首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective breeding is an important tool in behavioral genetics and evolutionary physiology, but it has rarely been applied to the study of exercise physiology. We are using artificial selection for increased wheel-running behavior to study the correlated evolution of locomotor activity and physiological determinants of exercise capacity in house mice. We studied enzyme activities and their response to voluntary wheel running in mixed hindlimb muscles of mice from generation 14, at which time individuals from selected lines ran more than twice as many revolutions per day as those from control (unselected) lines. Beginning at weaning and for 8 wk, we housed mice from each of four replicate selected lines and four replicate control lines with access to wheels that were free to rotate (wheel-access group) or locked (sedentary group). Among sedentary animals, mice from selected lines did not exhibit a general increase in aerobic capacities: no mitochondrial [except pyruvate dehydrogenase (PDH)] or glycolytic enzyme activity was significantly (P < 0.05) higher than in control mice. Sedentary mice from the selected lines exhibited a trend for higher muscle aerobic capacities, as indicated by higher levels of mitochondrial (cytochrome-c oxidase, carnitine palmitoyltransferase, citrate synthase, and PDH) and glycolytic (hexokinase and phosphofructokinase) enzymes, with concomitant lower anaerobic capacities, as indicated by lactate dehydrogenase (especially in male mice). Consistent with previous studies of endurance training in rats via voluntary wheel running or forced treadmill exercise, cytochrome-c oxidase, citrate synthase, and carnitine palmitoyltransferase activity increased in the wheel-access groups for both genders; hexokinase also increased in both genders. Some enzymes showed gender-specific responses: PDH and lactate dehydrogenase increased in wheel-access male but not female mice, and glycogen phosphorylase decreased in female but not in male mice. Two-way analysis of covariance revealed significant interactions between line type and activity group; for several enzymes, activities showed greater changes in mice from selected lines, presumably because such mice ran more revolutions per day and at greater velocities. Thus genetic selection for increased voluntary wheel running did not reduce the capability of muscle aerobic capacity to respond to training.  相似文献   

2.
Swallow, John G., Theodore Garland, Jr., Patrick A. Carter,Wen-Zhi Zhan, and Gary C. Sieck. Effects of voluntary activity andgenetic selection on aerobic capacity in house mice(Mus domesticus). J. Appl. Physiol. 84(1): 69-76, 1998.An animal model was developed to study effects on components ofexercise physiology of both "nature" (10 generations of geneticselection for high voluntary activity on running wheels) and"nurture" (7-8 wk of access or no access to running wheels,beginning at weaning). At the end of the experiment, mice from bothwheel-access groups were significantly lighter in body mass than micefrom sedentary groups. Within the wheel-access group, a statisticallysignificant, negative relationship existed between activity and finalbody mass. In measurements of maximum oxygen consumption during forcedtreadmill exercise (O2 max), mice withwheel access were significantly more cooperative than sedentary mice;however, trial quality was not a significant predictor of individualvariation in O2 max.Nested two-way analysis of covariance demonstrated that both geneticselection history and access to wheels had significant positive effects on O2 max.A 12% difference inO2 max existedbetween wheel-access selected mice, which had the highestmass-correctedO2 max, andsedentary control mice, which had the lowest. The respiratory exchangeratio at O2 max wasalso significantly lower in the wheel-access group. Our results suggestthe existence of a possible genetic correlation between voluntaryactivity levels (behavior) and aerobic capacity (physiology).

