共查询到20条相似文献,搜索用时 15 毫秒
1.
Purification and Characterization of Benzonitrilases from Arthrobacter sp. Strain J-1 总被引:4,自引:5,他引:4 下载免费PDF全文
Amal Kumar Bandyopadhyay Toru Nagasawa Yasuhisa Asano Kinya Fujishiro Yoshiki Tani Hideaki Yamada 《Applied microbiology》1986,51(2):302-306
We found two kinds of benzonitrilases, designated benzonitrilases A and B, in a cell extract of Arthrobacter sp. strain J-1 grown on benzonitrile as a sole carbon and nitrogen source. Benzonitrilases A and B were purified approximately 409-fold and 38-fold, respectively. Purified benzonitrilase A appeared to be homogeneous according to the criteria of polyacrylamide gel electrophoresis. Both the enzymes hydrolyzed benzonitrile to benzoic acid and ammonia without forming benzamide as an intermediate. The molecular weights of benzonitrilases A and B were found to be 30,000 and 23,000, respectively. The subunit molecular weight of benzonitrilase A was the same as its molecular weight. The isoelectric points of benzonitrilases A and B were 4.95 and 4.80, respectively. The optimum temperature and pH, respectively, for benzonitrilase A were 40°C and 8.5, and those for benzonitrilase B were 30°C and 7.5. The Km values for benzonitrilases A and B were 6.7 mM and 4.5 mM, respectively. Both the enzymes degraded p-tolunitrile, 4-cyanopyridine, and p-chlorobenzonitrile, but they did not attack aliphatic nitriles or amides. Both the enzymes were inhibited by thiol reagents. 相似文献
2.
铁离子是鱼腥蓝细菌PCC7120进行呼吸作用、光合作用和固氮作用中相关酶的重要辅基之一,缺铁将严重影响蓝细菌的生存.富氧的生态环境中铁通常以不溶的Fe3+形式存在,不易被细胞吸收利用.低铁条件下,鱼腥蓝细菌PCC7120分泌能螯合铁离子的嗜铁素,通过外膜上相应的转运体将嗜铁素-铁复合物转运到细胞内.综述了近年来在嗜铁素的种类及其生物合成途径、铁吸收系统的组成和功能等方面的最新进展,分析了铁吸收系统的调控机制,为进一步开展鱼腥蓝细菌铁吸收机制的研究提供依据. 相似文献
3.
Abstract Phormidium J-1, a hydrophobic, benthic cyanobacterium, produced a polymeric extracellular emulsifying agent (emulcyan). The activity of emulcyan was pH- and temperature-dependent and required the presence of cations.
Emulcyan was excreted into the extracellular milieu at the stationary phase of growth. Cell surface hydrophobicity of Phormidium decreased as the cells aged. A decrease was also obtained by adding emulcyan to young hydrophobic cells. It is suggested that emulcyan masks cell surface hydrophobicity thus causing detachment of the cells. Phormidium cells attached to hydrophobic phenyl-sepharose beads were detached by addition of emulcyan.
We propose that production of emulcyan by Phormidium cells serves as a dispersal strategy by this non-hormogonia-producing cyanobacterium. 相似文献
Emulcyan was excreted into the extracellular milieu at the stationary phase of growth. Cell surface hydrophobicity of Phormidium decreased as the cells aged. A decrease was also obtained by adding emulcyan to young hydrophobic cells. It is suggested that emulcyan masks cell surface hydrophobicity thus causing detachment of the cells. Phormidium cells attached to hydrophobic phenyl-sepharose beads were detached by addition of emulcyan.
We propose that production of emulcyan by Phormidium cells serves as a dispersal strategy by this non-hormogonia-producing cyanobacterium. 相似文献
4.
A 21-kDa novel polypeptide which possesses characteristics normally considered to be diagnostic of the calmodulin present in eukaryotic cells was isolated from the cyanobacterium Nostoc sp. PCC 6720. The major technique employed in the isolation of the polypeptide was ion-exchange chromatography on a Mono Q column. The 21-kDa polypeptide was shown: to activate pea NAD kinase in vitro, in a Ca2+ requiring reaction; to react with polyclonal antibodies raised against spinach calmodulin, but not with those raised against bovine brain calmodulin; and to exhibit a Ca2+ dependent shift in migration during SDS-PAGE.Abbreviations ATCC
American Type Culture Collection
- DCPIP
2,6-dichlorophenylindophenol
- PBS
Phosphate buffered saline 相似文献
5.
