首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recruitment of crabs to nursery habitat requires settlement of the megalopal stage on suitable substratum followed by metamorphosis into the first juvenile stage. Reducing the time to metamorphosis may result in higher recruitment and survival. Previous work has shown that metamorphosis of the Asian shore crab is accelerated by cues from three different sources: (a) water-soluble exudate produced by conspecific adult crabs; (b) biofilm covering rocks in natural habitat for this species; and (c) abiotic rock from natural habitat. The objective of the present investigation was to characterize the metamorphic cue associated with biofilm from rocky intertidal habitat and to compare the three metamorphic cues (exudate from conspecific adults, biofilm from rocky intertidal, and texture of substratum) that have been identified for H. sanguineus. Results of our study show that megalopae of the Asian shore crab respond strongly to biofilm associated with rocky intertidal habitat that has developed for at least 8 days. We also found that megalopae respond to textured rock surfaces from natural habitat, even when those surfaces had been rendered abiotic. The cue remains active after the biofilm has been exposed to − 20 ºC for 12 h, but is de-activated by a few minutes exposure to 100 °C. Moreover, the biofilm cue appears to work in synergy with cues from other sources, but requires actual contact with the biofilm. Our findings show that addition of biofilm to an abiotic textured rock surface significantly decreases mean time to metamorphosis, and simultaneous exposure of megalopae to biofilm-covered rock and to exudate from adult H. sanguineus decreases mean time to metamorphosis even further. The response of this species to multiple cues—and particularly to biofilm in the absence of adult conspecifics—provides a clear advantage in the colonization of virgin habitat and helps explain the very rapid spread of this invasive species along the majority of the east coast of the United States in only two decades.  相似文献   

2.
Following hatching, larvae of the fiddler crab Uca minax (La Conte) are exported from the adult habitat in estuaries to coastal and shelf waters where they undergo development prior to re-entering estuaries as postlarvae (megalopae). Studies of the spatial distribution of both newly hatched zoeae (Stage I) and megalopae indicate they undergo rhythmic vertical migrations associated with the tides for dispersal and unidirectional transport (selective tidal-stream transport) both within estuaries and between estuaries and the nearshore coastal ocean. We tested the hypothesis that U. minax zoeae possess a circatidal rhythm in vertical migration that facilitates offshore transport in ebb tidal flows, while postlarvae (megalopae) return to estuaries using a similar flood-phased endogenous rhythm. We also determined if the expression of the rhythm was influenced by the salinity conditions zoeae and megalopae experience as they transition between low-salinity regions of estuaries and high-salinity coastal waters. Stage I zoeae were collected by holding ovigerous female crabs in the lab until hatching. Megalopae were collected from the plankton and identified to species using molecular techniques (PCR-RFLP). Under constant laboratory conditions, both zoeae and megalopae exhibited endogenous circatidal rhythms in swimming that matched the principal harmonic constituent of the local tides (12.39 ± 0.07 h; X¯ ± SE). Upward swimming in Stage I zoeae occurred 2.5-4 h after high tide near the time of expected maximum ebb currents in the field. Rhythmic swimming of megalopae occurred slightly earlier in the tide (2.5 ± 0.09 h after high tide; X¯ ± SE) but was not entirely synchronized with flood currents, as expected. Salinity conditions had no apparent effect on the expression or pattern of the rhythms. Results indicate that this circatidal rhythm forms the behavioral basis of selective tidal-stream transport (STST) in early stage U. minax zoeae, but does not undergo a sufficient phase shift to account for vertical distribution patterns exhibited by megalopae in the field.  相似文献   

