首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim The Arctic Ocean is one of the last near‐pristine regions on Earth, and, although human activities are expected to impact on Arctic ecosystems, we know very little about baseline patterns of Arctic Ocean biodiversity. This paper aims to describe Arctic Ocean‐wide patterns of benthic biodiversity and to explore factors related to the large‐scale species diversity patterns. Location Arctic Ocean. Methods We used large ostracode and foraminiferal datasets to describe the biodiversity patterns and applied comprehensive ecological modelling to test the degree to which these patterns are potentially governed by environmental factors, such as temperature, productivity, seasonality, ice cover and others. To test environmental control of the observed diversity patterns, subsets of samples for which all environmental parameters were available were analysed with multiple regression and model averaging. Results Well‐known negative latitudinal species diversity gradients (LSDGs) were found in metazoan Ostracoda, but the LSDGs were unimodal with an intermediate maximum with respect to latitude in protozoan foraminifera. Depth species diversity gradients were unimodal, with peaks in diversity shallower than those in other oceans. Our modelling results showed that several factors are significant predictors of diversity, but the significant predictors were different among shallow marine ostracodes, deep‐sea ostracodes and deep‐sea foraminifera. Main conclusions On the basis of these Arctic Ocean‐wide comprehensive datasets, we document large‐scale diversity patterns with respect to latitude and depth. Our modelling results suggest that the underlying mechanisms causing these species diversity patterns are unexpectedly complex. The environmental parameters of temperature, surface productivity, seasonality of productivity, salinity and ice cover can all play a role in shaping large‐scale diversity patterns, but their relative importance may depend on the ecological preferences of taxa and the oceanographic context of regions. These results suggest that a multiplicity of variables appear to be related to community structure in this system.  相似文献   

2.
Several seamounts are known as ‘oases’ of high abundances and biomass and hotspots of biodiversity in contrast to the surrounding deep-sea environments. Recent studies have indicated that each single seamount can exhibit a high intricate habitat turnover. Information on alpha and beta diversity of single seamount is needed in order to fully understand seamounts contribution to regional and global biodiversity. However, while most of the seamount research has been focused on summits, studies considering the whole seamount structure are still rather poor. In the present study we analysed abundance, biomass and diversity of nematodes collected in distinct physiographic sites and surrounding sediments of the Condor Seamount (Azores, North-East Atlantic Ocean). Our study revealed higher nematode biomass in the seamount bases and values 10 times higher in the Condor sediments than in the far-field site. Although biodiversity indices did not showed significant differences comparing seamount sites and far-field sites, significant differences were observed in term of nematode composition. The Condor summit harboured a completely different nematode community when compared to the other seamount sites, with a high number of exclusive species and important differences in term of nematode trophic diversity. The oceanographic conditions observed around the Condor Seamount and the associated sediment mixing, together with the high quality of food resources available in seamount base could explain the observed patterns. Our results support the hypothesis that seamounts maintain high biodiversity through heightened beta diversity and showed that not only summits but also seamount bases can support rich benthic community in terms of standing stocks and diversity. Furthermore functional diversity of nematodes strongly depends on environmental conditions link to the local setting and seamount structure. This finding should be considered in future studies on seamounts, especially in view of the potential impacts due to current and future anthropogenic threats.  相似文献   

3.
Long-term change in benthic community structure may have significant impact on ecosystem functions. Accelerating climate change and increased human activity in the Arctic suggest that benthic communities in this region may be expected to exhibit change over time scales coinciding with these potential stressors. In 2000 and 2001, we resampled the soft-sediment communities of van Mijenfjord, a semi-closed (silled) fjord system on the west coast of Spitsbergen, following initial surveys in 1980. Multivariate community analyses and biodiversity indices identified distinct regions within the fjord. The communities characteristic of two regions were very similar to those sampled 20 years earlier. Regions corresponded with fjord basins and to community patterns and diversity gradients identified for many other Arctic fjords. Benthic communities in open (unsilled) fjords in the area have recently been shown to respond to decadal scale climatic fluctuation. We suggest that semi-closed fjords may be less susceptible to this type of environmental variability, and that communities are shaped by an interaction of impacts from local topography, glacial runoff, local circulation patterns, and faunal life-history traits. Open and closed fjords may respond to climatic warming trends in different ways, resulting in a subsequent divergence in spatial patterns of resident communities.  相似文献   

