首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Pulse-labeling of barley (Hordeum vulgare L. cv Himalaya) aleurone layers incubated for 13 hours in 2.5 micromolar gibberellic acid (GA3) with or without 5 millimolar CaCl2 shows that α-amylase isozymes 3 and 4 are not synthesized in vivo in the absence of Ca2+. A cDNA clone for α-amylase was isolated and used to measure α-amylase mRNA levels in aleurone layers incubated in the presence and absence of Ca2+. No difference was observed in α-amylase mRNA levels between layers incubated for 12 hours in 2.5 micromolar GA3 with 5 millimolar CaCl2 and layers incubated in GA3 alone. RNA isolated from layers incubated for 12 hours in GA3 with and without Ca2+ was translated in vitro and was found to produce the same complement of translation products regardless of the presence of Ca2+ in the incubation medium. Immunoprecipitation of translation products showed that the RNA for α-amylase synthesized in Ca2+-deprived aleurone layers was translatable. Ca2+ is required for the synthesis of α-amylase isozymes 3 and 4 at a step after mRNA accumulation and processing.  相似文献   

2.
The effects of gibberellic acid (GA3) and calcium ions on the production of α-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA3 or Ca2+ show qualitative and quantitative changes in hydrolase production following incubation in either GA3 or Ca2+ or both. Incubation in H2O or Ca2+ results in the production of low levels of α-amylase or acid phosphatase. The addition of GA3 to the incubation medium causes a 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of Ca2+ at 10 millimolar causes a further 8- to 9-fold increase in α-amylase release and a 75% increase in phosphatase release. Production of α-amylase isoenzymes is also modified by the levels of GA3 and Ca2+ in the incubation medium. α-Amylase 2 is produced under all conditions of incubation, while α-amylase 1 appears only when layers are incubated in GA3 or GA3 plus Ca2+. The synthesis of α-amylases 3 and 4 requires the presence of both GA3 and Ca2+ in the incubation medium. Laurell rocket immuno-electrophoresis shows that two distinct groups of α-amylase antigens are present in incubation media of aleurone layers incubated with both GA3 and Ca2+, while only one group of antigens is found in media of layers incubated in GA3 alone. Strontium ions can be substituted for Ca2+ in increasing hydrolase production, although higher concentrations of Sr2+ are required for maximal response. We conclude that GA3 is required for the production of α-amylase 1 and that both GA3 and either Ca2+ or Sr2+ are required for the production of isoenzymes 3 and 4 of barley aleurone α-amylase.  相似文献   

3.
The role of calmodulin (CaM) in gibberellic acid (GA3)-stimulated Ca2+ uptake was investigated in endomembranes isolated from aleurone cells of barley (Hordeum vulgare L.). Unidirectional Ca2+ -uptake activity of endoplasmic reticulum (ER) was higher in membranes isolated from aleurone layers treated for 16 h with GA3 and Ca2+ compared with those isolated from layers incubated in Ca2+ alone. However, the level of uptake from Ca2+-treated tissue could be stimulated to that of the GA3-treated cells by applying exogenous CaM which increased the V max of the Ca2+ transporter approximately threefold. Calcium uptake in ER from GA3-treated tissue was inhibited by the CaM antagonist W7 in 50% of experiments, whereas the activity in membranes from non-GA3-treated tissue was unaffected. Treatment with GA3 also led to a twofold increase in CaM levels in aleurone layers within 4–6 h, paralleling the time course of the stimulation of Ca2+ uptake and preceding the stimulation of α-amylase secretion. We propose that the elevation of Ca2+ uptake into the ER induced by GA3 may be coordinated and regulated by elevated levels of membrane-associated CaM and this may regulate Ca2+-dependent α-amylase synthesis in the lumen of the ER.  相似文献   