3.
Variability in salinity is an environmental stressor that crab megalopae encounter as they are carried by tides and currents throughout Chincoteague Bay. We exposed blue crab (Callinectes sapidus) and fiddler crab (Uca spp.) megalopae to abrupt salinity changes from 10 to 31 ppt and measured their oxygen usage. It was hypothesized that the megalopae would cope with the changes in a manner reflective of the documented abilities and tolerances of adult crabs. It was also hypothesized that lower salinities would have a particularly detrimental effect on the megalopae reflected by both increased oxygen usage and mortality. The megalopae of both species did exhibit an increase in oxygen use at lower salinities, although the effect was more pronounced during the initial transition and decreased during acclimation. The megalopae mirrored the adult responses, with blue crab larvae consuming more oxygen per mg of wet weight at lower salinities, whereas fiddler crab larval oxygen consumption was relatively uniform at all salinities. Mortality of some blue crab postlarvae was observed at 10 ppt while all larval fiddler crabs survived. Coupled with the introduction of additional fresh water into the global water system, these results indicate that further investigation into this subject is necessary.  相似文献   

4.
Interaction and habitat partition between the soldier crab Mictyris brevidactylus (prey) and the fiddler crab Uca perplexa (predator) were examined at a sandy tidal flat on Okinawa Island, Japan, where they co-occur. Both live in dense colonies. When the soldier crabs were released in the densely populated habitat of the fiddler crab, male fiddler crabs, which maintain permanent burrows in hard sediment, preyed on small soldier crabs and repelled large ones. Thus, the fiddler crabs prevented the soldier crabs from trespassing. It was also observed whether soldier crabs burrowed successfully when they were released 1) where soldier crab burrows just under the sand were abundant, 2) in a transition area between the two species, 3) an area without either species, and 4) where artificial tunnels simulated soldier crabs' feeding tunnels were made by piling up sand in the area lacking either species. In contrast to the non-habitat area, many soldier crabs burrowed in the sediment near the release point in the tunnel, transition and artificial tunnel areas. This indicates that the feeding tunnels on the surface attracted other crabs after emergence. When the large male fiddler crabs were transplanted into the artificial burrows made in soft sediment of the soldier crab habitat, all left their artificial burrows by 2 days. In the fiddler crab habitat, however, about one-third of the transplanted male fiddler crabs remained in the artificial burrows after 3 days. The soldier crabs regularly disturb the sediment by the up and down movement of their burrow (small air chamber) between tides. This disturbance probably prevents the fiddler crab from making and occupying permanent burrows. Thus, it appears that these crabs divide the sandy intertidal zone by sediment hardness and exclude each other by different means.  相似文献   

5.
Planktonic larvae of estuarine crabs are commonly exported to the continental shelf for development and then return to coastal and estuarine areas as postlarvae (megalopae). Megalopae returning to estuaries must be adapted to survive in brackish water whereas those of coastally distributed species should not need such adaptations. We investigated 1) whether megalopae of the estuarine crab Callinectes sapidus and the coastal crab Callinectes similis undergo changes in salinity tolerance upon entry into an estuary and 2) what factors induce those changes. Megalopae were collected at a coastal site and a nearby estuarine site and exposed to a range of salinities (5, 10, 15, 20 and 30) for 6 h. Percent survival was determined after 24 h reintroduction to the collection site water. We also investigated 1) whether increased salinity tolerance was induced by reduced salinity or estuarine chemical cues, 2) the time to acclimation and 3) the salinity necessary for acclimation. C. sapidus megalopae from the estuarine site were more likely to survive exposure to low salinities than those from the coastal site. C. sapidus megalopae from the coastal site exhibited increased survival after acclimation to salinities of 27 and 23 for 12 h. Estuarine chemical cues had no effect on salinity tolerance. C. similis megalopae were less likely to survive at low salinities and did not exhibit an acclimation response upon exposure to reduced salinities. These results suggest that megalopae of C. sapidus are physiologically adapted to recruit to estuaries whereas megalopae of C. similis are unable to acclimate to low salinity conditions.  相似文献   