  相似文献   

3.
The objective of this study was to examine the correlated response of anti-oxidant enzyme activity to selective breeding for increased voluntary wheel running in house mice. Activity of liver superoxide dismutase-2 (Sod-2), a free radical scavenger, was measured in four groups of mice. 'Active' individuals were housed in cages with attached wheels for 8 weeks beginning at weaning; 'sedentary' individuals were housed in cages with attached wheels that were prevented from rotating. Both of these treatments were applied to male and female mice from generation 14 of a replicated artificial selection experiment, which is composed of four lines selected for high wheel running and four randomly bred lines that serve as controls. In females, Sod-2 activity was significantly lower in selected vs control animals, regardless of presence/absence of a free-turning wheel. This difference suggests a trade-off between early-age voluntary wheel-running activity and Sod-2 activity. In males, Sod-2 activity was significantly affected by an interaction between selection group and activity group, with males from selected lines having lower Sod-2 activity relative to control males only in the sedentary treatment. These negative correlated responses of Sod-2 activity to selection on wheel running are discussed in the context of antagonistic pleiotropy models of aging and with respect to potential effects on lifespan.  相似文献   

4.
Mitogenic response of T-lymphocytes to exercise training and stress   总被引:3,自引:0,他引:3  
The impact of exercise training and stress on the immune response was examined by measuring the mitogenic response of spleen lymphocytes to the T-cell mitogen concanavalin A (Con-A). Male Sprague-Dawley rats were divided into four groups: sedentary controls (n = 11), handled controls (n = 12), treadmill runners (n = 10), and voluntary runners (n = 11) housed in running wheels. The treadmill group ran at 22 m/min (0.8 mph) for 45 min, 5 days/wk for 8 wk. After the training period, spleen lymphocytes isolated from each rat were incubated with Con-A for 54 h, pulsed with radiolabeled thymidine for 18 h, and counted for tritium activity. Counts per minute per group (means +/- SE) were as follows: sedentary, 6,839 +/- 1,461; handled, 8,959 +/- 1,576; voluntary runners, 13,126 +/- 2,069; and treadmill runners, 18,950 +/- 5,975. One-way analysis of variance and Tukey's highly significant difference test found the counts per minute of the treadmill runners to be significantly different from the counts per minute of the sedentary animals. These results indicate that the responsiveness of spleen lymphocytes to Con-A increases as the level of stress and exercise increases.  相似文献   

5.
Little is known about how genetic variation affects the capacity for exercise to change body composition. We examined the extent to which voluntary exercise alters body composition in several lines of selectively bred mice compared to controls. Lines studied included high runner (HR) (selected for high wheel running), M16 (selected for rapid weight gain), Institute of Cancer Research (ICR) (randomly bred as control for M16), M16i (an inbred line derived from M16), HE (selected for high percentage of body fat while holding body weight constant), LF (selected for low percentage of body fat), C57BL/6J (common inbred line), and the F1 between HR and C57BL/6J. Body weight and body fat were recorded before and after 6 days of free access to running wheels in males and females that were individually caged. Total food intake was measured during this 6‐day period. All pre‐ and postexercise measures showed significant strain effects. While HR mice predictably exercised at higher levels, all other selection lines had decreased levels of wheel running relative to ICR. The HR × B6 F1 ran at similar levels to HR demonstrating complete dominance for voluntary exercise. Also, all strains lost body fat after exercise, but the relationships between exercise and changes in percent body were not uniform across genotypes. These results indicate that there is significant genetic variation for voluntary exercise and its effects on body composition. It is important to carefully consider genetic background and/or selection history when using mice to model effects of exercise on body composition, and perhaps, other complex traits as well.  相似文献   

