首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural complexity strongly influences the outcome of predator–prey interactions in benthic marine communities affecting both prey concealment and predator hunting efficacy. How habitat structure interacts with species‐specific differences in predatory style and antipredatory strategies may therefore be critical in determining higher trophic functions. We examined the role of structural complexity in mediating predator–prey interactions across several macrophyte habitats along a gradient of structural complexity in three different bioregions: western Mediterranean Sea (WMS), eastern Indian Ocean (EIO) and northern Gulf of Mexico (NGM). Using sea urchins as model prey, we measured survival rates of small (juveniles) and medium (young adults) size classes in different habitat zones: within the macrophyte habitat, along the edge and in bare sandy spaces. At each site we also measured structural variables and predator abundance. Generalised linear models identified biomass and predatory fish abundance as the main determinants of predation intensity but the efficiency of predation was also influenced by urchin size class. Interestingly though, the direction of structure‐mediated effects on predation risk was markedly different between habitats and bioregions. In WMS and NGM, where predation by roving fish was relatively high, structure served as a critical prey refuge, particularly for juvenile urchins. In contrast, in EIO, where roving fish predation was low, predation was generally higher inside structurally complex environments where sea stars were responsible for much of the predation. Larger prey were generally less affected by predation in all habitats, probably due to the absence of large predators. Overall, our results indicate that, while the structural complexity of habitats is critical in mediating predator–prey interactions, the direction of this mediation is strongly influenced by differences in predator composition. Whether the regional pool of predators is dominated by visual roving species or chemotactic benthic predators may determine if structure dampens or enhances the influence of top–down control in marine macrophyte communities.  相似文献   

2.
Many small fish, including several juvenile Atlantic flatfish, are most abundant in shallow areas presumable because these habitats enhance survivorship and/or growth. In this study, we investigated size-dependent depth distributions and the role of shallow habitats as predator refuges for age-0 winter flounder (Pseudopleuronectes americanus) in a northwest Atlantic estuarine nursery. Analysis of trawl surveys performed during the larval settlement period throughout the Navesink River and Sandy Hook Bay, New Jersey, showed that as fish increased in size, depth of occurrence gradually decreased, so that individuals >35 mm standard length (SL) were concentrated in habitats ∼1 m deep. Tethering in structurally simple and adjacent shallow and deep habitats showed that predation risk for flounder (30-50 mm SL) was low in shallow water (<1 m) and increased rapidly with depth. Summer flounder (Paralychthys dentatus), which were more abundant in trammel nets in deep habitats and included winter flounder in their diets, appeared to be important consumers of tethered fish. Our results indicate that following larval settlement, winter flounder emigrate from or suffer high mortality in deeper water to become concentrated in shallow habitats that can serve as predator refuges even when they lack complex physical structures. These results highlight the potential for functional habitat loss when natural and/or anthropogenic factors make shallow habitats unavailable to young fish.  相似文献   

3.
Predator exclusion and habitat complexity factors that may affect juvenile red snapper Lutjanus campechanus habitat selection were examined in field and laboratory experiments. A significant predator exclusion effect was detected. Uncaged shell habitats showed significantly lower numbers of age 0 year red snapper, and both uncaged shell and block-shell habitats showed significantly lower numbers of age 1 year red snapper compared with caged habitats ( P < 0·001). Habitat complexity also affected age 0 year red snapper, as mean abundance significantly decreased with decreased habitat complexity ( P < 0·001). In the laboratory, age 0 year red snapper association with complex habitats significantly increased with exposure to a predator Gulf flounder Paralichthys albigutta ( P < 0·001). This study showed that predator exclusion and habitat complexity were significant factors that affected the abundance of juvenile red snapper in nursery areas of the northern Gulf of Mexico. Predation may affect juvenile red snapper abundance directly through mortality and indirectly by influencing habitat selection.  相似文献   