从恒化富集培养物中分离到一株产肌酸酶的菌株WB1,通过对该菌的形态学、生理生化特性、G+C mol%及16S rDNA序列分析,表明该菌为一株副球菌(Paracoccus sp.)。对菌株WB1产酶发酵条件的研究表明,该菌除了产生肌酸酶外还产生肌氨酸脱氢酶,但不产生肌酸酐酶,也不能利用肌酸酐。肌酸酶可以被诱导物,如肌氨酸、肌酸、和氯化胆碱诱导产生。葡萄糖等易用碳源的存在对肌酸酶的合成无代谢产物阻遏作用。该酶的分子量为48kD,最适反应pH为7.0~8.5,pH稳定范围在6.0~9.5之间;其最适反应温度在35℃~40℃之间,在45℃以下是热稳定的; 37℃时以肌酸为底物,酶的Km值为24.6mmol/L;Cu2+、Hg2+和Ag+对酶活性有强烈的抑制作用。 相似文献
6.
Nobuhiko Ōkawa Hiroshi Nakayama Keiji Ikeda Keiko Furihata Akira Shimazu Noboru Ōtake 《Bioscience, biotechnology, and biochemistry》2013,77(7):1671-1672
The possibility of using two kinds of sorghum as raw materials in consolidated bioprocessing bioethanol production using Flammulina velutipes was investigated. Enzymatic saccharification of sweet sorghum was not as high as in brown mid-rib (bmr) mutated sorghum, but the amount of ethanol production was higher. Ethanol production from bmr mutated sorghum significantly increased when saccharification enzymes were added to the culture. 相似文献
7.
The unicellular cyanobacteria, Synechococcus sp. strains PCC7942and PCC6301, have two small RNA-binding proteins, Rbp1 and Rbp2.In this study, native gel electrophoresis of the nuclease-treatedSynechococcus cell extracts showed that both Rbps are associatedin vivo with RNA but not with DNA. This indicates that theyare bona fide RNA-binding proteins. To address the functionof Rbps, we have characterized the mutants deficient in Rbp1or Rbp2. The Rbp1 deficient cells showed the same growth curve,cell color and cell viability as the wild-type strain at 30°C.The Rbp2-less mutant also grew well as wild-type but exhibiteda yellow-green color, and its cell viability was significantlyreduced. On exposure of the Rbp1-deficient mutant cells to atemperature of 10°C for one week, cell viability was completelylost. Western blot analysis showed that Rbp1 increases onlyin response to a temperature shift from 30 to 10°C, whereasRbp2 accumulates at a constant rate at cold temperature. Interestingly,translation elongation factor Tu was significantly decreasedin Rbp2-deficient cells but not in Rbp1-deficient cells. Thus,each Rbp appears to have a distinct role in cellular function. (Received June 28, 1999; Accepted September 24, 1999) 相似文献
8.
Yoshihiro Sawa Kanji Suzuki Hideo Ochiai 《Bioscience, biotechnology, and biochemistry》2013,77(9):2543-2549
the native enzyme was 104,000 by gel filtration, and SDS-polyacrylamide gel electrophoresis showed that the enzyme consisted of two subunits with an identical molecular weight of 52,000. The optimum pH of the reaction was 8.0. The Km values for 6-phosphogluconate and NADP were 3.6×10?5m and 1.3 × 10?5m, respectively. The enzyme showed no Mg2𠀫 requirement for the activity, but was activated by Mn2𠀫 and Ca2𠀫. The enzyme was inhibited by sulfhydryl reagents, indicating that a sulfhydryl group may be involved in the active site of the enzyme. The enzyme was also inhibited by NADPH2, ATP, and the intermediates formed during photosynthesis. The substrate 6-phosphogluconate and cofactor NADP partially protected the enzyme from inactivation. The enzyme had enzymological and physicochemical properties similar to enzymes isolated from other sources. 相似文献
9.
10.