4.
Hasemann C  Soltwedel T 《PloS one》2011,6(12):e29152
The unexpected high species richness of deep-sea sediments gives rise to the questions, which processes produce and maintain diversity in the deep sea, and at what spatial scales do these processes operate? The idea of a small-scale habitat structure at the deep-sea floor provides the background for this study. At small scales biogenic structures create a heterogeneous environment that influences the structure of the surrounding communities and the dynamics of the meiobenthic populations. As an example for biogenic structures, small deep-sea sponges (Tentorium semisuberites Schmidt 1870) and their sedimentary environment were investigated for small-scale distribution patterns of benthic deep-sea nematodes. Sampling was carried out with the remotely operated vehicle Victor 6000 at the Arctic deep-sea observatory HAUSGARTEN. In order to investigate nematode community patterns sediment cores around three small sponges and corresponding control cores were analysed. A total of approx. 5800 nematodes were identified. The comparison of the nematode communities from sponge and control samples indicated an influence of the biogenic structure “sponge” on diversity patterns and habitat heterogeneity. The increased number of nematode species and functional groups found in the sediments around the sponges suggest that on a small scale the sponge acts as a gradient and creates a more divers habitat structure. The nematode community from the sponge sediments shows a greater taxonomic variance and species richness together with lower relative abundances of the species compared to those from control sediments. Obviously, the more homogeneous habitat conditions of the control sediments offer less micro-habitats than the sediments around the sponges. This seems to reduce the number of functional groups and species coexisting in the control sediments.  相似文献   

5.
1. Additive partitioning of three measures of diversity (species richness, Shannon's diversity index H and Simpson's diversity D) was used to study the relationship between local and regional diversity of benthic macroinvertebrate communities of boreal lakes (littoral habitats) and streams (riffle habitats) across three spatial scales (sampling sites, ecoregions and biogeographic regions). 2. Alpha (α) and beta (β) diversity are defined as within‐habitat and between‐habitat diversity, respectively. According to the concept of additive partitioning, diversity can be partitioned across multiple spatial scales such that the total (γ) diversity on one spatial scale becomes within‐habitat (α) diversity at the next higher scale. Hence, the total diversity at one scale is determined by the α diversity and the between‐habitat diversity (β) at the next lower scale. Consequently, one of the advantages of additive partitioning is that it is possible to study simultaneously β diversity and the regional‐local species relationship and the scale dependence of α and β components. 3. For both lakes and streams α diversity was low for sites and ecoregions, whereas β diversity was high, indicating that among‐site factors are important in describing the variability among the lakes and streams studied here. 4. Weak, albeit significant, evidence was found for regional and local species saturation patterns. Multiple stepwise regression indicated that local processes might be more important in structuring lake‐littoral and stream‐riffle species assemblages than regional processes. From these results we conclude that environmental heterogeneity may act as an important factor contributing to species coexistence, resulting in the observed saturation patterns. 5. Our study supports the use of additive partitioning for identifying specific patterns of macroinvertebrate diversity on multiple spatial scales and the underlying processes generating these patterns. This information is needed to improve understanding of the relation between patterns and processes affecting (decreasing) trends in aquatic biodiversity.  相似文献   

6.
Soil biodiversity has been recognized as a key feature of ecosystem functioning and stability. However, soil biodiversity is strongly impaired by agriculture and relatively little is known on how and at what spatial and temporal scales soil biodiversity is restored after the human disturbances have come to an end. Here, a multi-scale approach was used to compare diversity patterns of soil mites and nematodes at four stages (early, mid, late, reference site) along a secondary succession chronosequence from abandoned arable land to heath land. In each field four soil samples were taken during four successive seasons. We determined soil diversity within samples (α-diversity), between samples (β-diversity) and within field sites (γ-diversity). The patterns of α- and γ-diversity developed similarly along the chronosequence for oribatid mites, but not for nematodes. Nematode α-diversity was highest in mid- and late-successional sites, while γ-diversity was constant along the chronosequence. Oribatid mite β-diversity was initially high, but decreased thereafter, whereas nematode β-diversity increased when succession proceeded; indicating that patterns of within-site heterogeneity diverged for oribatid mites and nematodes. The spatio-temporal diversity patterns after land abandonment suggest that oribatid mite community development depends predominantly on colonization of new taxa, whereas nematode community development depends on shifts in dominance patterns. This would imply that at old fields diversity patterns of oribatid mites are mainly controlled by dispersal, whereas diversity patterns of nematodes are mainly controlled by changing abiotic or biotic soil conditions. Our study shows that the restoration of soil biodiversity along secondary successional gradients can be both scale- and phylum-dependent.  相似文献   

