共查询到20条相似文献,搜索用时 0 毫秒
1.
Amphibian metamorphosis is accompanied by extensive intestinal remodeling. This process, mediated by thyroid hormone (TH) and its nuclear receptors, affects every cell type. Gut remodeling in Xenopus laevis involves epithelial and mesenchymal proliferation, smooth muscle thickening, neuronal aggregation, formation of intestinal folds, and shortening of its length by 75%. Transgenic tadpoles expressing a dominant negative TH receptor (TRDN) controlled by epithelial-, fibroblast-, and muscle-specific gene promoters were studied. TRDN expression in the epithelium caused abnormal development of virtually all cell types, with froglet guts displaying reduced intestinal folds, thin muscle and mesenchyme, absence of neurons, and reduced cell proliferation. TRDN expression in fibroblasts caused abnormal epithelia and mesenchyme development, and expression in muscle produced fewer enteric neurons and a reduced inter-muscular space. Gut shortening was inhibited only when TRDN was expressed in fibroblasts. Gut remodeling results from both cell-autonomous and cell-cell interactions. 相似文献
2.
Thyroid hormone (T3) influences cell proliferation, death and differentiation during development of the central nervous system (CNS). Hormone action is mediated by T3 receptors (TR) of which there are two subtypes, TRα and TRβ. Specific roles for TR subtypes in CNS development are poorly understood. We analyzed involvement of TRα and TRβ in neural cell proliferation during metamorphosis of Xenopus laevis. Cell proliferation in the ventricular/subventricular neurogenic zones of the tadpole brain increased dramatically during metamorphosis. This increase was dependent on T3 until mid-prometamorphosis, after which cell proliferation decreased and became refractory to T3. Using double labeling fluorescent histochemistry with confocal microscopy we found TRα expressed throughout the tadpole brain, with strongest expression in proliferating cells. By contrast, TRβ was expressed predominantly outside of neurogenic zones. To corroborate the histochemical results we transfected living tadpole brain with a Xenopus TRβ promoter-EGFP plasmid and found that most EGFP expressing cells were not dividing. Lastly, treatment with the TRα selective agonist CO23 increased brain cell proliferation; whereas, treatment with the TRβ-selective agonists GC1 or GC24 did not. Our findings support the view that T3 acts to induce cell proliferation in the tadpole brain predominantly, if not exclusively, via TRα. 相似文献
3.
During the climax of amphibian metamorphosis many tadpole organs remodel. The different remodeling strategies are controlled by thyroid hormone (TH). The liver, skin, and tail fibroblasts shut off tadpole genes and activate frog genes in the same cell without DNA replication. We refer to this as “gene switching”. In contrast, the exocrine pancreas and the intestinal epithelium dedifferentiate to a progenitor state and then redifferentiate to the adult cell type. Tadpole and adult globin are not present in the same cell. Switching from red cells containing tadpole-specific globin to those with frog globin in the liver occurs at a progenitor cell stage of development and is preceded by DNA replication. Red cell switching is the only one of these remodeling strategies that resembles a stem cell mechanism. 相似文献
4.
Because of their central role in the regulation of energy-transduction, mitochondria, the major site of oxidative processes within the cell, are considered a likely subcellular target for the action that thyroid hormones exert on energy metabolism. However, the mechanism underlying the regulation of basal metabolic rate (BMR) by thyroid hormones still remains unclear. It has been suggested that these hormones might uncouple substrate oxidation from ATP synthesis, but there are no clear-cut data to support this idea. Two iodothyronines have been identified as effectors of the actions of thyroid hormones on energy metabolism: 3',3,5-triiodo-L-thyronine (T3) and 3,5-diiodo-L-thyronine (T2). Both have significant effects on BMR, but their mechanisms of action are not identical. T3 acts on the nucleus to influence the expression of genes involved in the regulation of cellular metabolism and mitochondria function; 3,5-T2, on the other hand, acts by directly influencing the mitochondrial energy-transduction apparatus. A molecular determinant of the effects of T3 could be uncoupling protein-3 (UCP-3), while the cytochrome-c oxidase complex is a possible target for 3,5-T2. In conclusion, it is likely that iodothyronines regulate energy metabolism by both short-term and long-term mechanisms, and that they act in more than one way in affecting mitochondrial functions. 相似文献
5.