Henry Joseph Oduor Ogola Takaaki Kamiike Naoya Hashimoto Hiroyuki Ashida Takahiro Ishikawa Hitoshi Shibata Yoshihiro Sawa 《Applied and environmental microbiology》2009,75(23):7509-7518
The open reading frame alr1585 of Anabaena sp. strain PCC 7120 encodes a heme-dependent peroxidase (Anabaena peroxidase [AnaPX]) belonging to the novel DyP-type peroxidase family (EC 1.11.1.X). We cloned and heterologously expressed the active form of the enzyme in Escherichia coli. The purified enzyme was a 53-kDa tetrameric protein with a pI of 3.68, a low pH optima (pH 4.0), and an optimum reaction temperature of 35°C. Biochemical characterization revealed an iron protoporphyrin-containing heme peroxidase with a broad specificity for aromatic substrates such as guaiacol, 4-aminoantipyrine and pyrogallol. The enzyme efficiently catalyzed the decolorization of anthraquinone dyes like Reactive Blue 5, Reactive Blue 4, Reactive Blue 114, Reactive Blue 119, and Acid Blue 45 with decolorization rates of 262, 167, 491, 401, and 256 μM·min−1, respectively. The apparent Km and kcat/Km values for Reactive Blue 5 were 3.6 μM and 1.2 × 107 M−1 s−1, respectively, while the apparent Km and kcat/Km values for H2O2 were 5.8 μM and 6.6 × 106 M−1 s−1, respectively. In contrast, the decolorization activity of AnaPX toward azo dyes was relatively low but was significantly enhanced 2- to ∼50-fold in the presence of the natural redox mediator syringaldehyde. The specificity and catalytic efficiency for hydrogen donors and synthetic dyes show the potential application of AnaPX as a useful alternative of horseradish peroxidase or fungal DyPs. To our knowledge, this study represents the only extensive report in which a bacterial DyP has been tested in the biotransformation of synthetic dyes.In textile, food, and dyestuff industries, reactive dyes such as azo and anthraquinone (AQ) and pthalocyanine-based dyes constitute one of the extensively used classes of synthetic dyes. However, it has been estimated that approximately 50% of the applied reactive dye is wasted because of hydrolysis during the dyeing process (26, 35). This results in a great effluent problem for the industries because of the recalcitrant nature of these dyes. With increased public concern and ecological awareness, in addition to stricter legislative control of wastewater discharge in recent years, there is an increased interest in various methods of dye decolorization. Dye decolorization using physicochemical processes such as coagulation, adsorption, and oxidation with ozone has proved to be effective. However, these processes are usually expensive, generate large volumes of sludge, and require the addition of environmentally hazardous chemical additives (26). There are several reports of microorganisms capable of decolorizing synthetic dyes. This has been attributed to their growth and production of enzymes such as laccase (1, 9, 40), azoreductases (3), and peroxidases, for example, lignin peroxidase (12, 25, 36), manganese peroxidase (10, 38), and versatile peroxidase (16). However, most of the synthetic dyes are xenobiotic compounds that are poorly degraded using the typical biological aerobic treatments. Furthermore, microbial anaerobic reductions of synthetic dyes are known to generate compounds such as aromatic amines that are generally more toxic than the dyes themselves (3). Therefore, for environmental safety, the use of enzymes instead of enzyme-producing microorganisms presents several advantages such as increased enzyme production, enhanced stability and/or activity, and lower costs by using recombinant DNA technology.Peroxidases are heme-containing enzymes that use hydrogen peroxide (H2O2) as the electron acceptor to catalyze numerous oxidative reactions. They are found widely in nature, both in prokaryotes and eukaryotes, and are largely grouped into plant and animal superfamilies. They are one of the most studied enzymes because of their inherent spectroscopic properties and potential use in both diagnostic and bioindustrial applications. In particular, their ability to degrade a wide range of substrates has recently stimulated interest in their potential application in environmental bioremediation of recalcitrant and xenobiotic wastes (10, 25, 26).Recently, a novel family of heme peroxidases characterized by broad dye decolorization activity has been identified in various fungal species such as Thanatephorus cucumeris Dec1 (18), Termitomyces albuminosus (15), Polyporaceae sp. (15), Pleurotus ostreatus (13), and Marasmius scorodonius (27). Because of their broad substrate specificity, low pH optima, lack of a conserved active site distal histidine, and structural divergence from classical plant and animal peroxidases (32), these proteins have been proposed to belong to the novel DyP peroxidase family. Over 400 proteins of prokaryotic and eukaryotic origins have been grouped in the DyP peroxidase family, Pfam 04261 (http://pfam.sanger.ac.uk/), and it is apparent from genome databases that many species possess DyP. The