6.
The Asian shore crab, Hemigrapsus sanguineus, is one of the most abundant invasive crabs along the east coast of the United States. Larval stages are generally planktonic, but the megalopa stage settles to the substratum near the time of metamorphosis. Reducing the time to metamorphosis may result in higher recruitment and survival. Previous work has shown that a water-soluble cue produced by adult H. sanguineus can induce metamorphosis of conspecific megalopae. Here we report the results of experiments in which megalopae were exposed to cues produced by different life stages of H. sanguineus. We also provide data from experiments that investigated the temporal stability, detection threshold, and chemical classification of the cue. Our results indicate that an active cue is produced by juveniles as well as adults. The cue is proteinaceous and begins to degrade within 2 days of production. The threshold for detection of the cue by megalopae lies between 0.1 and 0.01 µg of protein per ml.  相似文献   

7.
It has recently been shown that metamorphosis of Ucides cordatus megalopae is triggered by substrata from the mangrove forest habitat, and, in particular, adult conspecific odours. Here we demonstrate that the gender of the odour-emitting crabs is insignificant for the metamorphic response in this species. We further investigate whether other estuarine crabs (Goniopsis cruentata, Uca spp., and Callinectes danae) also induce settlement and metamorphosis of U. cordatus megalopae. This is of special interest for population recovery in areas hit by lethargic crab disease (LCD), a fungus that selectively kills U. cordatus but not co-occurring species. Ucides megalopae were reared in four treatments with interspecific-conditioned seawater and tested against the effects of conspecific-conditioned seawater (positive control) and pure seawater (negative control). All megalopae in the positive control metamorphosed successfully, while only one (2%) moulted in the negative control, with a delay of 10 days compared with the latest metamorphosis in the former treatment. In seawater conditioned with U. maracoani and C. danae, which occur on sediment banks and in tidal creeks respectively, all larvae died before reaching the juvenile stage. In the treatments with odours of species that share the same mangrove forest microhabitat as U. cordatus, i.e. G. cruentata and a group of five fiddler crab species (mixed-odour treatment), 20 and 10% respectively of the megalopae moulted with a delay of up to 11 days. No specimens metamorphosed after day 39, but megalopae lived up to 93 days. Since only the conspecific- and coexisting-species treatments stimulated development, we hypothesize that Ucides megalopae are able to precisely identify species-habitat-specific settlement cues. This will be investigated in more detail in future studies, which will also test the effects of the odours of the five forest fiddler crab species separately. The impact of the interspecific odour treatments was much smaller than that of the conspecific odours, nevertheless elevated moulting rates of up to 18% relative to seawater may still significantly accelerate the repopulation of U. cordatus in areas lacking conspecifics, e.g. after massive crab mortalities or at first colonization.  相似文献   

8.
Selective tidal-streaming is a model frequently used to explain how planktonic larvae invade estuaries. The ability of larvae to move vertically in the water column to selectively ride favourable currents and maintain ground gained is critical to this process. The mud crab (Scylla serrata) is a widely distributed, commercially and recreationally important portunid crab but little is known about its estuarine recruitment mechanisms or the vertical migration behaviour of its megalopae. In studies of the blue crab (Callinectes sapidus), important factors identified in the recruitment mechanism include altered vertical swimming behaviours in estuarine and offshore water and an endogenous circadian rhythm. Using laboratory experiments we examined the vertical displacement response of mud crab megalopae to illumination in estuarine and offshore water during the day and the night. Mud crab megalopae released into 1 m high towers swam higher when illuminated than when in darkness. This behaviour was repeated during the day and the night and in offshore and estuarine water. Given the apparent indifference to water type and the fact that mud crab megalopae are rarely caught in estuaries, we propose the model that these crabs do not invade estuaries as megalopae, but settle and metamorphose into small crabs on the coastal shelf before moving along the sea bed into estuarine habitats.  相似文献   