4.
Studies of trait‐mediated indirect interactions (TMIIs) typically focus on effects higher predators have on per capita consumption by intermediate consumers of a third, basal prey resource. TMIIs are usually evidenced by changes in feeding rates of intermediate consumers and/or differences in densities of this third species. However, understanding and predicting effects of TMIIs on population stability of such basal species requires examination of the type and magnitude of the functional responses exhibited towards them. Here, in a marine intertidal system consisting of a higher‐order fish predator, the shanny Lipophrys pholis, an intermediate predator, the amphipod Echinogammarus marinus, and a basal prey resource, the isopod Jaera nordmanni, we detected TMIIs, demonstrating the importance of habitat complexity in such interactions, by deriving functional responses and exploring consequences for prey population stability. Echinogammarus marinus reacted to fish predator diet cues by reducing activity, a typical anti‐predator response, but did not alter habitat use. Basal prey, Jaera nordmanni, did not respond to fish diet cues with respect to activity, distribution or aggregation behaviour. Echinogammarus marinus exhibited type II functional responses towards J. nordmanni in simple habitat, but type III functional responses in complex habitat. However, while predator cue decreased the magnitude of the type II functional response in simple habitat, it increased the magnitude of the type III functional response in complex habitat. These findings indicate that, in simple habitats, TMIIs may drive down consumption rates within type II responses, however, this interaction may remain de‐stabilising for prey populations. Conversely, in complex habitats, TMIIs may strengthen regulatory influences of intermediate consumers on prey populations, whilst potentially maintaining prey population stability. We thus highlight that TMIIs can have unexpected and complex ramifications throughout communities, but can be unravelled by considering effects on intermediate predator functional response types and magnitudes. Synthesis Higher‐order predators and habitat complexity can influence behaviour of intermediate species, affecting their consumption of prey through trait‐mediated indirect interactions (TMIIs). However, it is not clear how these factors interact to determine prey population stability. Using functional responses (FRs), relating predator consumption to prey density, we detected TMIIs in a marine system. In simple habitats, TMIIs reduced consumption rates, but FRs remained de‐stabilising for prey populations. In complex habitats, TMIIs strengthened prey regulation with population stabilizing FRs. We thus demonstrate that FRs can assess interactions of environmental and biological cues that result in complex and unexpected outcomes for prey populations.  相似文献   

5.
Studies on the effects of within-patch scale structure of seagrass habitats on predator–prey fish interactions and abundance/habitat use patterns were reviewed. Most laboratory experiments have employed chase-and-attack predators, usually resulting in lower foraging efficiency in (denser) seagrass. However, a few laboratory procedures employed alternative foraging tactics, resulting in no differences in prey mortality rates. Field studies did not always result in lower prey mortality rates in seagrass habitats. Accordingly, it is premature to conclude that seagrass presence is almost always negatively related to predator foraging efficiency or that increasing seagrass abundance is usually associated with a decrease in predator efficiency. Because several categories of predator and prey fishes occur in seagrass habitats, further studies are needed with all of these predator–prey combinations, in order to fully clarify predator–prey fish interactions in association with seagrass structure. Seagrass fishes have been shown to respond to alterations in seagrass structure in various ways: seagrass height and/or density reduction or clearance resulted in decreased abundance of some species but increases or no change in others. Some explanations have been proposed, not all mutually exclusive, for these phenomena. Although within-patch scale processes have been well studied, room exists for improvement. For example, predator–prey fish interactions in relation to varying within-patch scale complexity is not yet fully understand. The relationships of patch size, edge effects and within-patch scale complexity also still remain unclear. Further studies, which add to the clarification of within-patch scale process, will in turn improve our understanding of larger spatial scale processes.  相似文献   

6.
Hughes AR  Grabowski JH 《Oecologia》2006,149(2):256-264
Despite increasing evidence that habitat structure can shape predator–prey interactions, few studies have examined the impact of habitat context on interactions among multiple predators and the consequences for combined foraging rates. We investigated the individual and combined effects of stone crabs (Menippe mercenaria) and knobbed whelks (Busycon carica) when foraging on two common bivalves, the hard clam (Mercenaria mercenaria) and the ribbed mussel (Geukensia demissa) in oyster reef and sand flat habitats. Because these species co-occur across these and other estuarine habitats of varying physical complexity, this system is ideal for examining how habitat context influences foraging rates and the generality of predator interactions. Consistent with results from previous studies, consumption rates of each predator in isolation from the other were higher in the sand flat than in the more structurally complex oyster reef habitat. However, consumption by the two predators when combined surprisingly did not differ between the two habitats. This counterintuitive result probably stems from the influence of habitat structure on predator–predator interactions. In the sand-flat habitat, whelks significantly reduced their consumption of their less preferred prey when crabs were present. However, the structurally more complex oyster reef habitat appeared to reduce interference interactions among predators, such that consumption rates when the predators co-occurred did not differ from predation rates when alone. In addition, both habitat context and predator–predator interactions increased resource partitioning by strengthening predator dietary selectivity. Thus, an understanding of how habitat characteristics such as physical complexity influence interactions among predators may be critical to predicting the effects of modifying predator populations on their shared prey.  相似文献   

