首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lipofuscin accumulation in retinal pigment epithelial (RPE) cells of the eye implicates the etiologies of Stargardt disease and age-related macular degeneration, a leading cause of blindness in the elderly. Here, we have identified a previously unknown RPE lipofuscin component. By one- and two-dimensional NMR techniques and mass spectrometry, we confirmed that this compound is a new type of pyridinium bisretinoid presenting an unusual structure, in which two polyenic side chains are attached to adjacent carbons of a pyridinium ring. This pigment is a light-induced isomer of isoA2E, rather than A2E, referred to as iisoA2E. This pigment is a fluorescent lipofuscin compound with absorbance maxima at ∼430 and 352 nm detected in human, pig, mouse, and bovine eyes. Formation of iisoA2E was found in reaction mixtures of all-trans-retinal and ethanolamine. Excess intracellular accumulation of this adduct in RPE cells in vitro leads to a significant loss of cell viability and caused membrane damage. Phospholipase D-mediated phosphodiester cleavage of the A2PE series generated isoA2E and iisoA2E, in addition to A2E, thus corroborating the presence of isoA2PE and iisoA2PE that may serve as biosynthetic precursors of isoA2E and iisoA2E.  相似文献   

2.
The nondegradable pigments that accumulate in retinal pigment epithelial (RPE) cells as lipofuscin constituents are considered to be responsible for the loss of RPE cells in recessive Stargardt disease, a blindness macular disorder of juvenile onset. This autofluorescent material may also contribute to the etiology of age-related macular degeneration. The best characterized of these fluorophores is A2E, a compound consisting of two retinoid-derived side arms extending from a pyridinium ring. Evidence indicates that photochemical mechanisms initiated by excitation from the blue region of the spectrum may contribute to the adverse effects of A2E accumulation, with the A2E photooxidation products being damaging intermediates. By studying the oxidation products (oxo-A2E) generated using oxidizing agents that add one or two oxygens at a time, together with structural analysis by heteronuclear single quantum correlation-NMR spectroscopy, we demonstrated that the oxygen-containing moieties generated within photooxidized A2E include a 5,8-monofuranoid and a cyclic 5,8-monoperoxide. We have shown that the oxidation sites can be assigned to the shorter arm of A2E, to the longer arm, or to both arms by analyzing changes in the UV-visible spectrum of A2E, and we have observed a preference for oxidation on the shorter arm. By liquid chromatography-mass spectrometry, we have also detected both monofuran-A2E and monoperoxy-A2E in aged human RPE and in eye cups of Abca4/Abcr-/- mice, a model of Stargardt disease. Because the cytotoxicity of endoperoxide moieties is well known, the production of endoperoxide-containing oxo-A2E may account, at least in part, for cellular damage ensuing from A2E photooxidation.  相似文献   

3.
The autofluorescent pigments that accumulate in retinal pigment epithelial cells with aging and in some retinal disorders have been implicated in the etiology of macular degeneration. The major constituent is the fluorophore A2E, a pyridinium bisretinoid. Light-exposed A2E-laden retinal pigment epithelium exhibits a propensity for apoptosis with light in the blue region of the spectrum being most damaging. Efforts to understand the events precipitating the death of the cells have revealed that during irradiation (430 nm), A2E self-generates singlet oxygen with the singlet oxygen in turn reacting with A2E to generate epoxides at carbon-carbon double bonds. Here we demonstrate that A2E-epoxides, independent of singlet oxygen, exhibit reactivity toward DNA with oxidative base changes being at least one of these lesions. Mass spectrometry revealed that the antioxidants vitamins E and C, butylated hydroxytoluene, resveratrol, a trolox analogue (PNU-83836-E), and bilberry extract reduce A2E-epoxidation, whereas single cell gel electrophoresis and cell viability studies revealed a corresponding reduction in the incidence of DNA damage and cell death. Vitamin E, a lipophilic antioxidant, produced a more pronounced decrease in A2E-epoxidation than vitamin C, and treatment with both vitamins simultaneously did not confer additional benefit. Studies in which singlet oxygen was generated by endoperoxide in the presence of A2E revealed that vitamin E, butylated hydroxytoluene, resveratrol, the trolox analogue, and bilberry reduced A2E-epoxidation by quenching singlet oxygen. Conversely, vitamin C and ginkgolide B were not efficient quenchers of singlet oxygen under these conditions.  相似文献   

