with the general formula fpu/ots-AA1-AA2-Hst (AA, AA1 and AA2 represent amino acyl moieties), were also prepared, by a strategy similar to that used for the simple amino acyl compounds above. The new derivatives proved to be efficient in vitro activators of three CA isozymes. Best activity was shown against hCA I and bCA IV, for which some of the new compounds (such as the Lys, Arg, His or the dipeptide derivatives) showed affinities in the 2-12 nm range (h = human; b = bovine isozymes). hCA II was on the other hand somehow less prone to activation by the new derivatives, which possessed affinities around 30-60 nM for this isozyme. Ex vivo experiments showed some of the new activators to strongly enhance red cell CA activity (180-230%) after incubation with human erythrocytes. This new class of CA activators might lead to the development of drugs/diagnostic tools for the CA deficiency syndrome, a genetic disease of bone, brain and kidneys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号