6.
Chronic voluntary exercise in wheels for 5 weeks in spontaneously hypertensive rats (SHR) augments in vivo natural killer (NK) cell cytotoxicity. Endogenous beta-endorphin is increased in cerebrospinal fluid after voluntary exercise in rats and we have recently shown that beta-endorphin administered i.c.v. augments NK cell mediated cytotoxicity in vivo in a similar way as chronic voluntary exercise. We have now further investigated the involvement of central opioid systems in the exercise-induced augmentation in natural immunity. Exercise consisted of voluntary running in wheels for 5 weeks. In vivo cytotoxicity was measured as clearance of injected 51Cr-labeled YAC-1 lymphoma cells from the lungs. The clearance of YAC-1 cells in vivo was significantly increased in runners as compared to sedentary controls. Selective delta, kappa, or mu-opioid receptor antagonists were administered i.c.v. with osmotic minipumps during the last 6 days of the 5 weeks of running. The delta-receptor antagonist naltrindole (40-50 microg/day) significantly but not completely inhibited the enhanced NK-cell cytotoxicity seen after 5 weeks of exercise. Neither the kappa-receptor antagonist nor-BNI or the mu-receptor antagonist beta-FNA influenced the augmentation in NK cell cytotoxicity. Nor-BNI per se significantly augments in vivo cytotoxicity, indicating some inhibiting effect on natural immunity that could be mediated through the kappa-opioid receptor. Our data suggest the involvement of central delta-opioid receptors in the enhancement of natural cytotoxicity seen after chronic voluntary exercise.  相似文献   

7.
In this paper, we describe the effects of voluntary cage wheel exercise on mouse cardiac and skeletal muscle. Inbred male C57/Bl6 mice (age 6-8 wk; n = 12) [corrected] ran an average of 4.3 h/24 h, for an average distance of 6.8 km/24 h, and at an average speed of 26.4 m/min. A significant increase in the ratio of heart mass to body mass (mg/g) was evident after 2 wk of voluntary exercise, and cardiac atrial natriuretic factor and brain natriuretic peptide mRNA levels were significantly increased in the ventricles after 4 wk of voluntary exercise. A significant increase in the percentage of fibers expressing myosin heavy chain (MHC) IIa was observed in both the gastrocnemius and the tibialis anterior (TA) by 2 wk, and a significant decrease in the percentage of fibers expressing IIb MHC was evident in both muscles after 4 wk of voluntary exercise. The TA muscle showed a greater increase in the percentage of IIa MHC-expressing fibers than did the gastrocnemius muscle (40 and 20%, respectively, compared with 10% for nonexercised). Finally, the number of oxidative fibers as revealed by NADH-tetrazolium reductase histochemical staining was increased in the TA but not the gastrocnemius after 4 wk of voluntary exercise. All results are relative to age-matched mice housed without access to running wheels. Together these data demonstrate that voluntary exercise in mice results in cardiac and skeletal muscle adaptations consistent with endurance exercise.  相似文献   

8.
The clinical use of doxorubicin (DOX) is limited by a dose-dependent cardiotoxicity. The purpose of this study was to determine whether voluntary exercise training would confer protection against DOX cardiotoxicity in the isolated perfused rat heart. Female Sprague-Dawley rats were randomly assigned to standard holding cages or cages with running wheels for 8 wk. Twenty-four hours after the sedentary (SED) or voluntary exercise (VEX) running period, rats were anesthetized with pentobarbital sodium, and hearts were isolated and perfused with oxygenated Krebs-Henseleit (KH) buffer at a constant flow of 15 ml/min. After a 20-min stabilization period, hearts were paced at 300 beats per minute and perfused with KH buffer containing 10 microM DOX for 60 min. A set of control hearts from SED and VEX rats were perfused under identical conditions without DOX for the same period. DOX perfusion led to significant decreases in left ventricular developed pressure, +dP/dt, and -dP/dt, and significant increases in LV lipid peroxidation in sedentary rats compared with non-DOX controls (P < 0.05). Prior voluntary exercise training attenuated these DOX-induced effects and was associated with a significant increase (78%, P < 0.05) in heat shock protein (HSP72), but not mitochondrial isoform of SOD (MnSOD) or CuZnSOD protein expression in the hearts of wheel-run animals. These data indicate that chronic physical activity may provide resistance against the cardiac dysfunction and oxidative damage associated with DOX exposure and provide novel evidence of HSP72 induction in the heart after voluntary exercise.  相似文献   