4.
Deposition of a fluorophoric material, known as lipofuscin, in retinal pigment epithelium cells has been speculated to be one of the biomarkers of age-related macular degeneration. One of the fluorophores of lipofuscin has been characterized as A2E, a pyridinium bisretinoid. Its cationic nature along with two hydrophobic retinal chains suggests that it can disrupt the membrane integrity by its detergent-like activity and can thus cause cellular damage. With this notion, we studied in detail the interaction between A2E and the model membranes of different lipid compositions using fluorescence steady-state and fluorescence anisotropy measurements. A transition from vesicular to micellar structure occurred upon incorporation of A2E into the lipid bilayer. However, the A2E concentration at which this transition occurred depends on the lipid composition. A lipid mixture containing 10% phosphatidylserine (PS) (close to disc membrane PS content) behaved similarly to a lipid mixture having no PS. In contrast, vesicles containing 20% PS showed significantly different behavior. Membrane solubilization by A2E was also confirmed by vesicle leakage experiments. A2E also showed significant activity in liposome-mediated gene transfection. A lipid formulation containing 40% A2E and a helper lipid showed plasmid DNA transfection efficiency comparable to commercially available transfection reagents with no evidence of cytotoxicity. These results contribute to understanding the mechanism underlying the A2E-induced cellular dysfunction.  相似文献   

5.
Aging of retinal pigment epithelial (RPE) cells of the eye is marked by accumulations of bisretinoid fluorophores; two of the compounds within this lipofuscin mixture are A2E and all-trans-retinal dimer. These pigments are implicated in pathological mechanisms involved in some vision-threatening disorders including age-related macular degeneration (AMD). Studies have shown that bisretinoids are photosensitive compounds that undergo photooxidation and photodegradation when irradiated with short wavelength visible light. Utilizing ultra performance liquid chromatography (UPLC) with electrospray ionization mass spectrometry (ESI-MS) we demonstrate that photodegradation of A2E and all-trans-retinal dimer generates the dicarbonyls glyoxal (GO) and methylglyoxal (MG), that are known to modify proteins by advanced glycation endproduct (AGE) formation. By extracellular trapping with aminoguanidine, we established that these oxo-aldehydes are released from irradiated A2E-containing RPE cells. Enzyme-linked immunosorbant assays (ELISA) revealed that the substrate underlying A2E-containing RPE was AGE-modified after irradiation. This AGE deposition was suppressed by prior treatment of the cells with aminoguanidine. AGE-modification causes structural and functional impairment of proteins. In chronic diseases such as diabetes and atherosclerosis, MG and GO modify proteins by non-enzymatic glycation and oxidation reactions. AGE-modified proteins are also components of drusen, the sub-RPE deposits that confer increased risk of AMD onset. These results indicate that photodegraded RPE bisretinoid is likely to be a previously unknown source of MG and GO in the eye.  相似文献   

6.
The autofluorescence of the retina that originates primarily from lipofuscin fluorophores in retinal pigment epithelial cells, is observed to undergo photobleaching during the acquisition of fundus autofluorescence images. Bisretinoid fluorophores isolated from retinal pigment epithelial cells have the spectral characteristics consistent with their being the source of fundus autofluorescence. Clinically relevant experiments were designed to better understand conditions in the micromilieu of bisretinoid fluorophores that can influence fluorescence efficiencies, photobleaching, and subsequent fluorescence recovery of this fluorophore. The consumption of the bisretinoid A2E due to photooxidation-induced degradation was quantified in solvent systems of variable relative permittivity (formerly called dielectric constant), in micelles, and in phospholipid vesicles of varying composition. Reorganization within biphasic systems was also examined. A2E content was measured by high performance liquid chromatography (HPLC) and fluorescence intensity was quantified spectroscopically. As solvent polarity was increased, A2E fluorescent spectra exhibited red-shifted maxima and reduced intensity. A2E was depleted by light irradiation and the loss was more pronounced in less polar solvents, lower concentrations of anionic surfactant, and in gel- versus fluid-ordered phospholipid liposomes. Conditions that permit A2E aggregation promoted photooxidation/photodegradation, while movement of A2E between bisphasic systems was associated with fluorescence recovery after photobleaching. The fluorescence characteristics of A2E are subject to environmental modulation. Photooxidation and photodegradation of bisretinoid can account for fundus autofluorescence photobleaching. Return of fluorescence intensity after photobleaching likely occurs due to redistribution of A2E fractions amongst co-existing heterogeneous microdomains of the lysosomal compartment.  相似文献   