7.
Aims Despite wide consensus that ecological patterns and processes should be studied at multiple spatial scales, the temporal component of diversity variation has remained poorly examined. Specifically, rare species may exhibit patterns of diversity variation profoundly different from those of dominant taxa. Location Southern Finland. Methods We used multiplicative partitioning of true diversities (species richness, Shannon diversity) to identify the most important scale(s) of variation of benthic macroinvertebrate communities across several hierarchical scales, from individual samples to multiple littorals, lakes and years. We also assessed the among‐scale variability of benthic macroinvertebrate community composition by using measures of between‐ and within‐group distances at hierarchical scales. Results On average, a single benthic sample contained 23% of the total regional macroinvertebrate species pool. For both species richness and Shannon diversity, beta‐diversity was clearly the major component of regional diversity, with within‐littoral beta‐diversity (β1) being the largest component of gamma‐diversity. The interannual component of total diversity was small, being almost negligible for Shannon index. Among‐sample (within‐littoral) diversity was related to variation of substratum heterogeneity at the same scale. By contrast, only a small proportion of rare taxa was found in an average benthic sample. Thus, dominant species among lakes and years were about the same, whereas rare species were mostly detected in a few benthic samples in one lake (or year). For rare species, the temporal component of diversity was more important than spatial turnover at most scales. Main conclusions While individual species occurrences and abundances, particularly those of rare taxa, may vary strongly through space and time, patterns of dominance in lake littoral benthic communities are highly predictable. Consequently, many rare species will be missed in temporally restricted samples of lake littorals. In comprehensive biodiversity surveys, interannual sampling of littoral macroinvertebrate communities is therefore needed.  相似文献   

8.
Diversity at hydrothermal vents   总被引:2,自引:0,他引:2  
Aim To describe patterns of hydrothermal vent community diversity and dispersion at the intersegment scale (> 100 km). Location The area discussed is an approximately 170 km portion of the Juan de Fuca Ridge, a mid‐ocean ridge in the north‐east Pacific Ocean. Methods Samples of benthic invertebrates from hydrothermal vents on three segments of the Juan de Fuca are examined for community characteristics such as diversity, abundance and distribution. Results Species richness (55 species) and evenness are low. If the macrofauna only are considered, species richness is about 30% lower than when meiofauna are also considered. The geometric series describes the species‐abundance distribution. The relationship between vent species’ distribution and abundance is significantly positive (r2 = 0.818; P < 0.001). Alpha diversity is lower in patchy habitat than continuous habitat and gamma diversity is similar for both habitat types. Beta diversity is higher in patchy habitat. Local diversity is linearly related to regional diversity. Main conclusions Species richness is comparable to other highly disturbed systems. The geometric series species abundance model implies some degree of niche pre‐emption in the vent community and is consistent with the suggestion that the geometric series distribution can be found in species‐poor environments that experience harsh conditions and are structured by relatively few environmental factors. Species distribution and abundance are highly correlated. The regional species pool affects local vent diversity. Vent diversity studies should be conducted on at least the ridge scale.  相似文献   

9.
Exploring and describing biodiversity and the mechanisms structuring it is fundamental to advancing ecology. This is particularly pertinent in understudied biogeographical regions, such as the Afrotropics, that are characterised by strong seasonal climatic shifts. We investigated the characteristics of stream biodiversity in the Niger Delta region of Nigeria, a tropical biodiversity hotspot, by examining patterns in 20 stream invertebrate communities across both the wet and dry seasons. For this, we took a multi-faceted approach accounting for the three levels of biodiversity (α, β and γ), including partitioning the nestedness and turnover components of β diversity, regional occupancy-abundance patterns, niche characteristics, and the environmental drivers of community structure. α diversity was low in these streams, with strong turnover between sites leading to high β diversity contributing to regional biodiversity, but there was little variation in communities between seasons. The proportion of sites occupied by taxa declined with increasing niche position, and decreasing niche breadth. Occupancy was predicted well by a combination of these two factors (niche position and breadth), but not mean local abundance, as the abundance-occupancy link was an upper-limit unimodal relationship. On average, community structure was linked more strongly to environmental variables in the wet season. Our findings demonstrate the clear role of spatial, but not temporal, turnover in assemblages, which likely reflects the environmental heterogeneity of this region. This is further supported by the fact that regional occupancy was mostly related to niche characteristics, particularly niche position. We emphasise the importance of continued basic and applied ecological work in this important biogeographic region to enable better protection of its biodiversity.  相似文献   