Alexander Buras Loxley Battle Evan Landers Tien Nguyen Nandini Vasudevan 《Hormones and behavior》2014
Thyroid hormone levels are implicated in mood disorders in the adult human but the mechanisms remain unclear partly because, in rodent models, more attention has been paid to the consequences of perinatal hypo and hyperthyroidism. Thyroid hormones act via the thyroid hormone receptor (TR) α and β isoforms, both of which are expressed in the limbic system. TR's modulate gene expression via both unliganded and liganded actions. Though the thyroid hormone receptor (TR) knockouts and a transgenic TRα1 knock-in mouse have provided us valuable insight into behavioral phenotypes such as anxiety and depression, it is not clear if this is because of the loss of unliganded actions or liganded actions of the receptor or due to locomotor deficits. We used a hypothyroid mouse model and supplementation with tri-iodothyronine (T3) or thyroxine (T4) to investigate the consequences of dysthyroid hormone levels on behaviors that denote anxiety. Our data from the open field and the light–dark transition tests suggest that adult onset hypothyroidism in male mice produces a mild anxiogenic effect that is possibly due to unliganded receptor actions. T3 or T4 supplementation reverses this phenotype and euthyroid animals show anxiety that is intermediate between the hypothyroid and thyroid hormone supplemented groups. In addition, T3 but not T4 supplemented animals have lower spine density in the CA1 region of the hippocampus and in the central amygdala suggesting that T3-mediated rescue of the hypothyroid state might be due to lower neuronal excitability in the limbic circuit. 相似文献
6.
Insulin-producing β-cells are present as single cells or in small clusters distributed throughout the pancreas of the Xenopus laevis tadpole. During metamorphic climax when the exocrine pancreas dedifferentiates to progenitor cells, the β-cells undergo two changes. Insulin mRNA is down regulated at the beginning of metamorphic climax (NF62) and reexpressed again near the end of climax. Secondly, the β-cells aggregate to form islets. During climax the increase in insulin cluster size is not caused by cell proliferation or by acinar-to-β-cell transdifferentiation, but rather is due to the aggregation of pre-existing β-cells. The total number of β-cells does not change during the 8 days of climax. Thyroid hormone (TH) induction of premetamorphic tadpoles causes an increase in islet size while prolonged treatment of tadpoles with the goitrogen methimazole inhibits this increase. Expression of a dominant negative form of the thyroid hormone receptor (TRDN) driven by the elastase promoter not only protects the exocrine pancreas of a transgenic tadpole from TH-induced dedifferentiation but also prevents aggregation of β-cells at climax. These transgenic tadpoles do however undergo normal loss and resynthesis of insulin mRNA at the same stage as controls. In contrast transgenic tadpoles with the same TRDN transgene driven by an insulin promoter do not undergo down regulation of insulin mRNA, but do aggregate β-cells to form islets like controls. These results demonstrate that TH controls the remodeling of β-cells through cell-cell interaction with dedifferentiating acinar cells and a cell autonomous program that temporarily shuts off the insulin gene. 相似文献
7.
8.
Thyroid hormones can increase energy expenditure and stimulate basal thermogenesis by lowering metabolic efficiency. In the present study, we examined the effects of thyroid hormones on basal heat production as well as on several physiological and biochemical measures indicative of thermogenic capacity to test our hypothesis that thyroid hormones stimulate increases in thermogenesis in little buntings. Little buntings that fed on thyroxine (T4)–laced poultry food of 3 and 5 ppm concentrations showed increases in basal metabolic rate (BMR) during the 3-week acclimation. At the end, these buntings had lower body weights, higher levels of contents of mitochondrial protein, state 4 respiration and cytochrome c oxidase activity in liver and muscle, and higher concentrations of serum triiodothyronine (T3) and T4 compared to control buntings. These results support the argument that thyroid hormones play an important role in the regulation of thermogenic ability in buntings by stimulating mitochondrial respiration and enzyme activities associated with aerobic metabolism. 相似文献
9.
The effect of an induced salmonid parr-to-smolt metamorphosis (smoltification) on the optical quality of the ocular lens was studied. In two separate experiments, rainbow trout (Oncorhynchus mykiss) parr were fed thyroxine in their diet to induce the metamorphosis. Lenses were excised at regular samplings during the treatment period and optically scanned using a custom scanning laser monitor. Radioimmunoassay was used to measure serum titers of thyroxine and 3,5,3-triiodo-L-thyronine. It was found that lens optical quality was consistently negatively correlated with 3,5,3-triiodo-L-thyronine levels, but not with thyroxine levels. To test if thyroid hormones are directly responsible for the change in optical quality, rainbow trout lenses were cultured for 72 h in a medium containing 3,5,3-triiodo-L-thyronine, but no effect was observed. The significance of these findings in the contexts of the fishes visual capabilities and smolting physiology is discussed. 相似文献
10.