7.
The autofluorescent lipofuscin that accumulates in retinal pigment epithelial cells with age may contribute to an age-related decline in cell function. The major lipofuscin fluorophore, A2E, is a pyridinium bisretinoid. We previously proposed that the biogenesis of A2E involves the following: (i) formation of the Schiff base, N-retinylidene phosphatidylethanolamine from all-trans-retinal and phosphatidylethanolamine in the photoreceptor outer segment membrane; (ii) further reaction of N-retinylidene phosphatidylethanolamine with retinal to yield phosphatidylethanolamine-bisretinoid, A2-PE; (iii) hydrolysis of A2-PE to generate A2E. To provide evidence for this biogenic scheme, all-trans-retinal was reacted with dipalmitoyl-l-alpha-phosphatidylethanolamine to yield DP-A2-PE (A2-PE), as confirmed by UV, with mass spectrometry revealing the molecular ion at m/z 1222.9 (C(77)H(124)O(8)PN) accompanied by product ion at m/z 672.8, representing the phosphoryl-A2E fragment of A2-PE. In reaction mixtures of retinal and outer segments and in samples of Royal College of Surgeons rat retina containing outer segment membranous debris, A2-PE was detected as a series of high performance liquid chromatography peaks, each with UV similar to reference A2-PE. By mass spectrometry, A2-PE consisted of multiple peaks, representing fatty acids with different chain lengths, and the phosphoryl-A2E moiety, m/z 673. Incubation of the retinal/outer segment reaction mixture with phospholipase D generated A2E, as detected by high performance liquid chromatography, thus confirming A2-PE as the A2E precursor.  相似文献   

8.
Mutations in the photoreceptor-specific ABCA4 gene are associated with several inherited retinal and macular degenerations. A prominent phenotype of these diseases is the accumulation of cytotoxic lipofuscin fluorophores such as A2E within the retinal pigment epithelium. Another compound, dihydro-N-retinylidene-N-retinylphosphatidyl-ethanolamine (A2PE-H(2)), also accumulates in retinas of mice and humans harboring ABCA4 mutations and was proposed to be a precursor of A2E. The role of A2PE-H(2) in the biogenesis of A2E and its relationship to other retinal fluorophores has not been previously investigated. We report spectral properties and structural relationships of the principal retinal fluorophores that accumulate in retina and retinal pigment epithelium of abca4(-/-) mice. A long wavelength fluorescence emission intrinsic to abca4(-/-) retinal explants is shown to emanate from A2PE-H(2). All-trans retinal dimer conjugates, which were also identified in the retinal explants, possessed distinct fluorescence and structural properties and, unlike A2PE-H(2), did not accumulate in an age-dependent manner. Derivative absorbance and fluorescence spectroscopy revealed that A2PE-H(2), A2E, and N-retinylidene-N-retinyl-phosphatidylethanolamine (A2PE), a known precursor of A2E, share common electronic and resonant structures. Importantly, collision-induced dissociation of A2PE-H(2) produced daughter ions that were identical to authentic A2E and its daughter ions. Finally, intravitreal administration of A2PE-H(2) to wild-type mice resulted in the formation of A2PE and A2E. These data validate a previously hypothesized biosynthetic pathway for A2E and implicate A2PE-H(2) as a precursor in this pathway. Fluorescence properties of A2PE-H(2) and other related fluorophores characterized in this report have significance for evaluation of human retinal diseases characterized by aberrant fundus autofluorescence.  相似文献   