10.
Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436–725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400–700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the structure, dynamics and climate-sensitivity of WAP subpolar fjord ecosystems.  相似文献   

11.
In many ecosystems, the factors that determine landscape-scale community structure of soil nematodes are poorly understood. We were interested in discovering whether deterministic or stochastic factors dominate nematode community variation. We used a novel metagenetic approach to investigate variation in nematode community structure in the Fynbos vegetation of South Africa. We compared 23 samples of soil nematode communities from five different Fynbos landscapes. Nematode DNA was 454-pyrosequenced for the 18S rRNA gene. We investigated the community structure, diversity, and the relative role of both deterministic (niche-based) and neutral processes may play in delimiting the nematode phylogenetic community structure in different Fynbos vegetation types. Nematode diversity showed no relationship to any measured soil parameter. The phylogenetic signal showed that more closely related types of nematodes in the Fynbos tended to co-occur more often than would be expected by chance, demonstrating that (a) closely related lineages occupy similar niches spatially and (b) community variation is influenced more by determinism than stochasticity. The standardised beta mean nearest taxon distance (ses.βMNTD) index showed no association with vegetation type. Both ses.NTI (nearest taxon index) and ses.βMNTD deviated significantly from null models, indicating that deterministic processes were important in the assembly of nematode communities. Furthermore, at local scale, the ses.NTI was significantly higher than null expectations, indicating that co-occurrence of related nematode lineages is determined by the differences in environmental conditions across the sites. We conclude that in the Fynbos there is niche overlap between closely related types of nematodes, that nematode speciation tends to occur conservatively into closely related niches, and that the phylogenetic community structure reveals that deterministic (rather than stochastic) processes are more important in delimiting the community assembly.  相似文献   

12.

Aim

We studied molecular eukaryotic biodiversity patterns in shallow hard-bottom Antarctic benthic communities using community DNA metabarcoding. Polar ecosystems are extremely exposed to climate change, and benthic macroinvertebrate communities have demonstrated rapid response to a range of natural and anthropogenic pressures. However, these rich and diverse ecosystems are poorly studied, revealing how little is known about the biodiversity of the Antarctic benthos associated with hard-bottom habitats.

Location

West Antarctic Peninsula and South Shetland Islands.

Methods

Using data collected in seven localities along the western Antarctic Peninsula, we calculated spatial patterns of alpha and beta diversities. Furthermore, we analysed temporal changes in benthic composition in one location (Deception Island) over 3 years. We calculated the temporal alpha and beta diversities to reveal changes in this community over time.

Results

We obtained a final list of 2057 molecular operational taxonomic units. We found significant differences in benthic community composition between localities and among years. Our dataset revealed a total of 10 different kingdom-level lineages and 34 different phyla in the samples. The most diverse phylum was Arthropoda, followed by Bacillariophyta, and Annelida, while the highest relative read abundances belonged to Annelida, Porifera and Echinodermata. Benthic community compositions changed between 2016 and 2018 in Deception Island, and decreasing species richness was the main component of temporal beta diversity.

Main Conclusions

Direct sampling methods are required for monitoring these complex communities. Informative biodiversity patterns can be retrieved even though most of the benthic biodiversity found in Antarctic habitats is yet to be taxonomically described and barcoded. Hard-bottom assemblages exhibit high spatial variability and heterogeneity, not related to depth, which represent a huge challenge for large-scale studies in the Southern Ocean. Local patchiness and structure within these communities are probably a consequence of a combination of several biotic and abiotic factors (i.e. ice disturbance, food supply and competition).  相似文献   