9.
We have developed a novel model to study the correlated evolution of behavioural and morphophysiological traits in response to selection for increased locomotor activity. We used selective breeding to increase levels of voluntary wheel running in four replicate lines of laboratory house mice, Mus domesticus, with four random-bred lines maintained as controls. The experiment presented here tested for correlated behavioural responses in the wheel-cage complex, with wheels either free to rotate or locked (environmental factor). After 13 generations, mice from selected lines ran 2.2 times as many revolutions/day as controls on days 5 and 6 of initial exposure to wheels (10 826 versus 4890 revolutions/day, corresponding to 12.1 and 5.5 km/day, respectively). This increase was caused primarily by mice from selected lines running faster, not more minutes per day. Focal-animal observations confirmed that the increase in revolutions/day involved more actual running (or climbing in locked wheels), not an increase in coasting (or hanging). Not surprisingly, access to free versus locked wheels had several effects on behaviour, including total time spent in wheels, sniffing and biting. However, few behaviours showed statistically significant differences between the selected and control lines. Selection did not increase the total time spent in wheels (either free or locked), the frequency of nonlocomotor activities performed in the wheels, nor the amount of locomotor activity in cages attached to the wheels; as well, selection did not decrease the amount of time spent sleeping. Thus, wheel running is, at the genetic level, a largely independent axis of behaviour. Moreover, the genetic architecture of overall wheel running and its components seem conducive to increasing total distance moved without unduly increasing energy or time-related costs. The selection experiment also offers a new approach to study the proximate mechanisms of wheel-running behaviour itself. For example, frequencies of sniffing and wire biting were reduced in selected females but not males. This result suggests that motivation or function of wheel running may differ between the sexes. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

10.
The effects of genetic selection for high wheel running (13th generation) and prolonged access (8 weeks) to running wheels on food consumption and body composition were studied in house mice (Mus domesticus). Mice from four replicate lines selected for high wheel-running activity ran over twice as many revolutions per day on activity wheels as did mice from four replicate control lines. At approximately 49 days of age, all mice were placed individually in cages with access to wheels and monitored for 6 days, after which wheels were prevented from rotating for the "sedentary" individuals. During the experiment, five feeding trials were conducted and body mass was measured weekly. After 8 weeks, body composition was measured by hydrogen isotope dilution. Across the five feeding trials, mice in the "active" group (wheels free to rotate) consumed 22.4% more food than mice in the "sedentary" group (wheels locked); mice from the selected lines consumed 8.4% more food than mice from the control lines (average of all trials; body mass-corrected values). In females, but not males, we found a significant interaction between selection and wheel access treatments: within the "active" group the difference in food consumption between selected and control animals was greater than in the "sedentary" group. At the end of the study, mice from the "active" and "sedentary" groups did not differ significantly in body mass; however, mice from the selected lines were approximately 6% smaller in body mass. Estimated lean body mass did not differ significantly either between selected and control lines or between wheel-access groups (P>0.3). Mice from selected lines had lower total body fat compared to mice from control lines (P=0.05; 24.5% reduction; LSMEANS) as did mice from the "active" compared to "sedentary" group (P= 0.03; 29.2% reduction; LSMEANS). Under these conditions, a sufficient explanation for the difference in body mass between the selected and control lines was the difference in fat content.  相似文献   