9.
ABCA4, also known as ABCR or the rim protein, is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters expressed in vertebrate rod and cone photoreceptor cells and localized to outer segment disk membranes. ABCA4 is organized in two tandem halves, each consisting of a transmembrane segment followed successively by a large exocytoplasmic domain, a multispanning membrane domain, and a nucleotide-binding domain. Over 400 mutations in ABCA4 have been linked to Stargardt macular degeneration and related retinal degenerative diseases that cause severe vision loss in affected individuals. Direct binding studies and ATPase activation measurements have identified N-retinylidene-phosphatidylethanolamine, a product generated from the photobleaching of rhodopsin, as the substrate for ABCA4. Mice deficient in ABCA4 accumulate phosphatidylethanolamine, all-trans retinal, and N-retinylidene-phosphatidylethanolamine in photoreceptors and the diretinal pyridinium compound A2E in retinal pigment epithelial cells. On the basis of these studies, ABCA4 is proposed to actively transport or flip N-retinylidene-phosphatidylethanolamine from the lumen to the cytoplasmic side of disc membranes following the photobleaching of rhodopsin. This transport activity insures that retinoids do not accumulate in disc membranes. Disease-linked mutations in ABCA4 that result in diminished transport activity lead to an accumulation of all-trans retinal and N-retinylidene-PE in disc membranes which react to produce A2E precursors. A2E progressively accumulates as lipofuscin deposits in retinal pigment epithelial cells as a result of phagocytosis of outer segment discs. A2E and photo-oxidation products cause RPE cell death and consequently photoreceptor degeneration resulting in a loss in vision in individuals with Stargardt macular degeneration and other retinal degenerative diseases associated with mutations in ABCA4.  相似文献   

10.
The age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been associated with the development of retinal diseases, particularly age-related macular degeneration and Stargardt disease. A major component of lipofuscin is the bis-retinoid N-retinylidene-N-retinylethanolamine (A2E). The current model for the formation of A2E requires photoactivation of rhodopsin and subsequent release of all-trans-retinal. To understand the role of light exposure in the accumulation of lipofuscin and A2E, we analyzed RPEs and isolated rod photoreceptors from mice of different ages and strains, reared either in darkness or cyclic light. Lipofuscin levels were determined by fluorescence imaging, whereas A2E levels were quantified by HPLC and UV-visible absorption spectroscopy. The identity of A2E was confirmed by tandem mass spectrometry. Lipofuscin and A2E levels in the RPE increased with age and more so in the Stargardt model Abca4(-/-) than in the wild type strains 129/sv and C57Bl/6. For each strain, the levels of lipofuscin precursor fluorophores in dark-adapted rods and the levels and rates of increase of RPE lipofuscin and A2E were not different between dark-reared and cyclic light-reared animals. Both 11-cis- and all-trans-retinal generated lipofuscin-like fluorophores when added to metabolically compromised rod outer segments; however, it was only 11-cis-retinal that generated such fluorophores when added to metabolically intact rods. The results suggest that lipofuscin originates from the free 11-cis-retinal that is continuously supplied to the rod for rhodopsin regeneration and outer segment renewal. The physiological role of Abca4 may include the translocation of 11-cis-retinal complexes across the disk membrane.  相似文献   

11.
Lipofuscin contains fluorophores, which represent a biomarker for cellular aging. Although it remains unsubstantiated clinically, experimental results support that the accumulation of lipofuscin is related to an increased risk of choroidal neovascularization due to age-related macular degeneration, a leading cause of legal blindness. Here, we report that a major lipofuscin component, A2E, activates the retinoic acid receptor (RAR). In vitro experiments using luciferase reporter assay, competitional binding assay, analysis of target genes, and chromatin immunoprecipitation (ChIP) assay strongly suggest that A2E is a bona fide ligand for RAR and induces sustained activation of RAR target genes. A2E-induced vascular endothelial growth factor (VEGF) expression in a human retinal pigment epithelial cell line (ARPE-19) and RAR antagonist blocked the up-regulation of VEGF. The conditioned medium of A2E-treated ARPE-19 cells induced tube formation in human umbilical vascular endothelial cells, which was blocked by the RAR antagonist and anti-VEGF antibody. These results suggest that A2E accumulation results in the phenotypic alteration of retinal pigment epithelial cells, predisposing the environment to choroidal neovascularization development. This is mediated through the agonistic function of A2E, at least in part. The results of this study provide a novel potential therapeutic target for this incurable condition.  相似文献   