7.
Many large, fishery‐targeted predatory species have attained very high relative densities as a direct result of protection by no‐take marine reserves. Indirect effects, via interactions with targeted species, may also occur for species that are not themselves targeted by fishing. In some temperate rocky reef ecosystems, indirect effects have caused profound changes in community structure, notably the restoration of predator–urchin–macroalgae trophic cascades. Yet, indirect effects on small benthic reef fishes remain poorly understood, perhaps because of behavioral associations with complex, refuge‐providing habitats. Few, if any, studies have evaluated any potential effects of marine reserves on habitat associations in small benthic fishes. We surveyed densities of small benthic fishes, including some endemic species of triplefin (Tripterygiidae), along with fine‐scale habitat features in kelp forests on rocky reefs in and around multiple marine reserves in northern New Zealand over 3 years. Bayesian generalized linear mixed models were used to evaluate evidence for (1) main effects of marine reserve protection, (2) associations with habitat gradients, including complexity, and (3) differences in habitat associations inside versus outside reserves. No evidence of overall main effects of marine reserves on species richness or densities of fishes was found. Both richness and densities showed strong associations with gradients in habitat features, particularly habitat complexity. In addition, some species exhibited reserve‐by‐habitat interactions, having different associations with habitat gradients inside versus outside marine reserves. Two species (Ruanoho whero and Forsterygion flavonigrum) showed stronger positive associations with habitat complexity inside reserves. These results are consistent with the presence of a behavioral risk effect, whereby prey fishes are more strongly attracted to habitats that provide refuge from predation in areas where predators are more abundant. This work highlights the importance of habitat structure and the potential for fishing to affect behavioral interactions and the interspecific dynamic attributes of community structure beyond simple predator–prey consumption and archetypal trophic cascades.  相似文献   

8.
Summary Numerous studies have demonstrated a negative relationship between increasing habitat complexity and predator foraging success. Results from many of these studies suggest a non-linear relationship, and it has been hypothesised that some threshold level of complexity is required before foraging success is reduced significantly. We examined this hypothesis using largemouth bass (Micropterus salmoides) foraging on juvenile bluegill sunfish (Lepomis macrochirus) in various densities of artificial vegetation. Largemouth foraging success differed significantly among the densities of vegetation tested. Regression analysis revealed a non-linear relationship between increasing plant stem density and predator foraging success. Logistic analysis demonstrated a significant fit of our data to a logistic model, from which was calculated the threshold level of plant stem desity necessary to reduce predator foraging success. Studies with various prey species have shown selection by prey for more complex habitats as a refuge from predation. In this stydy, we also examined the effects of increasing habitat complexity (i.e. plant stem density) on choice of habitat by juvenile bluegills while avoiding predation. Plant stem density significantly effected choice of habitat as a refuge. The relationship between increasing habitat complexity and prey choice of habitat was found to be positive and non-linear. As with predator foraging success, logistic analysis demonstrated a significant fit of our data to a logistic model. Using this model we calculated the threshold level of habitat complexity required before prey select a habitat as a refuge. This density of vegetation proved to be considerably higher than that necessary to significantly reduce predator foraging success, indicating that bluegill select habitats safe from predation.Implications of these results and various factors which may affect the relationships described are discussed.  相似文献   