13.
14.
Coral reefs are the most biodiverse marine ecosystem and one of the most threatened by global climate change impacts. The vast majority of diversity on reefs is comprised of small invertebrates that live within the reef structure, termed the cryptofauna. This component of biodiversity is hugely understudied, and many species remain undescribed. This study represents a rare analysis of assembly processes structuring a distinct group of cryptofauna, the Palaemonidae, in the Chagos Archipelago, a reef ecosystem under minimal direct human impacts in the central Indian Ocean. The Palaemonidae are a diverse group of Caridae (infraorder of shrimps) that inhabit many different niches on coral reefs and are of particular interest because of their varied habitat associations. Phylogenetic and trait diversity and phylogenetic signal were used to infer likely drivers of community structure. The mechanisms driving palaemonid community assembly and maintenance in the Chagos Archipelago showed distinct spatial patterns. At local scales, among coral colonies and among reefs fringing individual atolls, significant trait, and phylogenetic clustering patterns suggest environmental filtering may be a dominant ecological process driving Palaemonidae community structure, although local competition through equalizing mechanisms may also play a role in shaping the local community structure. Importantly, we also tested the robustness of phylogenetic diversity to changes in evolutionary information as multi‐gene phylogenies are resource intensive and for large families, such as the Palaemonidae, are often incomplete. These tests demonstrated a very modest impact on phylogenetic community structure, with only one of the four genes (PEPCK gene) in the phylogeny affecting phylogenetic diversity patterns, which provides useful information for future studies on large families with incomplete phylogenies. These findings contribute to our limited knowledge of this component of biodiversity in a marine locality as close to undisturbed by humans as can be found. It also provides a rare evaluation of phylogenetic diversity methods.  相似文献   

15.
Microbial methylation processes in sediment are an important source of toxic monomethylmercury (MMHg) to aquatic ecosystems. Although bioturbation activities (feeding, digging of galleries, excavations, bioirrigation) by benthic fauna are known to affect many biogeochemical processes, their influence on benthic MMHg production is poorly understood. We investigated the effect of benthic fauna on the microbial production of MMHg in sediments on the continental shelf of the northwest Atlantic Ocean in September 2009. Replicate cores of sieved (control) and unaltered sediment containing native macrofauna were incubated to examine the influence of benthic macrofauna on net MMHg production, potential gross rates of Hg methylation, sediment reworking, dissolved oxygen and organic carbon concentrations, and microbial metabolic activities. The presence of macrofauna stimulated aerobic microbial respiration and net MMHg production, but had no observed effect on short-term gross rates of Hg methylation. This suggests that bioturbation may promote net MMHg production by inhibiting demethylating microorganisms, although overall community metabolism was increased. Results from this work emphasize the need to enhance our knowledge and understanding of the interactions among benthic fauna, microorganisms, and geochemistry in affecting MMHg production.  相似文献   

16.
Taxonomic sufficiency (TS) has been used in impact assessment studies of various pollution effects on marine benthic communities and found appropriate to identify the effects of pollution on marine communities. Cost, in terms of the expertise and time needed to identify organisms, increases with the level of taxonomic accuracy. Recently, TS has been adopted to study spatial patterns of macrobenthic community structure. In order to accept TS as a routine approach in wider benthic studies, it needs to be proved valid for various taxa and in geographically different areas. The present study investigates the value of TS in meiofaunal nematodes by analyzing an extensive data set based on samples collected from a wide geographical area covering a large depth gradient. For this study, samples were collected from every degree square of the western Indian continental shelf (7°–22°N latitudes). Our high resolution data showed that with increase in depth, nematode species richness and diversity decreased and communities showed significant variation between shallow and deeper waters. The present study tests whether lower taxonomic resolution nematode data can explain community shifts along a depth gradient in a similar way to species level data from the same data set. Meiofauna have often been neglected from benthic studies, and most attention has been given to macrofauna. This is mainly due to the difficulty in the taxonomic identification of meiofauna. The results of this study based on univariate and multivariate analyses support the use of family level data of nematodes to explain some aspects of depth variation in a similar way to species level data.  相似文献   

17.
Research so far has provided little evidence that benthic biogeochemical cycling is affected by ocean acidification under realistic climate change scenarios. We measured nutrient exchange and sediment community oxygen consumption (SCOC) rates to estimate nitrification in natural coastal permeable and fine sandy sediments under pre-phytoplankton bloom and bloom conditions. Ocean acidification, as mimicked in the laboratory by a realistic pH decrease of 0.3, significantly reduced SCOC on average by 60% and benthic nitrification rates on average by 94% in both sediment types in February (pre-bloom period), but not in April (bloom period). No changes in macrofauna functional community (density, structural and functional diversity) were observed between ambient and acidified conditions, suggesting that changes in benthic biogeochemical cycling were predominantly mediated by changes in the activity of the microbial community during the short-term incubations (14 days), rather than by changes in engineering effects of bioturbating and bio-irrigating macrofauna. As benthic nitrification makes up the gross of ocean nitrification, a slowdown of this nitrogen cycling pathway in both permeable and fine sediments in winter, could therefore have global impacts on coupled nitrification-denitrification and hence eventually on pelagic nutrient availability.  相似文献   