Bryan R. Helm Scott Payne Joseph P. Rinehart George D. Yocum Julia H. Bowsher Kendra J. Greenlee 《Arthropod Structure & Development》2018,47(5):521-528
Insect metamorphosis involves a complex change in form and function. In this study, we examined the development of the solitary bee, Megachile rotundata, using micro-computed tomography (μCT) and volume analysis. We describe volumetric changes of brain, tracheae, flight muscles, gut, and fat bodies in prepupal, pupal, and adult M. rotundata. We observed that individual organ systems have distinct patterns of developmental progression, which vary in their timing and duration. This has important implications for commercial management of this agriculturally relevant pollinator. 相似文献
11.
In zebrafish, like many other teleost species, the development and differentiation of many major organs continue unabated into the yolk-sac larval stage before culminating in a free-swimming larva capable of exogenous feeding. We investigated the role of thyroid hormone (TH) in this important embryonic to larval transitory phase. Thyroid hormone receptor (TR) alpha and beta mRNAs are expressed during the early stages of zebrafish embryonic development. Beginning from the midblastula stage, the level of TR beta mRNAs increases dramatically and is maintained until the end of the transitory phase. Excessive exogenous thyroxine (T4; 30 nM) is toxic and causes severe developmental defects. Cotreatment of embryos with amiodarone, an antagonist of TR, and goitrogen methimazole (MMI) lead to severe retardation in the maturation of the gastrointestinal system, swim bladder, and the lower jaw cartilages and the resorption of the yolk sac. The developmental arrest is lethal, and treated larvae do not survive beyond 7 day postfertilization (dpf), but can be completely rescued by the presence of 10 nM T4. We propose that the embryonic to larval transitory phase in many teleost species is characterized by its dependency on the timely synthesis of TH and the concomitant autoinductive increase in TR beta mRNA levels. 相似文献
12.
摘要 目的:探究左甲状腺素钠片联合甲状腺片用于甲状腺癌术后促甲状腺激素(TSH)抑制治疗的临床效果。方法:选择2021年1月-2022年6月本院收治的甲状腺癌手术并进行碘131清甲治疗后行TSH抑制治疗的80例患者为本次研究对象,开展动态分组法,对照组及观察组,n=40。单纯左甲状腺素钠片治疗为对照组,左甲状腺素钠片联合甲状腺片治疗为观察组。比较甲状腺功能、肝肾功能、治疗效果及不良反应。结果:治疗后,游离三碘甲状腺原氨酸(FT3)、游离四碘甲状腺原氨酸(FT4)水平,观察组及对照组均较治疗前提高,但观察组低于对照组;TSH水平,两组均较治疗前降低,且观察组较对照组低(P<0.05);治疗前,肌酐(Scr)、谷丙转氨酶(ALT)、谷草转氨酶(AST)水平,观察组及对照组比较无差异(P>0.05),治疗后,各指标水平,两组均较治疗前降低,且观察组较对照组低(P<0.05);观察组治疗有效率高于对照组(P<0.05);观察组及对照组不良反应率比较无差异(P>0.05)。结论:左甲状腺素钠片联合甲状腺片用于甲状腺癌术后TSH抑制治疗可明显改善患者甲状腺功能,提高免疫功能及治疗效果,效果优于左甲状腺素钠片单独治疗,且安全性较高。 相似文献
13.
目的:分析超声引导下微波消融治疗甲状腺良性结节中的价值。方法:选取我院接受治疗的140例甲状腺良性结节患者,根据治疗方法分成两组,微波消融组接受超声引导下微波消融治疗,药物治疗组接受甲状腺激素药物治疗。对比分析两组患者甲状腺结节体积和数量、甲状腺功能变化,并比较两组副反应发生率。结果:微波消融组治疗后结节体积低于药物治疗组,而体积缩小率高于药物治疗组,组间差异存在统计学意义(P0.05)。治疗后,患者血清学T3、T4、TSH改善明显,其中微波消融组改善最显著,组间差异存在显著性(P0.05)。结论:超声引导下微波消融能够减小甲状腺良性结节数目和体积,促进甲状腺功能逐步恢复,建议临床推广。 相似文献
14.