9.
Red king crab (RKC) (Paralithodes camtschaticus) are generally associated with structurally complex habitats during the first 2 years of benthic life. In this first experimental laboratory study with a fish predator, survival of newly settled juvenile RKC was tested in eight different habitat treatments with varying amounts and types of physical structure, open sand, gravel bottom, and habitat islands. Video observations provided insights on habitat-mediated interactions between Pacific halibut predators (Hippoglossus stenolepis) and crab prey. Survival of RKC increased with amount of physical structure and was highest in the most heterogeneous habitat and in habitats characterized by high density patches. Predator activity decreased with increasing amount of structure, and attacks on RKC were correlated with predator activity. Low survival in open sand habitat was associated with both high attack rate and high capture success (captures per attack). Lower levels of capture success did not vary among the habitats containing algae and other complex physical structures, but attack rates declined with increasing amount of structure, and encounter rate (i.e., prey detection and attack) was the primary determinant of mortality. RKC were capable of detecting predators and adjusted their behavior to avoid predation by sheltering in dense microhabitat patches. Successful stock enhancement for greatly reduced populations of RKC in the Gulf of Alaska will depend upon placing seed stock in habitats with abundant protective habitat, and high quality microhabitats may serve as well as continuous cover.  相似文献   

10.
Finke DL  Denno RF 《Oecologia》2006,149(2):265-275
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and plant biomass. However, complex habitats may provide a spatial refuge for predators from intraguild predation, enhance the collective ability of multiple predator species to limit herbivore populations, and thus increase the overall strength of a trophic cascade on plant productivity. Using the community of terrestrial arthropods inhabiting Atlantic coastal salt marshes, this study examined the impact of predation by an assemblage of predators containing Pardosa wolf spiders, Grammonota web-building spiders, and Tytthus mirid bugs on herbivore populations (Prokelisia planthoppers) and on the biomass of Spartina cordgrass in simple (thatch-free) and complex (thatch-rich) vegetation. We found that complex-structured habitats enhanced planthopper suppression by the predator assemblage because habitats with thatch provided a refuge for predators from intraguild predation including cannibalism. The ultimate result of reduced antagonistic interactions among predator species and increased prey suppression was enhanced conductance of predator effects through the food web to positively impact primary producers. Behavioral observations in the laboratory confirmed that intraguild predation occurred in the simple, thatch-free habitat, and that the encounter and capture rates of intraguild prey by intraguild predators was diminished in the presence of thatch. On the other hand, there was no effect of thatch on the encounter and capture rates of herbivores by predators. The differential impact of thatch on the susceptibility of intraguild and herbivorous prey resulted in enhanced top-down effects in the thatch-rich habitat. Therefore, changes in habitat complexity can enhance trophic cascades by predator communities and positively impact productivity by moderating negative interactions among predators.  相似文献   

11.
The indirect effect of predators on prey behavior, recruitment, and spatial relationships continues to attract considerable attention. However, top predators like sharks or large, mobile teleosts, which can have substantial top–down effects in ecosystems, are often difficult to study due to their large size and mobility. This has created a knowledge gap in understanding how they affect their prey through nonconsumptive effects. Here, we investigated how different functional groups of predators affected potential prey fish populations across various habitats within Biscayne Bay, FL. Using baited remote underwater videos (BRUVs), we quantified predator abundance and activity as a rough proxy for predation risk and analyzed key prey behaviors across coral reef, sea fan, seagrass, and sandy habitats. Both predator abundance and prey arrival times to the bait were strongly influenced by habitat type, with open homogenous habitats receiving faster arrival times by prey. Other prey behaviors, such as residency and risk‐associated behaviors, were potentially driven by predator interaction. Our data suggest that small predators across functional groups do not have large controlling effects on prey behavior or stress responses over short temporal scales; however, habitats where predators are more unpredictable in their occurrence (i.e., open areas) may trigger risk‐associated behaviors such as avoidance and vigilance. Our data shed new light on the importance of habitat and context for understanding how marine predators may influence prey behaviors in marine ecosystems.  相似文献   