9.
Anthropogenic habitat fragmentation is increasingly problematic in both terrestrial and aquatic systems. Fragmentation reduces the size of habitat patches, so examining the effect of patch size on community structure can provide insight into the potential effects of fragmentation. In this study, we examined the effect of habitat size on the density of Spartina alterniflora shoots in tidal saltwater marshes, as well as on the two predominant macrofaunal species, the marsh periwinkle Littoraria irrorata and fiddler crabs Uca spp. We estimated the density of shoots in three different marsh habitats, (1) large island marshes, (2) small island marshes, and (3) large fringing marshes, in Indian Field Creek, York River, Chesapeake Bay. We manipulated shoot density in each of the marsh types to distinguish between the effects of marsh grass density and marsh type on crab and Littoraria densities in the system. We found significant differences in grass density among the three marsh types as well as significant species-specific effects of grass density, marsh type, and distance from edge on faunal abundance. Decreasing the shoot density resulted in a decrease in Littoraria density in the large marshes. Littoraria density increased with distance from edge in the small marshes and in the first 5 m of the fringing marshes, then decreased with distance from edge after 5 m in the fringing marshes. Shoot density had a negative effect on crabs in both the large and small marshes. These results suggest that fragmentation would have a negative effect on the community structure by lowering the densities of both the flora and fauna.  相似文献   

10.
Young juveniles of many motile benthic species are concentrated in structurally complex habitats, but the proximate causes of this distribution are usually not clear. In the present study, I assessed three potentially important processes affecting distribution and abundance of early benthic stages in the shore crab (Carcinus maenas): (1) selection of habitat by megalopae (postlarvae); (2) habitat-specific predation; and (3) post-settlement movements by juveniles. These processes were assessed concurrently over 3-9 days at two spatial scales: at the scale of square meters using cage techniques within nursery areas, and at the scale of hectares using isolated populations of juvenile shore crabs in small nursery areas as mesocosms. The results were compared to habitat-specific distribution in the field.Shore crab megalopae and first instar juveniles (settlers) were distributed non-randomly among micro-habitats in the assessed nursery areas, with great densities in both mussel beds, eelgrass and filamentous algal patches (on average 114-232 settlers m−2), and significantly smaller densities on open sand habitats at all times (on average 4 settlers m−2). The same habitat-specific settlement pattern was found in cages where predators were excluded, suggesting that active habitat selection at settlement was responsible for the initial distribution. Older juveniles (second to ninth instar crabs) were also sparse on sand, but in contrast to settlers, were concentrated in mussel beds, which showed significantly greater densities than eelgrass and algal habitats. The cage experiment demonstrated a dynamic distribution of juvenile crabs. Young juveniles constantly migrated over open sand habitats (20 m or further) and colonized the experimental plots in a habitat-specific pattern that reflected the distribution in the field. This pattern was also found for very small crabs colonizing predator-exclusion cages, suggesting that selection of habitat by migrating juveniles caused the ontogenetic change in habitat use. Although post-settlement movements were great within nursery areas, juvenile dispersal at a regional scale appeared to be small, and the recruitment of juvenile shore crabs to the shallow bays occurred mainly through pelagic megalopae.Conservative estimates at the scale of whole nursery areas, based on migration trap data and field samples, indicated great mortality of settlers and early benthic stages of shore crabs. Results from the cage experiment suggest that predation by crabs and shrimp were responsible for the high settlement mortality. Both enclosed cannibalistic juvenile crabs and local predators on uncaged habitat plots caused significant losses of settlers in all habitats (on average 22% and 64% 3 day−1, respectively). The effect of predators was highly variable between trials, but differed little between habitat types, and predation had no detectable proximate effect on juvenile distribution, despite the great losses. Small settlement densities on sand habitats in combination with a refuge at low prey numbers, and an aggregation of cannibalistic juvenile crabs in nursery habitats appear to decrease the effect of habitat-specific predation rates on the distribution of juvenile shore crabs. This study demonstrates that active habitat selection at settlement followed by a dynamic redistribution of young juveniles can be the proximate processes responsible for habitat-specific distribution of epibenthic juveniles, and indicate that predation represents a major evolutionary process reinforcing this behavior.  相似文献   