ability of these proteins to effectively degrade hydroxyl-free AQ and azo dyes as well as the specificity for typical peroxidase substrates illustrates their potential use in the bioremediation of wastewater contaminated with synthetic dyes. However, with the exception of a DyP from the plant pathogenic fungus T. cucumeris Dec1 (an anamorph of Rhizoctonia solani, a very common fungal plant pathogen), which has been characterized extensively (18, 28, 30-32, 34), little information is available on other members of the DyP family. In particular, studies on bacterial DyPs have been limited to only the automatically translated sequence or structural data (41, 42). Within the context of further understanding the structure-function and potential applicability of these novel types of enzymes in general, we have taken an interest in DyP-type enzymes, particularly, the less known bacterial groups.Cyanobacteria (blue-green algae) represent the most primitive, oxygenic, plant-type photosynthetic organisms and are thought to be involved in greater than 20 to 30% of the global photosynthetic primary production of biomass, accompanied by the cycling of oxygen. Anabaena sp. strain PCC 7120 is a filamentous, heterocyst-forming cyanobacterium capable of nitrogen fixation and has long been used as a model organism to study the prokaryotic genetics and physiology of cellular differentiation, pattern formation, and nitrogen fixation (14). This strain''s genome sequence is complete and annotated (17). From bioinformatics analysis of the Anabaena sp. strain PCC 7120 genome, we identified an open reading frame (ORF), alr1585, encoding a putative heme-dependent peroxidase exhibiting homology to T. cucumeris Dec1, DyP. Here, we report on the characterization of this novel bacterial DyP, designated AnaPX (for Anabaena peroxidase), from the cyanobacterium Anabaena sp. strain PCC 7120, with broad specificity for both aromatic compounds and synthetic dyes such as AQ dyes. 相似文献
11.
cyaB1 gene encodes a novel type of adenylate cyclase. The catalytic domain is located in the carboxyl-terminal half, while the
GAF and PAS domains are conserved in the amino-terminal half. Recombinant CyaB1 and a truncated CyaB1 lacking the amino-terminal
domain (ΔN–CyaB1) were purified and characterized. The purified CyaB1 is activated by divalent cations, such as Mg2+ and Mn2+, like other types of adenylate cyclase. The activity of CyaB1 was slightly elevated by forskolin, but was not affected by
cGMP, irrespective of the presence of the cGMP binding motif in the GAF domain. The specific activity of ΔN–CyaB1 is one-eighteenth
that of CyaB1, whereas the Km values of both proteins are almost the same. The results suggest that the amino-terminal half
has a positive regulatory effect on the catalytic activity.
Received 27 April 2001/ Accepted in revised form 6 July 2001 相似文献
12.
T Hübschmann T B?rner E Hartmann T Lamparter 《European journal of biochemistry》2001,268(7):2055-2063
The cph1 gene from the unicellular cyanobacterium Synechoycstis sp. PCC 6803 encodes a protein with the characteristics of plant phytochromes and histidine kinases of two-component phospho-relay systems. Spectral and biochemical properties of Cph1 have been intensely studied in vitro using protein from recombinant systems, but virtually nothing is known about the situation in the natural host. In the present study, His6-tagged Cph1 was isolated from Synechocystis cells. The cph1-his gene was expressed either under the control of the natural cph1 promoter or over-expressed using the strong promoter of the psbA2 gene. Upon purification with nickel affinity chromatography, the presence of Cph1 in extracts was confirmed by immunoblotting and Zn2+-induced fluorescence. The Cph1 extracts exhibited a red/far-red photoactivity characteristic of phytochromes. Difference spectra were identical with those of the phycocyanobilin adduct of recombinant Cph1, implying that phycocyanobilin is the chromophore of Cph1 in Synechocystis. 相似文献
13.
Keitarou Suzuki Masaru Uyeda Motoo Shibata 《Bioscience, biotechnology, and biochemistry》2013,77(6):1719-1726
A strain of Micromonospora sp. producing a lytic enzyme toward Serratia marcescens was isolated from soil. The lytic enzyme, called 152-enzyme, was purified from the culture filtrate by salting-out with ammonium sulfate, DEAE-cellulose column chromatography, and gel filtration on Sephadex G-75. The molecular weight of 152-enzyme was 17,000 and the isoelectric point was pH 7.3. The 152-enzyme showed lytic activity toward S. marcescens, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, and Bacillus subtilis, but was completely intert toward Staphylococcus aureus. The enzyme also showed caseinolytic activity. The lytic and caseinolytic activities of 152-enzyme were maximum around pH 11.0 and at 60°C. Both activities were inhibited by DFP and API-2c. Liberation of amino groups from cell walls of P. aeruginosa by incubation with 152-enzyme suggested that the enzyme was a kind of cell wall-lytic peptidase. 相似文献
14.