4.
The effects of gibberellic acid (GA3) and Ca2+ on the synthesis and secretion of α-amylase from protoplasts of barley (Hordeum vulgare L. cv Himalaya) aleurone were studied. Protoplasts undergo dramatic morphological changes whether or not the incubation medium contains GA3, CaCl2, or both. Incubation of protoplasts in medium containing both GA3 and Ca2+, however, causes an increase in the α-amylase activity of both incubation medium and tissue extract relative to controls incubated in GA3 or Ca2+ alone. Isoelectric focusing shows that adding Ca2+ to incubation media containing GA3 increases the levels of α-amylase isozymes having high isoelectric points (pI). In the presence of GA3 alone, only isozymes with low pIs accumulate. The increase in α-amylase activity in the incubation medium begins after 36 hours of incubation, and secretion is complete after about 72 hours. Protoplasts require continuous exposure to Ca2+ to maintain elevated levels of α-amylase release. Immunoelectrophoresis shows that Ca2+ stimulates the release of low-pI α-amylase isozymes by 3-fold and high-pI isozymes by 30-fold over controls incubated in GA3 alone. Immunochemical data also show that the half-maximum concentration for this response is between 5 and 10 millimolar CaCl2. The response is not specific for Ca2+ since Sr2+ can substitute, although less effectively than Ca2+. Pulse-labeling experiments show that α-amylase isozymes produced by aleurone protoplasts in response to GA3 and Ca2+ are newly synthesized. The effects of Ca2+ on the process of enzyme synthesis and secretion is not mediated via an effect of this ion on α-amylase stability or on protoplast viability. We conclude that Ca2+ directly affects the process of enzyme synthesis and transport. Experiments with protoplasts also argue against the direct involvement of the cell wall in Ca2+-stimulated enzyme release.  相似文献   

5.
The tannins chebulinic acid or tara tannin were added to an incubation system in which GA3 induces enzyme synthesis in endosperm half seeds of barley (Hordeum vulgare L.). The activity of amylase and acid phosphatase in the incubation medium was reduced compared to the activity in the medium after incubation with GA3 alone. When embryo half seeds of barley were incubated with chebulinic acid or tara tannin in the absence of added GA3, the enzyme activity of the incubation medium was also reduced. The activity of preformed enzymes obtained from endosperm half seeds previously induced with GA3 was not reduced by the addition of tannin. Comparisons were made of the amount of enzyme activity from breis of aleurone layers incubated with GA3 in the presence and absence of tannins. The amounts of activity were relatively small and approximately equal in both cases, indicating that secretion from the aleurone was not blocked by the tannins. The reduction of enzyme activity caused by tannins in both endosperm and embryo half seeds could be completely reversed by the addition of GA3.  相似文献   

6.
Germination of whole barley seeds for 4 and 6 days followed by measurement of lysophospholipase (lysolecithin acyl hydrolase, LAH) in the embryo-containing and embryo-free halves revealed a gradient of activity between the two halves of the seed. Most of the activity appeared in the embryo-containing half. This gradient decreased slightly in the aleurone and dramatically in the starchy endosperm during the 2 day germination interval. Embryo-containing and embryo-free half seeds of surface sterilized barley were placed separately on sterile agar plates. After 4 and 6 days LAH was observed in both the aleurone and starchy endosperm of the embryo-containing halves. In the embryo-free halves, LAH appeared at low levels in the aleurone and was virtually absent in the starchy endosperm. The scutellum of germinating seeds contains LAH activity. Exposure of embryo-free half seeds to GA3 for 24 hr showed enhancement of acidic and alkaline LAH activities in the aleurone fraction and in the GA3-medium in which the half seeds were treated. The LAH activity of the starchy endosperm of these half seeds was little changed by GA3 treatment. Exposure of isolated aleurones to GA3 for 24 hr resulted in substantial enhancement of acidic and alkaline LAH activities in the bathing medium and in fractions prepared from the aleurone. The physiological significance of the influence of GA3 on LAH activity during barley germination is discussed.  相似文献   