11.
Blue crab, Callinectes sapidus Rathbun, megalopae settle in seagrass or other complex submerged aquatic habitats in estuaries, where they metamorphose to the first juvenile (J1) crab stage. Within tidal areas, early juveniles (J1-2) leave such nursery areas by undergoing secondary dispersal during nocturnal flood tides. The present study determined whether J1-2 blue crabs have a biological rhythm in vertical swimming activity that contributes to secondary dispersal. Endogenous rhythms in vertical swimming were determined for (1) J1-2 crabs collected from two estuaries with semi-diurnal tides, (2) J1 crabs that metamorphosed from the megalopal stage in the laboratory the day after collection, and (3) premolt megalopae that metamorphosed to J1 crabs under constant conditions during the experiment. In all cases, a circadian rhythm was present in which crabs swam vertically during the time of night in the field. The time of peak vertical swimming did not correspond to the time of flood tide at the collection sites, but did consistently occur at night, with a mean around midnight. While responses to environmental factors probably control the onset and end of vertical swimming by early juvenile blue crabs during flood tides in tidal areas, a circadian rhythm underlies secondary dispersal at night.  相似文献   

12.
In tropical regions, different species of fiddler crabs coexist on the mangrove floor, which sometimes makes it difficult to define species-specific habitat by visual inspection. The aim of this study is to find key environmental parameters which affect the distribution of fiddler crabs and to determine the habitats in which each species was most abundant. Crabs were collected from 19 sites within the mudflats of Sepang-Lukut mangrove forest. Temperature, porewater salinity, organic matter, water content, carbon and nitrogen content, porosity, chlorophyll content, pH, redox potential, sediment texture and heavy metals were determined in each 1 m2 quadrate. Pearson correlation indicated that all sediment properties except pH and redox potential were correlated with sediment grain size. Canonical correspondence analysis (CCA) indicated that Uca paradussumieri was negatively correlated with salinity and redox potential. Sand dwelling species, Uca perplexa and Uca annulipes, were highly dependent on the abundance of 250 μm and 150 μm grain size particles in the sediment. Canonical Discriminative Analysis (CDA) indicated that variation in sediment grain size best explained where each crab species was most abundant. Moreover, U. paradussumieri commonly occupies muddy substrates of low shore, while U. forcipata lives under the shade of mangrove trees. U. annulipes and U. perplexa with the high number of spoon tipped setae on their second maxiliped are specialized to feed on the sandy sediments. U. rosea and U. triangularis are more common on muddy sediment with high sediment density. In conclusion, sediment grain size that influences most sediment properties acts as a main factor responsible for sediment heterogeneity. In this paper, the correlation between fiddler crab species and environmental parameters, as well as the interaction between sediment characteristics, was explained in order to define the important environmental factors in fiddler crab distributions.  相似文献   

13.
Recent declines in red king crab (Paralithodes camtschaticus) stocks in its native and introduced habitat have sparked interest in the development of aquaculture methods for this commercially important species. Little is known about the basic biology of this species and the factors controlling its growth rate. In this paper we present concentrations of circulating ecdysteroids (the hormones that control molting) in hemolymph of intermolt red king crabs in three coastal areas of the Barents Sea. Two molting hormones (20-hydroxyecdysone and ecdysone) were assayed. Mean levels of these ecdysteroids varied from 0.0 to 190.0 μg ml−1 and from 0.0 to 13.4 μg ml−1, respectively. These levels in general were higher in comparison with other decapod species. Concentrations of ecdysteroids were similar in male and female crabs and in injured (animals with at least one autotomized limb) and intact red king crabs. In contrast, the levels of circulating ecdysteroids were much higher in small (predominantly immature crabs) than in large adult animals because the latter have a lower molting probability (once per year) than smaller crabs (2–3 times per year). Our data can be used in further investigations of red king crab growth rates and their application to the development of aquaculture methods for this species.  相似文献   