Kazuya Tanaka Qianqian Yu Keiko Sasaki Toshihiko Ohnuki 《Geomicrobiology journal》2013,30(10):874-885
Oxidation of Co by Mn oxide has been investigated using abiotically synthesized Mn oxide. However, oxidation of Co by biogenic Mn oxide is not well known. In this study, we isolated a Mn-oxidizing bacterium (Pseudomonas sp.), designated as strain NGY-1, from stream water. Sorption experiments on Co were carried out using biogenic Mn oxide produced by strain NGY-1. Similar sorption experiments were also conducted using a synthetic analogue of δ-MnO2. Sorption of Co on δ-MnO2 was faster and stronger than that on biogenic Mn oxide, which was possibly due to their structural difference and/or the presence of bacterial cells in biogenic Mn oxide. X-ray absorption near-edge structure spectra clearly demonstrated that Co was oxidized from the divalent to the trivalent state on biogenic Mn and δ-MnO2. The oxidation property of both the biogenic Mn oxide and δ-MnO2 was stronger under circumneutral conditions than under acidic conditions. Linear combination fitting using divalent and trivalent Co reference materials suggested that ~90% of Co was oxidized at pH ~ 6, whereas ~80% was oxidized at pH ~ 3. Oxidation properties of the biogenic Mn oxide and δ-MnO2 were similar, but Co(II) oxidation by biogenic Mn oxide was slower than that by δ-MnO2. The difference of Co oxidation may be caused by the coexisting bacterial cells or structural differences in the Mn oxides. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file. 相似文献
15.
Lanhong Zheng Yao Yi Jia Liu Xiukun Lin Kangli Yang Mei Lv Xinwen Zhou Jianhua Hao Junzhong Liu Yuan Zheng Mi Sun 《PloS one》2014,9(11)
A Gram-positive, rod-shaped bacterium, designated as S-1, was isolated from a marine sediment sample collected from South China Sea. Phylogenetic analysis based on 16S rRNA gene sequence showed that S-1 belongs to the genus Brevibacillus. A novel cytotoxic peptide was isolated from the fermentation broth of the marine-derived bacterium Brevibacillus sp. S-1, using ion-exchange chromatography and reverse-phase HPLC chromatography. The molecular weight of this peptide was determined as 1570 Da by MALDI-TOF mass spectrometry, and its structure was proposed as a cyclic peptide elucidated by MALDI-TOF/TOF mass spectrometry and de novo sequencing. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay showed that this peptide exhibited cytotoxicity against BEL-7402 human hepatocellular carcinoma cells, RKO human colon carcinoma cells, A549 human lung carcinoma cells, U251 human glioma cells and MCF-7 human breast carcinoma cells. Additionally, SBP exhibited low cytotoxicity against HFL1 human normal fibroblast lung cells. The result suggested that the cytotoxic effect of the peptide is specific to tumor cells. 相似文献
16.
Keitarou Suzuki Nahoko Nakano Rie Tanaka Masaru Uyeda Motoo Shibata 《Bioscience, biotechnology, and biochemistry》2013,77(10):2589-2595
We searched for a new aggregation factor, and found one we named 3315-AF in the culture filtrate of Streptomyces sp. strain No. A-3315. 3315-AF was purified by active carbon treatment, ethanol precipitation, gel filtration on Sepharose 2B, ether extraction, silica gel chromatography and gel filtration on Sephadex LH-20. 3315-AF was found to be a triglyceride which consists of myristic acid, pentadecanoic acid, and palmitic acid. The aggregation activity of 3315-AF was maximum around pH 8.0 at 30°C and the activity increased by addition of metallic ions such as calcium and cobalt. Hyaluronic acid, ovalbumin, BSA, and casein inhibited the aggregation activity. 3315-AF aggregated Proteus vulgaris and HeLa cells as well as Serratia marcescens and weakly aggregated Saccharomyces cerevisiae, Candida albicans, C. neoformans, and Leukemia P388, but it was inert to human erythrocytes and Sarcoma 180. 相似文献
17.