12.
Aarnio  Katri  Mattila  Johanna 《Hydrobiologia》2000,440(1-3):347-355
Due to increasing eutrophication of the coastal Baltic waters, drifting algae are a common phenomenon. Drifting algal mats accumulate on shallow sandy bottoms in late summer and autumn, and affect the ambient fauna. Juvenile flounder, Platichthys flesus, utilize these habitats during their first few years. They feed on benthic meio- and macrofauna; part of their diet consists of shelled species, such as Ostracods, and juvenile Hydrobia spp. and Macoma balthica. Earlier studies have shown that up to 75% of ostracods and 92% of hydrobiids survive the gut passage of juvenile flounder, while all M. balthica are digested by the fish. We conducted laboratory experiments to study how the shelled prey responded to a drift algal mat, and the predation efficiency of juvenile P. flesus on these prey species on bare sand and with drifting algae (50% coverage). Hydrobia spp. utilized the drift algae as a habitat and, after 1 h, 50% had moved into the algae; ostracods and M. balthica were more stationary and, after 96 h, only 23 and 12%, respectively, were found in the algae. For the predation efficiency of P. flesus, a two-way ANOVA with habitat (algae, bare sand) and predation (fish, no fish) as factors revealed that both algae and predation affected negatively the survival of all three prey species. The algae, thus, affected the predation efficiency of juvenile P. flesus and the consumption of prey was much reduced in the algal treatments compared to the bare sand. This was due probably to increased habitat complexity and the ability of prey, especially hydrobiids, to use the algal mat as a refuge. Altered habitat structure due to drift algae, together with the resultant changes in habitat (refuge) value for different prey species, may profoundly change the structure of benthic communities.  相似文献   

13.
Diets of metamorphosing larvae and early juvenile summer and southern flounder were examined during the settlement period when their distributions overlapped and during a subsequent period when the two flounders were found in different habitats. Prey abundance on tidal flats was examined along an upstream transect. Though initially similar, diets of the two species diverged prior to the development of a segregated distribution. These diet differences reflected those found in the diets of the two species following segregation. Southern flounder ate more active epifaunal prey: mysids, amphipods and calanoid copepods and appeared to be an ambush predator. The summer flounder ate primarily infauna: polychaetes, and invertebrate parts and appeared to be an active forager. Distribution of prey within the study area suggested that mysid gradients may influence movement of southern flounder to nursery grounds. The coupling of biotic and abiotic gradients are probably important in creating nursery areas and guiding fishes to species specific habitat types.  相似文献   

14.
Trophic cascades are predicted to occur when the abundance of predators is increased, directly reducing the abundance of the intermediate prey and indirectly increasing the abundance of the prey at the base of a food web. Mixed trophic impact analysis of a network model developed for Apalachee Bay, near St. Marks, FL, USA predicted such a trophic cascade, in that increased abundance of juvenile gulf flounder Paralichthys albigutta ( = 149 mm SL, effective trophic level 3.9) should have a negative impact on juvenile spot Leiostomus xanthurus ( = 30 mm SL, effective trophic level 2.9) and a positive impact on benthic polychaetes (effective trophic levels 2.3 for deposit feeders and 3.0 for predatory polychaetes) in Halodule wrightii seagrass beds. We tested the predictions of the mixed trophic impact analysis by manipulating the abundance of the high trophic-level species (juvenile gulf flounder) in a cage-exclusion study in the North River, near Harkers Island, NC, USA. We compared the polychaete communities in St. Marks, FL and Harkers Island, NC, and showed that they are 51% similar (Jaccard's Index) at the family level, with the same eight dominant families (Nereidae, Capitellidae, Syllidae, Spionidae, Cirratulidae, Terebellidae, Sabellidae, and Maldanidae) present in both locations. We used 24 open-bottom cages to enclose the benthos and its seagrass-associated animal communities. We manipulated each cage by assigning it to one of the following treatments: (1) inclusion of fishes in upper and intermediate trophic levels (1 juvenile gulf flounder and 10 juvenile spot, the flounder + spot treatment); (2) inclusion of the intermediate predator (10 juvenile spot with no gulf flounder, the spot-only treatment); and (3) no fish added (unmanipulated controls). Core samples taken within the cages provided pre- and post-experimental measures of polychaete density and biomass, and the difference in density and biomass were used as response variables. At the end of the experiment, we collected, weighed, and analyzed the gut contents of all juvenile spot present in the cages. Juvenile pinfish (Lagodon rhomboides,  = 30 mm SL) were present at the end of the study, having arrived as larvae or being trapped during cage set-up, and these fish were also examined, because they also eat polychaetes and their natural densities exceeded our introduced spot densities. Significant differences among treatments were detected for the polychaete family Terebellidae for both the change in density and biomass (pre-experiment − post-experiment). Densities of the Terebellidae changed in the direction predicted by the network model's impact analysis, declining in the cages with spot added compared with the control cages. Analyses of the other response variables (post-experiment spot and pinfish densities and biomass, difference between pre- and post-experiment polychaete densities and biomass for other families, and post-experiment spot and pinfish stomach content biomass) showed no significant differences among treatments. Several variables (Nereidae densities, pinfish densities and biomass, and pinfish stomach content biomass) varied between cages with low and high seagrass cover (significant blocking effect, P < 0.001). Nereidae densities declined significantly in cages with high (73%) rather than with low coverage (31% cover) of seagrass. Pinfish density and biomass were significantly greater in the high seagrass cages at the end of the experiments (P < 0.001), suggesting that dense seagrass attracted them. We conclude that the high density of pinfish in dense seagrass was responsible for the decline in density of the Nereidae. The direct effect of intermediate predators (pinfish feeding on polychaete prey) can be influenced by preferential recruitment of fishes to structurally complex habitats. The direction of change of indirect effects, but not the magnitude, in multi-trophic-level food webs can be predicted by the mixed trophic impact analysis of network models. However, these indirect effects are likely to be small in magnitude relative to direct effects and may be difficult to detect experimentally, especially in low-power experimental caging studies with natural fluctuations in recruitment rates of competitor species.  相似文献   