18.
19.
Recent research on Arctic benthos: common notions need to be revised   总被引:8,自引:7,他引:1  
Increased public awareness of the global significance of polar regions and opening of the Russian Arctic to foreign researchers have led to a pronounced intensification of benthic research in Arctic seas. The wealth of information gathered in these efforts has markedly enhanced our knowledge on the Arctic benthos. While some scientific concepts have been corroborated by the novel findings (e.g., low endemism and high faunistic affinity to northern Atlantic assemblages), other common notions need to be revised, particularly with regard to the often-cited differences between Arctic seas and the Southern Ocean. It has been demonstrated that benthos assemblages vary broadly in diversity between Arctic regions and that, hence, the idea of a consistently poor Arctic benthos—being in stark contrast to the rich Antarctic bottom fauna—is an undue overgeneralization. In terms of biogeographic diversity, both Arctic and Antarctic waters seem to be characterized by intermediate species richness. Levels of disturbance—a major ecological agent known to heavily affect benthic diversity and community structure—have been assumed to be relatively high in the Arctic but exceptionally low in the Southern Ocean. The discovery of the great role of iceberg scouring in Antarctic shelf ecosystems, which has largely been overlooked in the past, calls for a reconsideration of this notion. The novel data clearly demonstrate that there are marked differences in geographical and environmental setting, impact of fluvial run-off, pelagic production regime, strength of pelago–benthic coupling and, hence, food supply to the benthos among the various Arctic seas, impeding the large-scale generalization of local and regional findings. Field evidence points to the great significance of meso-scale features in hydrography and ice cover (marginal ice zones, polynyas, and gyres) as ‘hot spots’ of tight pelago–benthic coupling and, hence, high benthic biomass. In contrast, the importance of terrigenic organic matter discharged to the Arctic seas through fluvial run-off as an additional food source for the benthos is still under debate. Studies on the partitioning of energy flow through benthic communities strongly suggest that megafauna has to be adequately considered in overall benthic energy budgets and models of carbon cycling, particularly in Arctic shelf systems dominated by abundant echinoderm populations. Much progress has been made in the scientific exploration of the deep ice-covered Arctic Ocean. There is now evidence that it is one order of magnitude more productive than previously thought. Therefore, the significance of shelf–basin interactions, i.e., the importance of excess organic carbon exported from productive shelves to the deep ocean, is still debated and, hence, a major topic of on-going research. Another high-priority theme of current/future projects are the ecological consequences of the rapid warming in the Arctic. Higher water temperatures, increased fluvial run-off and reduced ice cover will give rise to severe ecosystem changes, propagating through all trophic levels. It is hypothesized that there would be a shift in the relative importance of marine biota in the overall carbon and energy flux, ultimately resulting in a switch from a ‘sea-ice algae–benthos’ to a ‘phytoplankton–zooplankton’ dominance.  相似文献   

20.
The protist assemblage in the central Arctic Ocean is scarcely surveyed despite them being the major primary producers. Elucidating their response to changing environmental variables requires an a priori analysis of their current diversity, including abundant and rare species. In late summer 2011, samples were collected during the ARK-XXVI/3 expedition (RV Polarstern) to study Arctic protist community structures, by implementation of automated ribosomal intergenic spacer analysis (ARISA) and 454-pyrosequencing. Protist assemblages were related to the hydrology and environmental variables (temperature, salinity, ice coverage, nitrate, phosphate, and silicate). The abundant (≥1 %) biosphere and rare (<1 %) biosphere were considered separately in the diversity analysis in order to reveal their mutual relationships. A relation between hydrology and protist community structure was highly supported by ARISA and partially by 454-pyrosequencing. Sea ice showed a stronger influence on the local community structure than nutrient availability, making statements on the water mass influence more difficult. Dinoflagellates (Syndiniales), chlorophytes (Micromonas spp.), and haptophytes (Phaeocystis spp.) were important contributors to the abundant biosphere, while other dinoflagellates and stramenopiles dominated the rare biosphere. No significant correlation was found between the abundant and rare biosphere. However, relative contributions of major taxonomic groups revealed an unexpected stable community structure within the rare biosphere, indicating a potential constant protist reservoir. This study provides a first molecular survey of protist diversity in the central Arctic Ocean, focusing on the diversity and distribution of abundant and rare protists according to the environmental conditions, and can serve as baseline for future analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号