12.
The accumulation of the lipofuscin fluorophores in retinal pigment epithelial (RPE) cells leads to the blinding degeneration characteristic of Stargardt disease and related forms of macular degeneration. RPE lipofuscin, including the fluorophore A2E, forms in large part as a byproduct of the visual cycle. Inhibiting visual cycle function with small molecules is required to prevent the formation of the retinotoxic lipofuscins. This in turn requires identification of rate-limiting steps in the operation of the visual cycle. Specific, non-retinoid isoprenoid compounds are described here, and shown through in both in vitro and in vivo experiments, to serve as antagonists of RPE65, a protein that is essential for the operation of the visual cycle. These RPE65 antagonists block regeneration of 11-cis-retinal, the chromophore of rhodopsin, thereby demonstrating that RPE65 is at least partly rate-limiting in the visual cycle. Furthermore, chronic treatment of a mouse model of Stargardt disease with the RPE65 antagonists abolishes the formation of A2E. Thus, RPE65 is also on the rate-limiting pathway to A2E formation. These nontoxic isoprenoid RPE65 antagonists are candidates for the treatment of forms of macular degeneration wherein lipofuscin accumulation is an important risk factor. These antagonists will also be used to probe the molecular function of RPE65 in vision.  相似文献   

13.
Degenerative eye diseases are the most common causes of untreatable blindness. Accumulation of lipofuscin (granular deposits) in the retinal pigment epithelium (RPE) is a hallmark of major degenerative eye diseases such as Stargardt disease, Best disease, and age-related macular degeneration. The intrinsic reactivity of vitamin A leads to its dimerization and to the formation of pigments such as A2E, and is believed to play a key role in the formation of ocular lipofuscin. We sought a clinically pragmatic method to slow vitamin A dimerization as a means to elucidate the pathogenesis of macular degenerations and to develop a therapeutic intervention. We prepared vitamin A enriched with the stable isotope deuterium at carbon twenty (C20-D(3)-vitamin A). Results showed that dimerization of deuterium-enriched vitamin A was considerably slower than that of vitamin A at natural abundance as measured in vitro. Administration of C20-D(3)-vitamin A to wild-type rodents with no obvious genetic defects in vitamin A processing, slowed A2E biosynthesis. This study elucidates the mechanism of A2E biosynthesis and suggests that administration of C20-D(3)-vitamin A may be a viable, long-term approach to retard vitamin A dimerization and by extension, may slow lipofuscin deposition and the progression of common degenerative eye diseases.  相似文献   

14.
The major hydrophobic fluorophore of the retinal pigment epithelium (RPE) is A2E, a pyridinium bis-retinoid derived from all-trans-retinal and phosphatidyl-ethanolamine. The accumulation of fluorophores such as A2E is implicated in the pathogenesis of age-related macular degeneration (AMD), a disease associated with the deterioration of central vision and a leading cause of blindness in the elderly. Recent chemical and biological studies have provided insight into the synthesis and biosynthesis of A2E, the spectroscopic properties of this pigment, and the role of A2E and RPE cell death.  相似文献   

15.
Among retinal macular diseases, the juvenile recessive Stargardt disease and the age‐related degenerative disease arise from carbonyl and oxidative stresses (COS). Both stresses originate from an accumulation of all‐trans‐retinal (atRAL) and are involved in bisretinoid formation by condensation of atRAL with phosphatidylethanolamine (carbonyl stress) in the photoreceptor and its transformation into lipofuscin bisretinoids (oxidative stress) in the retinal pigment epithelium (RPE). As atRAL and bisretinoid accumulation contribute to RPE and photoreceptor cell death, our goal is to select powerful chemical inhibitors of COS. Here, we describe that phloroglucinol, a natural phenolic compound having anti‐COS properties, protects both rat RPE and mouse photoreceptor primary cultures from atRAL‐induced cell death and reduces hydrogen peroxide (H2O2)‐induced damage in RPE in a dose‐dependent manner. Mechanistic analyses demonstrate that the protective effect encompasses decrease in atRAL‐induced intracellular reactive oxygen species and free atRAL levels. Moreover, we show that phloroglucinol reacts with atRAL to form a chromene adduct which prevents bisretinoid A2E synthesis in vitro. Taken together, these data show that the protective effect of phloroglucinol correlates with its ability to trap atRAL and to prevent its further transformation into deleterious bisretinoids. Phloroglucinol might be a good basis to develop efficient therapeutic derivatives in the treatment of retinal macular diseases.  相似文献   