15.
There is growing evidence that climate and anthropogenic influences on marine ecosystems are largely manifested by changes in species spatial dynamics. However, less is known about how shifts in species distributions might alter predator-prey overlap and the dynamics of prey populations. We developed a general approach to quantify species spatial overlap and identify the biotic and abiotic variables that dictate the strength of overlap. We used this method to test the hypothesis that population abundance and temperature have a synergistic effect on the spatial overlap of arrowtooth flounder (predator) and juvenile Alaska walleye pollock (prey, age-1) in the eastern Bering Sea. Our analyses indicate that (1) flounder abundance and temperature are key variables dictating the strength of flounder and pollock overlap, (2) changes in the magnitude of overlap may be largely driven by density-dependent habitat selection of flounder, and (3) species overlap is negatively correlated to juvenile pollock recruitment when flounder biomass is high. Overall, our findings suggest that continued increases in flounder abundance coupled with the predicted long-term warming of ocean temperatures could have important implications for the predator-prey dynamics of arrowtooth flounder and juvenile pollock. The approach used in this study is valuable for identifying potential consequences of climate variability and exploitation on species spatial dynamics and interactions in many marine ecosystems.  相似文献   

16.
Latitudinal gradients in the strength of biotic interactions have long been proposed, but empirical evidence for the expectation of more intense predation, herbivory and competition at low latitudes has been mixed. Here, we use a meta‐analysis to test the prediction that predation pressure on sea urchins, a group of consumers with a particularly strong influence on community structure in the world's oceans, is strongest in the tropics. We then examine which biotic and abiotic factors best correlate with biogeographic and within habitat patterns in sea urchin responses to predation. Consistent with expectations, predator impacts on sea urchins were highest in tropical coral reefs and decreased towards the poles in rocky reef habitats (> 25° absolute latitude). However, latitude and temperature were weakly correlated with effect sizes, and the strongest predictor of predator impacts was sea urchin species. This suggests an important role of prey identity (i.e. traits including behaviour, physical, and chemical defences) rather than large scale abiotic factors in determining variation in interaction strengths. Ecosystem‐shaping sea urchins such as Tripneustes gratilla, Diadema savignyi and Centrostephanus rodgersii were strongly impacted by consumers, indicating a tight coupling between predators of these species and their boom and bust prey. Anthropogenic activities such as over‐fishing, climate change and habitat destruction are causing rapid environmental change, and understanding how predation pressure varies with temperature, across habitats and among prey species, will aid in predicting the likelihood of ecosystem wide effects (via trophic cascades).  相似文献   

17.
Instantaneous growth rates of 0‐group European flounder, Platichthys flesus, obtained from two 9‐day enclosure experiments were used to assess the relative quality of three eelgrass and three bare sand habitats in the Bay of Aarhus, Denmark. Measurements of temperature, dissolved oxygen, salinity, sediment structure and biomass of benthic macrofauna were made during the experiments. Gut content analysis was performed after retrieval of the fish. Growth rates of flounder at two bare sand sites were higher or equal to growth rates at the three eelgrass sites, and at a muddy bare sand site in both experiments. The variation in gut fullness of flounder between vegetated and bare sand sites followed the pattern observed in growth rates, but diverged from the spatial variation in prey abundance, which indicates that there were differences in the feeding efficiency between sites. Overall, habitat complexity, i.e. the presence or absence of vegetation seems to be the most important factor determining the growth rates and, by corollary, habitat quality for juvenile European flounder in the Bay of Aarhus.  相似文献   