14.
Denson K. McLain  Ann E. Pratt 《Oikos》2010,119(3):508-513
Males of the sand fiddler crab Uca pugilator possess a greatly enlarged claw that is used as a weapon in ritualized contests for control of breeding burrows and is waved to attract females to breeding burrows. Approximately 5400 crabs were collected along the Atlantic coast of North America at 14 localities, all of which had both beach and salt marsh habitats. Five measurements were made on each claw. Principal components analysis was used to generate a single measure of claw size from the seven correlated measures and scores of the claw. Carapace width was measured to index body size. Claw size was greater in beach than marsh habitats, controlling for body size. However, body size did not differ by habitat type. Claw size was also greater in laboratory‐reared males receiving more food, suggesting that differential access to food could influence habitat‐associated differences in claw size. Chlorophyll a concentration and total organic content, reflecting, respectively, the abundance of benthic algae and other food, were greater in beach than marsh habitats. Moreover, feeding opportunities were greater in the wetter beach habitat because crabs there, but not in marsh habitat, can feed at breeding burrows. Adult fiddler crabs continue to molt and grow in both body and claw size as they age. Energetic investment in the claw relative to the body is plastic. It appears that the availability of food can affect the amount of energy invested in the claw.  相似文献   

15.
Stanley JA  Radford CA  Jeffs AG 《PloS one》2011,6(12):e28572
A small number of studies have demonstrated that settlement stage decapod crustaceans are able to detect and exhibit swimming, settlement and metamorphosis responses to ambient underwater sound emanating from coastal reefs. However, the intensity of the acoustic cue required to initiate the settlement and metamorphosis response, and therefore the potential range over which this acoustic cue may operate, is not known. The current study determined the behavioural response thresholds of four species of New Zealand brachyuran crab megalopae by exposing them to different intensity levels of broadcast reef sound recorded from their preferred settlement habitat and from an unfavourable settlement habitat. Megalopae of the rocky-reef crab, Leptograpsus variegatus, exhibited the lowest behavioural response threshold (highest sensitivity), with a significant reduction in time to metamorphosis (TTM) when exposed to underwater reef sound with an intensity of 90 dB re 1 μPa and greater (100, 126 and 135 dB re 1 μPa). Megalopae of the mud crab, Austrohelice crassa, which settle in soft sediment habitats, exhibited no response to any of the underwater reef sound levels. All reef associated species exposed to sound levels from an unfavourable settlement habitat showed no significant change in TTM, even at intensities that were similar to their preferred reef sound for which reductions in TTM were observed. These results indicated that megalopae were able to discern and respond selectively to habitat-specific acoustic cues. The settlement and metamorphosis behavioural response thresholds to levels of underwater reef sound determined in the current study of four species of crabs, enables preliminary estimation of the spatial range at which an acoustic settlement cue may be operating, from 5 m to 40 km depending on the species. Overall, these results indicate that underwater sound is likely to play a major role in influencing the spatial patterns of settlement of coastal crab species.  相似文献   

16.
The Florida stone crab, Menippe mercenaria, is an economically and ecologically important species that ranges from North Carolina throughout the Caribbean and the southeastern Gulf of Mexico. However, there is little known about its early life history stages as compared to other commercially important species in the region. The goal of this research was to examine effects of putative cues on metamorphosis from the megalopa stage to the first juvenile stage. Our study investigated the effect of water-soluble exudates from four substrata, as well as natural biofilms, and exudates from adult stone crabs. In addition, the influence of natural substrata was compared to that of artificial substrata. Adult exudate had no significant effect on metamorphosis, despite a wide range of tested concentrations. In contrast, there was a significant effect on mean time to metamorphosis in experimental groups exposed to multiple cues associated with the brown alga Sargassum fluitans, rubble from stone crab habitat, the eastern oyster Crassostrea virginica, and biofilms associated with the oyster. Furthermore, we provide evidence for metamorphic responses to water-soluble chemical cues, as well as biochemical and physical cues associated with different substrata. Overall results were coherent with the relevant body of previous work on metamorphosis of brachyuran crab larvae and indicate that both physical and chemical cues are important factors in facilitating the settlement and metamorphosis of M. mercenaria larvae in juvenile nursery habitat.  相似文献   

17.
Paulino  João  Granadeiro  José Pedro  Henriques  Mohamed  Belo  João  Catry  Teresa 《Hydrobiologia》2021,848(17):3905-3919