16.
Bisretinoid adducts accumulate as lipofuscin in retinal pigment epithelial (RPE) cells of the eye and are implicated in the pathology of inherited and age-related macular degeneration. Characterization of the bisretinoids A2E and the all-trans-retinal dimer series has shown that these pigments form from reactions in photoreceptor cell outer segments that involve all-trans-retinal, the product of photoisomerization of the visual chromophore 11-cis-retinal. Here we have identified two related but previously unknown RPE lipofuscin compounds. By high performance liquid chromatography-elec tro spray ionization-tandem mass spectrometry, we determined that the first of these compounds is a phosphatidyl-dihydropyridine bisretinoid; to indicate this structure and its formation from two vitamin A-aldehyde (A2), we will refer to it as A2-dihydropyridine-phosphatidyleth a nol amine (A2-DHP-PE). The second pigment, A2-dihydropyridine-eth a nol amine, forms from phosphate hydrolysis of A2-DHP-PE. The structure of A2-DHP-PE was corroborated by Fourier transform infrared spectroscopy, and density functional theory confirmed the presence of a dihydropyridine ring. This lipofuscin pigment is a fluorescent compound with absorbance maxima at ∼490 and 330 nm, and it was identified in human, mouse, and bovine eyes. We found that A2-DHP-PE forms in reaction mixtures of all-trans-retinal and phosphatidyleth a nol amine, and in mouse eyecups we observed an age-related accumulation. As compared with wild-type mice, A2-DHP-PE is more abundant in mice with a null mutation in Abca4 (ATP-binding cassette transporter 4), the gene causative for recessive Stargardt macular degeneration. Efforts to clarify the composition of RPE lipofuscin are important because these compounds are targets of gene-based and drug therapies that aim to alleviate ABCA4-related retinal disease.Throughout the life of an individual, retinal pigment epithelial (RPE)2 cells of the eye accumulate bisretinoid adducts that comprise the lipofuscin of these cells (13). The compounds form as a byproduct of light-mediated isomerization of the visual chromophore 11-cis-retinal. Accordingly, conditions that reduce the production of all-trans-retinal (atRAL) from 11-cis-retinal photoisomerization, such as reduced serum vitamin A (46), variants, or mutations in the visual cycle protein RPE65 (79) and inhibitors of RPE65 and 11-cis retinol dehydrogenase (1013), substantially reduce the formation of this material.Up to the present time, at least 17 constituents of RPE lipofuscin have been identified chromatographically and characterized structurally; added to these are biosynthetic intermediates such as N-retinylidene-phosphatidylethanolamine (NRPE), A2PE and dihydropyridinium-A2PE (see Fig. 1, A and B) (1419). The first RPE lipofuscin constituent to be described was A2E (see Fig. 1A, inset). The pyridinium bisretinoid (1416, 20, 21) structure of A2E (C42H58NO; molecular weight, 592) was confirmed by extensive nuclear magnetic resonance studies (14) and by total synthesis (22). A2E formation begins in photoreceptor outer segments when atRAL, instead of being reduced to all-trans-retinol, reacts with phosphatidylethanolamine (PE) in a 2:1 ratio. Although the double bonds along the side arms of A2E are all in the trans (E) position, Z-isomers of A2E have double bonds at the C-13/14 (isoA2E), C-9/9′-10/10′, and C-11/11′-12/12′ positions, and all are detectable in human and mouse RPE (16). These pigments exhibit absorbances in both the UV and visible regions of the spectrum (A2E: λmax, 439 and 338 nm; iso-A2E: λmax, 428 and 337 nm).Open in a separate windowFIGURE 1.Some bisretinoid compounds associated with RPE lipofuscin formation. Structures, molecular weight (Mw), UV-visible absorbance (nm), and electronic transition assignments (↔). Phosphate hydrolysis (dashed lines) of A2PE (A) and A2-DHP-PE (C) generates A2E and A2-DHP-E (insets in A and C). A2PE (A), dihydropyridinium-A2PE (B), A2-DHP-PE (C). The molecular weights are based on dipalmitic acid as the fatty acid constituent.Another bisretinoid compound of RPE lipofuscin also absorbs in the short wavelength region of the visible spectrum (17, 18, 23). This pigment, all-trans-retinal dimer (atRAL dimer; λmax, 432 and 290 nm) forms from the condensation of two atRAL and is present in RPE lipofuscin as Schiff base conjugates with either PE or ethanolamine (atRAL dimer-PE and atRAL dimer-E, respectively) or as unconjugated atRAL dimer. The pigments atRAL dimer-PE and atRAL dimer-E absorb in the visible range at about 510 nm, a “red” shift relative to atRAL dimer that is attributable to protonation of the Schiff base linkage. Although A2E is a pyridinium salt containing a quaternary amine nitrogen that does not deprotonate or reprotonate (24), the protonation state of the Schiff base linkage in atRAL dimer-PE and atRAL dimer-E is pH-dependent (18).Other known constituents of RPE lipofuscin are generated by photooxidation. By mass spectrometry, the photooxidation products of A2E and atRAL dimer present as a series of peaks differing by increments of mass 16 beginning with M+ 592 (A2E) or M+ 552 (atRAL dimer) (18, 25). The moieties generated by the addition of oxygens at CC bonds of these bisretinoid compounds include endoperoxides, furanoid oxides, and epoxides (2527). These oxidized products are more polar than the parent compound, and mono- and bis-oxidized forms of A2E and atRAL dimer have been detected in RPE from human eyes and in eyecups from mice with null mutations in Abca4/ (18, 25), the gene responsible for recessive Stargardt macular degeneration. It is also notable that unconjugated atRAL dimer is a more efficient generator of singlet oxygen than is A2E and is also a more efficient quencher of singlet oxygen (18).Insight into the composition of RPE lipofuscin and the biosynthetic pathways by which these compounds form aids in an understanding of retinal diseases characterized by lipofuscin overload, particularly those associated with mutations in ABCA4 (ATP-binding cassette transporter 4) of photoreceptor cells (13). We report that a previously unrecognized bisretinoid molecule absorbing with maxima at 490 and 331 nm is detected at elevated levels in Abca4/ mice, a model of recessive Stargardt macular degeneration. This compound is also present in human RPE. By high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS), with corroboration by Fourier transform infrared spectroscopy (FTIR), we determined that this molecule is a bisretinoid presenting with a noncharged dihydropyridine core (Fig. 1C). We propose a biosynthetic pathway by which this pigment may form and demonstrate that enzymatic removal of the phosphatidic acid portion of the molecule generates a second novel component of RPE lipofuscin.  相似文献   