Isolation and Partial Characterization of Antagonistic Peptides Produced by Paenibacillus sp. Strain B2 Isolated from the Sorghum Mycorrhizosphere 下载免费PDF全文
S. Selim J. Negrel C. Govaerts S. Gianinazzi D. van Tuinen 《Applied microbiology》2005,71(11):6501-6507
Paenibacillus sp. strain B2, isolated from the mycorrhizosphere of sorghum colonized by Glomus mosseae, produces an antagonistic factor. This factor has a broad spectrum of activity against gram-positive and gram-negative bacteria and also against fungi. The antagonistic factor was isolated from the bacterial culture medium and purified by cation-exchange, reverse-phase, and size exclusion chromatography. The purified factor could be separated into three active compounds following characterization by amino acid analysis and by combined reverse-phase chromatography and mass spectrometry (liquid chromatography-mass spectrometry and mass spectrometry-mass spectrometry). The first compound had the same retention time as polymyxin B1, whereas the two other compounds were more hydrophobic. The molecular masses of the latter compounds are 1,184.7 and 1,202.7 Da, respectively, and their structure is similar to that of polymyxin B1, with a cyclic heptapeptide moiety attached to a tripeptide side chain and a fatty acyl residue. They both contain threonine, phenylalanine, leucine, and 2,4-diaminobutyric acid residues. The peptide with a molecular mass of 1,184.7 contains a 2,3-didehydrobutyrine residue with a molecular mass of 101 Da replacing a threonine at the A2 position of the polymyxin side chain. This modification could explain the broader range of antagonistic activity of this peptide compared to that of polymyxin B. 相似文献
18.
Partial Chemical and Physical Characterization of Two Extracellular Polysaccharides Produced by Marine, Periphytic Pseudomonas sp. Strain NCMB 2021 总被引:2,自引:3,他引:2 下载免费PDF全文
The marine bacterium Pseudomonas sp. strain NCMB 2021, which can attach to solid, and especially hydrophobic, surfaces, elaborates two different extracellular polysaccharides in batch cultures. One (polysaccharide A) was produced only during exponential growth and contained glucose, galactose, glucuronic acid, and galacturonic acid in a molar ratio of 1.00:0.81:0.42:0.32. It produced viscous solutions, formed gels at high concentrations, and precipitated with several multivalent cations. The other (polysaccharide B) was released at the end of the exponential phase and in the stationary phase. It contained equimolar amounts of N-acetylglucosamine, 2-keto-3-deoxyoctulosonic acid, an unidentified 6-deoxyhexose, and also O-acetyl groups. Despite its high molecular weight (105 to 106 as judged by gel filtration), the polysaccharide produced aqueous solutions with very low viscosities and was also soluble in 90% aqueous phenol, 80% methanol, and 80% ethanol. 相似文献
19.
Incubation of ampicillin with whole cells ofStreptomyces sp. DRS-1 resulted in accumulation of four compounds different from ampicillin. One of them was isolated, purified and partially
characterized. On the basis of spectroscopic characteristics,R
F value and antibacterial activity the compound was identified as cephalexin. It could also be obtained from ampicillin by
using crude protein extract of the strain. 相似文献
20.
Identification, Cloning, and Characterization of a Novel Ketoreductase from the Cyanobacterium Synechococcus sp. Strain PCC 7942 下载免费PDF全文
Kathrin Hlsch Jan Havel Martin Haslbeck Dirk Weuster-Botz 《Applied microbiology》2008,74(21):6697-6702
A new ketoreductase useful for asymmetric synthesis of chiral alcohols was identified in the cyanobacterium Synechococcus sp. strain PCC 7942. Mass spectrometry of trypsin-digested peptides identified the protein as 3-ketoacyl-[acyl-carrier-protein] reductase (KR) (EC 1.1.1.100). The gene, referred to as fabG, was cloned, functionally expressed in Escherichia coli, and subsequently purified to homogeneity. The enzyme displayed a temperature optimum at 44°C and a broad pH optimum between pH 7 and pH 9. The NADPH-dependent KR was able to asymmetrically reduce a variety of prochiral ketones with good to excellent enantioselectivities (>99.8%). The KR showed particular high specific activity for asymmetric reduction of ethyl 4-chloroacetoacetate (38.29 ± 2.15 U mg−1) and 2′,3′,4′,5′,6′-pentafluoroacetophenone (8.57 ± 0.49 U mg−1) to the corresponding (S)-alcohols. In comparison with an established industrial enzyme like the alcohol dehydrogenase from Lactobacillus brevis, the KR showed seven-times-higher activity toward 2′,3′,4′,5′,6′-pentafluoroacetophenone, with a remarkably higher enantiomeric excess (>99.8% [S] versus 43.3% [S]). 相似文献