The burrowing activity of fiddler crabs inhabiting intertidal flats creates visually distinct patches within these habitats. However, differences in the composition and abundance of shorebirds and their macroinvertebrate prey between areas inhabited or not by crabs are yet to be studied. Here, we compare the macroinvertebrate and shorebird assemblages in low and high crab density areas in the intertidal flats of the Bijagos archipelago, Guinea-Bissau. High crab density areas are associated with lower richness and densities of macroinvertebrates. Shorebird assemblages were also less rich at high crab density areas and the differences in species composition occurred according to prey type preferences. Fiddler crab density was the most important variable explaining macroinvertebrate abundance, after accounting for the effects of fine fraction of sediment and distance to coast. Nonetheless, a controlled experimental setup would be required to attribute differences found to the engineering activity of fiddler crabs rather than other unaccounted habitat features. Our findings suggest that crab patches should be taken into account when assessing the distribution and abundance of macroinvertebrates and shorebirds in intertidal areas. Since low and high crab density areas differ markedly in terms of shorebird carrying capacity, monitoring variations in their extent will be important to interpret past and present population trends.

  相似文献   

18.
In this paper, we address the question of whether the presence of the burrowing crab Chasmagnathus granulatus affects the habitat use of the fiddler crab Uca uruguayensis. Field samples showed that the species have a disjoint spatial distribution. Male fiddler crab density decreased in zones with C. granulatus, however, female density increased. Male fiddler crabs avoided feeding on sediment affected by C. granulatus and were more preyed. Predation was higher during the fiddler crab reproductive season and, probably due to predation risk, males showed lower reproductive display in shared zones. Field experiments shows that when C. granulatus were excluded, densities of U. uruguayensis increased mainly due to an increase in density of males. Habitat differentiation of these species may be because C. granulatus affects U. uruguayensis in several ways, including direct predation, disturbance and behavioural changes associated to predation risk. Males and females are affected differentially probably because of the extreme sexual dimorphism of this crab species. Coloration on enlarged claw and waving activities are all factors that increase predation risk for male and the presence of only one feeding claw may increase sediment-mediated effects.  相似文献   

19.
The present study documents for the first time shell use by juvenile fiddler crabs in the salt marsh. Twenty visits were made to six salt marsh sites at Tybee Island, Georgia between 2007 and 2009. One hundred empty Littorina irrorata shells were collected at each site on each field trip. Juvenile carapace width was measured, crabs sexed, and species identification completed using RFLP analysis. Shell use of up to 79% was observed. Two species of fiddler crabs were found in empty shells, Uca pugnax and U. pugilator. U. pugnax was the dominant species at all sites representing 62-84% of the juvenile fiddler crab population. Juvenile sex ratios were female-biased (1.7:1) at all six sites. Juvenile size did not vary significantly between species but males of both species were significantly larger than females. Size frequency distribution of carapace width revealed that shell use varied with size and sex. In the 3 to 4 mm size class, juvenile females outnumbered juvenile males in empty L. irrorata shells while in the 5 to 6 mm size class and greater, juvenile males outnumbered juvenile females in shells. Significantly more juvenile fiddler crabs were found in empty shells during flood than ebb tide at 3 of the sites. This discovery illuminates the resourcefulness of juvenile fiddler crabs and provides another mechanism that might enhance survival.  相似文献   

20.
While sound is a useful cue for guiding the onshore orientation of larvae because it travels long distances underwater, it also has the potential to convey valuable information about the quality and type of the habitat at the source. Here, we provide, to our knowledge, the first evidence that settlement-stage coastal crab species can interpret and show a strong settlement and metamorphosis response to habitat-related differences in natural underwater sound. Laboratory- and field-based experiments demonstrated that time to metamorphosis in the settlement-stage larvae of common coastal crab species varied in response to different underwater sound signatures produced by different habitat types. The megalopae of five species of both temperate and tropical crabs showed a significant decrease in time to metamorphosis, when exposed to sound from their optimal settlement habitat type compared with other habitat types. These results indicate that sounds emanating from specific underwater habitats may play a major role in determining spatial patterns of recruitment in coastal crab species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号