7.
The effect of calcium on the secretion of α-amylase (EC 3.2.1.1) and other hydrolases from aleurone layers of barley (Hordeum vulgare L. cv. Himalaya) was studied. Withdrawal of Ca2+ from the incubation medium of aleurone layers preincubated in 5 μM gibberellic acid (GA3) and 5 mM CaCl2 results in a 70–80% reduction in the secretion of α-amylase activity to the incubation medium. Agar-gel electrophoresis shows that the reduction in α-amylase activity following Ca2+ withdrawal is correlated with the disappearance of group B isoenzymes from the incubation medium. The secretion of isoenzymes of group A is unaffected by Ca2+. The addition of Ca2+ stimulates the secretion of group-B isoenzymes but has no measurable effect on either the α-amylase activity or the isoenzyme pattern of aleurone-layer extracts. Pulse-labelling experiments with [35S]methionine show that Ca2+ withdrawal results in a reduction in the secretion of labelled polypeptides into the incubation medium. Immunochemical studies also show that, in the absence of Ca2+, α-amylase isoenzymes of group B are not secreted into the incubation medium. In addition to its effect on α-amylase, Ca2+ influences the secretion of other proteins including several acid hydrolases. The secretion of these other proteins shows the same dependence on Ca2+ concentration as does that of α-amylase. Other cations can promote the secretion of α-amylase to less and varying extents. Strontium is 85% as effective as Ca2+ while Ba2+ is only 10% as effective. We conclude that Ca2+ regulates the secretion of enzymes and other proteins from the aleurone layer of barley.  相似文献   

8.
Lin PP 《Plant physiology》1984,74(4):975-983
Polyamine metabolism and its relation to the induction of α-amylase formation in the aleurone layers of barley seeds (Hordeum vulgare cv Himalaya) in response to gibberellic acid (GA3) has been investigated. A high-performance liquid chromatographic system has been employed for qualitative and quantitative analyses of putrescine (Put), cadaverine (Cad), spermidine (Spd), spermine (Spm), and agmatine (Agm).

Active polyamine metabolism occurs in the aleurone cells of deembryonate barley half seeds during imbibition. The aleurone layers isolated from fully imbibed half seeds contain about 880 nanomoles of Put, 920 nanomoles of Spd, and 610 nanomoles of Spm as free form per gram tissue dry weight while the levels of Cad and Agm are relatively low. The polyamine levels do not change significantly in the aleurone layers in response to added GA3 (1.5 micromolar) during the 8-hour lag period of the growth substance-induced formation of α-amylase. Also, the polyamine levels are not altered by the presence of abscisic acid (3 micromolar) which inhibits the enzyme induction by GA3. Kinetic studies show that both applied [U-14C]ornithine and [U-14C]arginine are primarily incorporated into Put during 2 hours of incubation, but the incorporation is not significantly affected by added GA3. Additionally, added GA3 does not affect the uptake and turnover of [1,4-14C]Put, nor does it affect the conversion of Put → Spd or Spd → Spm. Treatment of the aleurone layers with GA3 for 2 hours results in no significant changes in the total activities or the specific activities of ornithine decarboxylase and arginine decarboxylase.

Experiments with polyamine synthesis inhibitors demonstrate that the level of Spd in the aleurone layers could be substantially reduced by the presence of methylglyoxal-bis(guanylhydrazone) (MGBG) during imbibition. MGBG treatment does not affect in vivo incorporation of [8-14C] adenosine into ATP. The lower the level of Spd the less α-amylase formation is induced by added GA3. The reduction of GA3-induced α-amylase formation by MGBG treatment can be either completely or partially overcome by added Spd, depending upon the concentration of MGBG used in the imbibition medium. The results indicate that the early action of GA3, with respect to induction of α-amylase formation in barley aleurone layers, appears to be not on polyamine metabolism. However, polyamines, particularly Spd, may be involved in regulation of the growth substance-dependent enzyme induction.