11.
Selective breeding produced four replicate lines of high-runner (HR) mice that run on wheels for approximately 2.7 times more revolutions per day than four unselected control lines. Previous studies found that HR mice of both sexes have lower body fat (isotope dilution at 15 wk of age) and that males (females not studied) have smaller retroperitoneal fat pads (17 wk). HR mice also exhibit elevated plasma corticosterone and insulin-stimulated glucose uptake by some hindlimb muscles but apparently do not differ in circulating insulin or glucose levels (males at 18 wk). Given their lower body fat and higher activity levels, we hypothesized that HR mice would have lower circulating leptin levels than controls. Female mice were given wheel access for 6 d at 7 wk of age, as part of the routine wheel testing for the selective breeding protocol, and then were killed after one additional week without wheels to reduce possible acute effects of activity on leptin. As hypothesized, serum leptin levels were significantly lower in HR mice. ANCOVA indicated that leptin was strongly positively correlated with both total body fat (measured by ether extraction) and body mass change from weaning, but HR mice still had significantly lower adjusted leptin levels (ANCOVA). Within HR lines but not within control lines, individual variation in leptin levels was negatively correlated with amount or speed of wheel running measured a week before being killed. Growth from weaning to euthanasia and body dry mass were lower in HR mice than in controls, but absolute dry masses of the ventricles, liver, gut, and uterus plus ovaries did not significantly differ, nor did percentage of the total dry mass as fat. HR mice offer a novel model for studying the causes and consequences of physiologically relevant variations in serum leptin.  相似文献   

12.
13.
We examined voluntary wheel running and forced treadmill running exercise performance of wild-type mice and mice null for the desmin gene. When given access to a cage wheel, desmin null mice spent less time running and ran less far than wild-type mice. Wild-type mice showed a significant training effect with prolonged voluntary wheel running, as evidenced by an increase in mean running speed across the 3-wk exercise period, whereas desmin null mice did not. Desmin null mice also performed less well in acute treadmill stress and endurance tests compared with wild-type mice. We also evaluated serum creatine kinase (CK) activity in wild-type and desmin null mice in response to running. Voluntary running did not result in elevated CK activity in either wild-type or desmin null mice, whereas downhill treadmill running caused significant increases in serum CK activity in both wild-type and desmin null mice. However, the increase in serum CK was significantly less in desmin null mice than in wild-type mice. These results suggest that the lack of desmin adversely affects the ability of mice to engage in both chronic and acute bouts of endurance running exercise but that this decrement in performance is not associated with an increase in serum CK activity.  相似文献   

14.
The effects of differing durations of daily exercise on macrophage functions in mice were studied. Male ICR mice aged 4 wk were divided into five groups: a nonexercise group (control) and four exercise groups with differing daily exercise durations of 15--120 min (Exr groups). The exercise applied was 5 days/wk treadmill running at 13 m/min for 12 wk. The potentiation of the phagocytosis function of the reticuloendothelial system and the glucose consumption of peritoneal macrophages in the Exr 30, 60, and 120 groups were significantly higher than those in the control group. Superoxide anion production of peritoneal macrophages in both the absence and the presence of phorbol 12-myristate 13-acetate in the Exr 60 and 120 groups was significantly higher than that in the control group. The acid phosphatase and beta-glucuronidase activities of peritoneal macrophages in the Exr 30, 60, and 120 groups were significantly increased. These results suggest that treadmill running exercise for at least 30 min/day (30--120 min) effectively enhances macrophage functions in mice. These data provide preliminary evidence indicating that chronic exercise-induced increases in phagocytic activity exhibit a dose-dependent relationship with exercise duration.  相似文献   

15.
Running wheels are widely used in studies on biological rhythms. In mice wheel diameters have ranged from 11 cm to 23 cm. We provided mice with running wheels of two different sizes: 15 cm diameter and 11 cm diameter. The amount of running in the 12-h light:12-h dark condition and the endogenous period of wheel running in constant darkness was determined over 40 days. On the 1st day in constant darkness all animals were exposed to a 15-min light pulse at circadian time 13. The animals in the small wheel ran significantly less both in 12 h light: 12 h dark and constant darkness, and showed a longer endogenous period in constant darkness compared to animals in the large wheel. Moreover, after the light pulse at circadian time 13, mice in the small wheel showed a significantly smaller phase delay in running wheel activity than mice in the larger wheels. The data suggest that the magnitude of a photic phase shift depends on the amount and timing of activity the animals display in relation to this stimulus. It can be concluded that technical features of the running wheel can influence the circadian period of wheel running.  相似文献   