18.
Conspecific prey individuals often exhibit persistent differences in behavior (i.e., animal personality) and consequently vary in their susceptibility to predation. How this form of selection varies across environmental contexts is essential to predicting ecological and evolutionary dynamics, yet remains currently unresolved. Here, we use three separate predator–prey systems (sea star–snail, wolf spider–cricket, and jumping spider–cricket) to independently examine how habitat structural complexity influences the selection that predators impose on prey behavioral types. Prior to conducting staged predator–prey interaction encounters, we ran prey individuals through multiple behavioral assays to determine their average activity level. We then allowed individual predators to interact with groups of prey in either open or structurally complex habitats and recorded the number and individual identity of prey that were eaten. Habitat complexity had no effect on overall predation rates in any of the three predator–prey systems. Despite this, we detected a pervasive interaction between habitat structure and individual prey activity level in determining individual prey survival. In open habitats, all predators imposed strong selection on prey behavioral types: sea stars preferentially consumed sedentary snails, while spiders preferentially consumed active crickets. Habitat complexity dampened selection within all three systems, equalizing the predation risk that active and sedentary prey faced. These findings suggest a general effect of habitat complexity that reduces the importance of prey activity level in determining individual predation risk. We reason this occurs because activity level (i.e., movement) is paramount in determining risk within open environments, whereas in complex habitats, other behavioral traits (e.g., escape ability to a refuge) may take precedence.  相似文献   

19.
Alto BW  Griswold MW  Lounibos LP 《Oecologia》2005,146(2):300-310
Studies in aquatic systems have shown that habitat complexity may provide refuge or reduce the number of encounters prey have with actively searching predators. For ambush predators, habitat complexity may enhance or have no effect on predation rates because it conceals predators, reduces prey detection by predators, or visually impairs both predators and prey. We investigated the effects of habitat complexity and predation by the ambush predators Toxorhynchites rutilus and Corethrella appendiculata on their mosquito prey Aedes albopictus and Ochlerotatus triseriatus in container analogs of treeholes. As in other ambush predator-prey systems, habitat complexity did not alter the effects of T. rutilus or C. appendiculata whose presence decreased prey survivorship, shortened development time, and increased adult size compared to treatments where predators were absent. Faster growth and larger size were due to predator-mediated release from competition among surviving prey. Male and female prey survivorship were similar in the absence of predators, however when predators were present, survivorship of both prey species was skewed in favor of males. We conclude that habitat complexity is relatively unimportant in shaping predator-prey interactions in this treehole community, where predation risk differs between prey sexes.  相似文献   

20.
Environmental light conditions are of general importance in predator–prey interactions. In aquatic systems, prey individuals experience different levels of predation risk depending on the properties of the visual environment, such as structural complexity or water transparency. To reduce the threat of predation, prey should move to habitats providing better protection against visual predators. We studied the role of UV wavelengths in habitat choice behaviour under predation risk in a fish, the three-spined stickleback (Gasterosteus aculeatus) that uses UV signals in different contexts of intraspecific communication. In a laboratory experiment sticklebacks were exposed to a predatory threat and given the choice between two escape habitats, one providing full-spectrum conditions including UV light (UV+) and one without UV wavelengths (UV−). Fish from two rearing treatments were tested, one group had been raised under natural lighting conditions (UV+), the other group under UV-deficient lighting conditions (UV−). Sticklebacks from the UV+ group preferred the UV− habitat as a refuge which suggests that predator avoidance behaviour is UV-related in this species with UV− conditions presumably being advantageous for prey fish. However, individuals from the UV− treatment group were equally attracted to both presented light habitats. It is possible that these fish could not discriminate between the two light habitats due to physiological limitations caused by their rearing conditions. Further control trials with neutral-density filters revealed that the UV− habitat preference of UV+ fish in the main experiment was rather not influenced by a difference in achromatic brightness between the UV+ and UV− habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号