  相似文献   

9.
The effects of the addition and withdrawal of gibberellic acid (GA3) and Ca2+ on enzyme synthesis and secretion by barley (Hordeum vulgare L. cv. Himalaya) aleurone layers were studied. Incubation of layers in GA3 plus Ca2+ affects the total amount of secreted α-amylase (EC 3.2.1.1) and acid phosphatase (EC 3.1.3.2) by promoting the appearance of different isoenzymic forms of these enzymes. The release of α-amylase isoenzymes 1–4 in response to GA3 plus Ca2+ has a lag of 6 h. When layers are incubated in GA3 alone for 6 h prior to the addition of Ca2+, isoenzymes 1–4 appear in the medium after only 30 min. When the addition of Ca2+ to layers pretreated in GA3 is delayed beyond 12 h, its effectiveness in stimulating the synthesis and release of isoenzymes 3 and 4 is diminished. After 35 h of preincubation in GA3, addition of Ca2+ will not stimulate synthesis of α-amylase isoenzymes 3 and 4. Aleurone layers preincubated for 6 h in GA3 will respond to Ca2+ when the GA3 is withdrawn from the incubation medium by producing α-amylase isoenzymes 1–4. The converse is not the case, however, since layers preincubated in Ca2+ for 6 h will not produce all isoenzymes of α-amylase when subsequently incubated in GA3. The Ca2+-stimulated release of α-amylase from GA3 pre-treated layers is dependent on the time of incubation in Ca2+ and the concentration of the ion. The response to Ca2+ is temperature-dependent, and other divalent cations such as Mg2+ cannot substitute for Ca2+. We conclude that Ca2+ influences α-amylase release by influencing events at the biochemical level.  相似文献   

10.
11.
Stimulation of α-amylase activity was observed in Porteresia coarctata immature seeds (20-day-old) when de-embryonated prewashed half seeds were incubated in media containing gibberellic acid (GA3, 10?5M). No such activity was observed in mature seeds even when GA3 concentration was increased up to five fold. ABA suppressed the GA3 enhanced α-amylase synthesis up to nearly 70% in the immature seeds. Absence of this enzyme activity in mature seeds may be due to high levels of ABA. The immature aleurone showed a 23 kD polypeptide induced by ABA.  相似文献   

12.
An immunological assay has been used to investigate the synthesis of (1→3,1→4)-β-glucanase (EC 3.2.1.73) isoenzymes from isolated barley aleurone layers and scutella. Enzyme release from both tissues is enhanced by 1 micromolar gibberellic acid and 10 millimolar Ca2+, although increases induced by gibberellic acid are observed only in the presence of Ca2+. Isoenzyme I is synthesized predominantly in the scutellum, while isoenzyme II is synthesized exclusively in the aleurone. A third, putative isoenzyme III has been detected in significant proportions in scutellar secretions and may also be secreted from aleurone layers. Both gibberellic acid and Ca2+ appear to preferentially enhance isoenzyme II secretion from the aleurone and isoenzyme III secretion from scutella. The patterns of isoenzyme secretion are suggestive of tissue-specific differences in expression of the genes which code for (1→3,1→4)-β-glucanase isoenzymes. Qualitatively similar results were obtained with barley cultivars harvested in Australia and North America.  相似文献   

13.
The steady-state levels of Ca2+ within the endoplasmic reticulum (ER) and the transport of 45Ca2+ into isolated ER of barley (Hordeum vulgare L. cv. Himalaya) aleurone layers were studied. The Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the ER was measured using the Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the lumen of the ER was determined by the fluorescence-ratio method to be at least 3 M. Transport of 45Ca2+ into the ER was studied in microsomal fractions isolated from aleurone layers incubated in the presence and absence of gibberellic acid (GA3) and Ca2+. Isopycinic sucrose density gradient centrifugation of microsomal fractions isolated from aleurone layers or protoplasts separates ER from tonoplast and plasma membranes but not from the Golgi apparatus. Transport of 45Ca2+ occurs primarily in the microsomal fraction enriched in ER and Golgi. Using monensin and heat-shock treatments to discriminate between uptake into the ER and Golgi, we established that 45Ca2+ transport was into the ER. The sensitivity of 45Ca2+ transport to inhibitors and the Km of 45Ca2+ uptake for ATP and Ca2+ transport in the microsomal fraction of barley aleurone cells. The rate of 45Ca2+ transport is stimulated several-fold by treatment with GA3. This effect of GA3 is mediated principally by an effect on the activity of the Ca2+ transporter rather than on the amount of ER.Abbreviations CCR cytochrome-c reductase - DCCD dicyclohexylcarbodiimide - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - ER endoplasmic reticulum - FCCP carbonylcyanide p-trifluoromethoxyphenyl hydrazone - GA3 gibberellic acid - IDPase inosine diphosphatase - Mon monensin  相似文献   