16.
Induction of voluntary prolonged running by rats   总被引:1,自引:0,他引:1  
The rat is widely used in studies of the metabolic and physiological effects of physical exercise. The most commonly used form of exercise is running on treadmills or mechanically driven running wheels. Rats will not voluntarily run significant distances, under normal circumstances. If rats are exposed to running wheels with food freely available, only very limited activity normally occurs. When rats with access to a running wheel are restricted to a fixed amount of food, presented once per day, consistent running occurs. The running is spontaneous and very sensitive to the amount of food provided. Six 6-wk-old rats of 197 g mean body wt were induced to run for 139 days. The distance run increased rapidly over a 20-day initial period on a food supply of 15 g/day (vs. 19.5 g/day consumption by sedentary controls). From day 20 to day 139 the mean distance run was described by the regression equation distance (m/day) = 10,410 - 37.9 X days. Food provided was varied according to distance run, ranging from 15 to 18 g/day, and was normally 17.5 g/day. Thus a food deprivation of 10% of normal consumption will result in mean distances run of approximately 8,000 m/day. The use of pair-fed control animals without access to a wheel allows the conduct of experiments to test the effects of chronic long-distance running. The running is spontaneous; thus the technique avoids the complications accompanying techniques that force running.  相似文献   

17.
Two-month-old mice were placed in cages with (Ex) or without exercise running wheels with free access to the wheel 24 h/day for 10 mo. An equal amount of food for both groups was provided daily. Ex mice ran an average of 33.67 km/wk initially, and exercise decreased gradually with age. Ex mice had gained an average of 43.5% less body weight at the end of the experiment. Although serum lipid peroxides were not altered by exercise, superoxide dismutase and glutathione peroxidase activities in serum were significantly increased. Flow cytometric analysis of spleen cells revealed an increased percentage of CD8+ T cells and a decreased percentage of CD19+ B cells in Ex mice (P < 0.05). Exercise decreased apoptosis in total splenocytes and CD4+ cells incubated with medium alone or with H(2)O(2), dexamethasone, tumor necrosis factor-alpha (TNF-alpha), or anti-CD3 monoclonal antibody (P < 0.05) and CD8+ cells with medium alone or with TNF-alpha (P < 0.05). Even though exercise did not alter the intracellular cytokines (TNF-alpha and interleukin-2) or Fas ligand, it did significantly lower interferon-gamma in CD4+ and CD8+ cells (P < 0.05). In summary, voluntary wheel exercise appears to decrease H(2)O(2)-induced apoptosis in immune cells as well as decrease interferon-gamma production.  相似文献   

18.
19.
20.
It has been demonstrated that endurance exercise and chronic acceleration, i.e., hypergravity, produce comparable adaptations in a variety of physiological systems, including decreased adiposity, increased energy metabolism, and altered intermediary metabolism. Similar adaptations have not been demonstrated for skeletal muscle per se. To further differentiate between these general responses with respect to gravity and exercise, this study tested the hypothesis that chronic exercise (voluntary wheel running) and chronic acceleration (2 G via centrifugation) will induce similar changes in muscle myosin heavy chain (MHC) isoform expression in rat plantaris, a fast extensor, and in rat soleus, a slow "antigravity" extensor. The experimental design involved four groups of mature male rats (n = 8/group): 1 G and 2 G with running wheels, and 1 G and 2 G controls without running wheels. The primary observations from the study were as follows: 1) 8 wk of 2 G are an adequate stimulus for MHC compositional changes in rat plantaris and soleus muscle; 2) both exercise and +G caused an increase in the slow MHC1 isoform in soleus muscle, suggesting that loading is a primary stimulus for this shift; and 3) 2 G and exercise appeared to have differential effects on the plantaris muscle MHC isoforms, with 2 G causing an increase in MHC2b, and exercise causing a decrease in MHC2b with a concomitant increase in MHC1, suggesting that factors other than enhanced loading, possibly locomotor activity levels, are the primary stimulus for this shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号