17.
A2E, an important constituent of lipofuscin in human retinal pigment epithelium (RPE), is thought to mediate light-induced oxidative damage associated with aging and other ocular disorders. Ocular carotenoids in overlying retinal tissues were measured by HPLC and mass spectrometry and were correlated with levels of RPE A2E. We observed a statistically significant increase in total A2E levels in human RPE/choroid with age, and A2E levels in macular regions were approximately 1/3 lower than in peripheral retinal regions of the same size. There was a statistically significant inverse correlation between peripheral retina carotenoids and peripheral RPE/choroid A2E. Prospective carotenoid supplementation studies in Japanese quail demonstrated nearly complete inhibition of A2E formation and oxidation. These findings support current recommendations to increase dietary intake of xanthophyll carotenoids in individuals at risk for macular degeneration and highlight a new potential mechanism for their protective effects—inhibition of A2E formation and oxidation in the eye.  相似文献   

18.
Non-enzymatic collagen cross-linking and carbonyl adduct deposition are features of Bruch''s membrane aging in the eye, and disturbances in extracellular matrix turnover are considered to contribute to Bruch''s membrane thickening. Because bisretinoid constituents of the lipofuscin of retinal pigment epithelial (RPE) cells are known to photodegrade to mixtures of aldehyde-bearing fragments and small dicarbonyls (glyoxal (GO) and methylglyoxal (MG)), we investigated RPE lipofuscin as a source of the reactive species that covalently modify protein side chains. Abca4−/− and Rdh8−/−/Abca4−/− mice that are models of accelerated bisretinoid formation were studied and pre-exposure of mice to 430 nm light enriched for dicarbonyl release by bisretinoid photodegradation. MG protein adducts were elevated in posterior eyecups of mutant mice, whereas carbonylation of an RPE-specific protein was observed in Abca4−/− but not in wild-type mice under the same conditions. Immunolabeling of cryostat-sectioned eyes harvested from Abca4−/− mice revealed that carbonyl adduct deposition in Bruch''s membrane was accentuated. Cell-based assays corroborated these findings in mice. Moreover, the receptor for advanced glycation end products that recognizes MG and GO adducts and glyoxylase 1 that metabolizes MG and GO were up-regulated in Abca4−/− mice. Additionally, in acellular assays, peptides were cross-linked in the presence of A2E (adduct of two vitamin A aldehyde and ethanolamine) photodegradation products, and in a zymography assay, reaction of collagen IV with products of A2E photodegradation resulted in reduced cleavage by the matrix metalloproteinases MMP2 and MMP9. In conclusion, these mechanistic studies demonstrate a link between the photodegradation of RPE bisretinoid fluorophores and aging changes in underlying Bruch''s membrane that can confer risk of age-related macular degeneration.  相似文献   

19.
Accumulation of indigestible lipofuscin and decreased mitochondrial energy production are characteristic age-related changes of post-mitotic retinal pigment epithelial (RPE) cells in the human eye. To test whether these two forms of age-related impairment have interdependent effects, we quantified the ATP-dependent phagocytic function of RPE cells loaded or not with the lipofuscin component A2E and inhibiting or not mitochondrial ATP synthesis either pharmacologically or genetically. We found that physiological levels of lysosomal A2E reduced mitochondrial membrane potential and inhibited oxidative phosphorylation (OXPHOS) of RPE cells. Furthermore, in media with physiological concentrations of glucose or pyruvate, A2E significantly inhibited phagocytosis. Antioxidants reversed these effects of A2E, suggesting that A2E damage is mediated by oxidative processes. Because mitochondrial mutations accumulate with aging, we generated novel genetic cellular models of RPE carrying mitochondrial DNA point mutations causing either moderate or severe mitochondrial dysfunction. Exploring these mutant RPE cells we found that, by itself, only the severe but not the moderate OXPHOS defect reduces phagocytosis. However, sub-toxic levels of lysosomal A2E are sufficient to reduce phagocytic activity of RPE with moderate OXPHOS defect and cause cell death of RPE with severe OXPHOS defect. Taken together, RPE cells rely on OXPHOS for phagocytosis when the carbon energy source is limited. Our results demonstrate that A2E accumulation exacerbates the effects of moderate mitochondrial dysfunction. They suggest that synergy of sub-toxic lysosomal and mitochondrial changes in RPE cells with age may cause RPE dysfunction that is known to contribute to human retinal diseases like age-related macular degeneration.  相似文献   

20.
The accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been implicated in the development of age-related macular degeneration (AMD) in humans. The exact composition of lipofuscin is not known but its best characterized component is N-retinylidene-N-retinylethanolamine (A2E), a byproduct of the retinoid visual cycle. Utilizing our recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI–IMS)-based technique to determine the spatial distribution of A2E, this study compares the relationships of lipofuscin fluorescence and A2E in the murine and human RPE on representative normal tissue. To identify molecules with similar spatial patterns, the images of A2E and lipofuscin were correlated with all the individual images in the MALDI–IMS dataset. In the murine RPE, there was a remarkable correlation between A2E and lipofuscin. In the human RPE, however, minimal correlation was detected. These results were reflected in the marked distinctions between the molecules that spatially correlated with the images of lipofuscin and A2E in the human RPE. While the distribution of murine lipofuscin showed highest similarities with some of the known A2E-adducts, the composition of human lipofuscin was significantly different. These results indicate that A2E metabolism may be altered in the human compared to the murine RPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号