14.
The effects of GA3 and/or ABA on the α-amylase activity and the ultrastructure of aleurone cells in halves of seeds without embryos (embryo-less half seeds) of oats (Avena sativa L.) were studied. α-Amylase activity was detected by the starch-agar gel method in the aleurone layers of embryo-less half seeds soaked in 1 μM GA3 solution or 100 μM GA3+10 μM ABA solution but not in those of seeds soaked in distilled water, 10 μM ABA solution, or 1 μM GA3+10 μM ABA solution. Ultrastructural examinations of aleurone cells with α-amylase activity showed a decrease in the number of sphaerosomes, the appearance of flattened saccules pressed to the surface of aleurone grains, and the development and transformations of the rER from a slender form to the one with wide inner spaces. In the aleurone cells in which the enzyme activity was not detected, components of the rER showed only slender profiles. The number of sphaerosomes did not decrease, and no flattened saccules appeared in the aleurone cells treated with 10 μM ABA or 1 μM GA3+10 μM ABA.  相似文献   

15.
α-Amylase has been purified from de-embryonated seeds of barley (Hordeum vulgare L. cv. Betzes) which have been incubated on 10−6 m gibberellic acid (GA3) following 3 days of imbibition in buffer. Incubation of the half-seeds in up to 10−2 m 5-fluorouracil (5-FU) during the entire incubation period, including imbibition, had no effect on any of the following characteristics of purified α-amylase: thermal stability in the absence of calcium, molecular weight of the enzyme, isozyme composition, specific activity, or the amount of α-amylase synthesized by the aleurone tissue. The synthesis of rRNA and tRNA was strongly inhibited by 5-FU, indicating that the analog had entered the aleurone cells. These results are not in agreement with those of Carlson (Nature New Biology 237: 39-41 [1972]) who found that treatment of barley aleurone with 10−4 m 5-FU prior to the addition of GA3 resulted in decreased thermal stability of GA3-induced α-amylase and who interpreted this as evidence that the mRNA for α-amylase was synthesized during the imbibition of the aleurone tissue and independently of gibberellin action. Results of the present experiments indicate that the thermal stability of highly purified α-amylase is not altered by treatment of barley half-seeds with 5-FU, and that 5-FU cannot be used as a probe to examine the timing of α-amylase mRNA synthesis.  相似文献   

16.
Moll BA  Jones RL 《Plant physiology》1982,70(4):1149-1155
The secretion of α-amylase from single isolated (Hordeum vulgare L. cv Himalaya) aleurone layers was studied in an automated flow-through apparatus. The apparatus, consisting of a modified sample analyzer linked to a chart recorder, automatically samples the flow-through medium at 1 minute intervals and assays for the presence of α-amylase. The release of α-amylase from aleurone layers begins after 5 to 6 hours of exposure to gibberellic acid and reaches a maximum rate after 10 to 12 hours. The release of α-amylase shows a marked dependence on Ca2+, and in the absence of Ca2+ it is only 20% of that in the presence of 10 millimolar Ca2+. Withdrawal of Ca2+ from the flow-through medium results in the immediate cessation of enzyme release and addition of Ca2+ causes immediate resumption of the release process. The effect of Ca2+ is concentration-dependent, being half-maximal at 1 millimolar Ca2+ and saturated at 10 millimolar Ca2+. Ruthenium red, which blocks Ca2+ but not Mg2+ efflux from barley aleurone layers, renders α-amylase release insensitive to Ca2+ withdrawal. Inhibitors of respiratory metabolism cause a burst of α-amylase release which lasts for 0.5 to 5 hours. Following this phase of enhanced α-amylase release, the rate of release declines to zero. Pretreatment of aleurone layers with HCl prior to incubation in HCN also causes a burst of α-amylase release, indicating that the inhibitor is affecting the secretion of α-amylase and not its movement through the cell wall. The rapid inhibition of α-amylase release upon incubation of aleurone layers at low temperature (5°C) or in 0.5 molar mannitol also indicates that enzyme release is dependent on a metabolically linked process and is not diffusion-limited. This conclusion is supported by cytochemical observations which show that, although the cell wall matrix of aleurone layers undergoes extensive digestion after gibberellin treatment, the innermost part of the cell wall is not degraded and could influence enzyme release.  相似文献   

17.
Douglas S. Bush 《Planta》1996,199(1):89-99
Gibberellins (GAs) control a wide range of physiological functions in plants from germination to flowering. The cellular mechanisms by which gibberellic acid (GA3) acts have been most extensively studied in the cereal aleurone. In this tissue, alterations in cellular calcium are known to be important for the primary response to GA, which is the production and secretion of hydrolytic enzymes. The extent to which cytosolic Ca2+ mediates the early events in GA action, however, is not known. In order to address this question, changes in cytosolic Ca2+ in wheat (Triticum aestivum L. cv. Inia) aleurone cells that occur rapidly after treatment with GA were characterized. In addition, GA-induced changes were compared with changes induced by three environmental stimuli that are known to modify the GA response: osmotic stress, salt (NaCl), and hypoxia. The Ca2+-sensitive dye fluo-3 was used to photometrically measure cytosolic Ca2+. It was found that GA3 induced a steady-state increase in cytosolic Ca2+ of 100–500 nM. This increase was initiated within a few minutes of treatment with GA and was fully developed after 30–90 min. The changes in cytosolic Ca2+ that were induced by GA were distinct from those induced by mannitol, NaCl, or hypoxia. Mannitol caused a steady-state decrease whereas NaCl and hypoxia both increased cytosolic Ca2+. In the case of NaCl this increase was transient but for hypoxia the increase was prolonged as long as hypoxic conditions were maintained. Gibberellin-induced changes in cytosolic Ca2+ were not induced by the inactive GA, GA8, nor did the GA-insensitive wheat mutant, D6899, respond to active GA3 with altered cytosolic Ca2+. It is concluded that changes in cytosolic Ca2+ are an early and integral part of the GA response in aleurone cells. The data also indicate, however, that changes in Ca2+ are not sufficient, by themselves, to induce the GA response of aleurone cells.Abbreviations AM acetoxymethyl ester - GA gibberellin - GA3 gibberellic acid - Mes 2-[N-morpholino]ethanesulfonic acid - PM plasma membrane The author is very grateful to Dr. T-h. D. Ho for his gift of D6899 grain and to Dr. R. Hooley for supplying the inactive GA8. This work was supported by National Science Foundation Grant DCB-9206692.  相似文献   

18.
Carboxypeptidase and protease activities of hormone-treated barley (Hordeum vulgare cv Himalaya) aleurone layers were investigated using the substrates N-carbobenzoxy-Ala-Phe and hemoglobin. A differential effect of gibberellic acid (GA3) on these activities was observed. The carboxypeptidase activity develops in the aleurone layers during imbibition without the addition of hormone, while the release of this enzyme to the incubation medium is enhanced by GA3. In contrast, GA3 is required for both the production of protease activity in the aleurone layer and its secretion. The time course for development of protease activity in response to GA3 is similar to that observed for α-amylase. Treating aleurone layers with both GA3 and abscisic acid prevents all the GA3 effects described above. Carboxypeptidase activity is maximal between pH 5 and 6, and is inhibited by diisopropylfluorophosphate and p-hydroxymercuribenzoate. We have observed three protease activities against hemoglobin which differ in charge but are all 37 kilodaltons in size on sodium dodecyl sulfate polyacrylamide gels. The activity of the proteases can be inhibited by sulfhydryl protease inhibitors, such as bromate and leupeptin, yet is enhanced by 2-fold with 2-mercaptoethanol. In addition, these enzymes appear to be active against the wheat and barley storage proteins, gliadin and hordein, respectively. On the basis of these characteristics and the time course of GA3 response, it is concluded that the proteases represent the GA3-induced, de novo synthesized proteases that are mainly responsible for the degradation of endosperm storage proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号