Renae J. Brodie 《Journal of experimental marine biology and ecology》2002,272(1):1-11
After metamorphosing from the last larval stage to the transitional megalopal stage in the marine plankton, the hermit crab Coenobita compressus moves ashore where it undergoes a second metamorphosis to the first juvenile instar on land. In two experiments using laboratory-reared crabs, I moved megalopae from water to land after different amounts of time at this stage and investigated the impact of this manipulation on the timing of and survival through the second metamorphosis. In the Involuntary Settlement experiment, megalopae were moved to land when they were 3, 6, 9, 12, or 15 days old. None of those moved between the ages of 3 and 6 days survived through metamorphosis, but the majority of 9-day-old megalopae survived, as did most 12- and 15-day-old megalopae. This suggests that developmental changes early in the megalopal stage prepare C. compressus for terrestrial life. Once on land, megalopae that had been moved to land at 9 days spent about nine additional days there before metamorphosing, while 12- and 15-day-old megalopae metamorphosed after spending about 5 and 4 days, respectively, on land. In the Voluntary Settlement experiment, megalopae were given access to land when they were 1, 5, 10, or 15 days old, but were not forced to make the transition. Those given access to land after 1 day voluntarily left their dishes for the first time after an average of 7 days in water. Those given access when they were 5 days old remained in water about 4 days longer, while those given access when they were 10 and 15 days old left after less than a day. In both experiments, the timing of metamorphosis relative to settlement (i.e., transition to land) showed that these events are dissociated to a degree and revealed the presence of a metamorphic clock. I discuss why the dissociation of settlement and metamorphosis may have been favored in the land hermit crab and in another anomuran crab. 相似文献
15.
16.
Yuichiro Suzuki 《Developmental biology》2009,326(1):60-380
The dramatic transformation from a larva to an adult must be accompanied by a coordinated activity of genes and hormones that enable an orchestrated transformation from larval to pupal/adult tissues. The maintenance of larval appendages and their subsequent transformation to appendages in holometabolous insects remains elusive at the developmental genetic level. Here the role of a key appendage patterning gene Distal-less (Dll) was examined in mid- to late-larval stages of the flour beetle, Tribolium castaneum. During late larval development, Dll was expressed in appendages in a similar manner as previously reported for the tobacco hornworm, Manduca sexta. Removal of this late Dll expression resulted in disruption of adult appendage patterning. Intriguingly, earlier removal resulted in dramatic loss of structural integrity and identity of larval appendages. A large amount of variability in appendage morphology was observed following Dll dsRNA injection, unlike larvae injected with dachshund dsRNA. These Dll dsRNA-injected larvae underwent numerous supernumerary molts, which could be terminated with injection of either JH methyltransferase or Methoprene-tolerant dsRNA. Apparently, the partial dedifferentiation of the appendages in these larvae acts to maintain high JH and, hence, prevents metamorphosis. 相似文献
17.
Yoshitaka Goto Naoki Amuro Ryoiti Shukuya 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,719(1):102-109
1. Cytochrome c oxidase was purified from the liver mitochodria of bullfrog (Rana catesbeina). The heme a content of the purified enzyme was 13.5 nmol per mg protein. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed that the enzyme protein was composed of nine polypeptide subunits having molecular weights of 42 000, 27 000, 25 000, 20 000, 15 000, 13 000, 8 600, 5 400 and 3 600. The purified enzyme from the adult frog was immunologically identical with that from the tadpole. 2. The rates of synthesis and degradation of cytochrome c oxidase were 5.2- and 2.0-times higher at metamorphic climax than at premetamorphic stage, respectively. The amount of the enzyme in the liver was highest at metamorphic climax. 相似文献
18.
19.
Takumi Kayukawa Mika Murata Isao Kobayashi Daisuke Muramatsu Chieko Okada Keiro Uchino Hideki Sezutsu Makoto Kiuchi Toshiki Tamura Kiyoshi Hiruma Yukio Ishikawa Tetsuro Shinoda 《Developmental biology》2014
Juvenile hormone (JH) has an ability to repress the precocious metamorphosis of insects during their larval development. Krüppel homolog 1 (Kr-h1) is an early JH-inducible gene that mediates this action of JH; however, the fine hormonal regulation of Kr-h1 and the molecular mechanism underlying its antimetamorphic effect are little understood. In this study, we attempted to elucidate the hormonal regulation and developmental role of Kr-h1. We found that the expression of Kr-h1 in the epidermis of penultimate-instar larvae of the silkworm Bombyx mori was induced by JH secreted by the corpora allata (CA), whereas the CA were not involved in the transient induction of Kr-h1 at the prepupal stage. Tissue culture experiments suggested that the transient peak of Kr-h1 at the prepupal stage is likely to be induced cooperatively by JH derived from gland(s) other than the CA and the prepupal surge of ecdysteroid, although involvement of unknown factor(s) could not be ruled out. To elucidate the developmental role of Kr-h1, we generated transgenic silkworms overexpressing Kr-h1. The transgenic silkworms grew normally until the spinning stage, but their development was arrested at the prepupal stage. The transgenic silkworms from which the CA were removed in the penultimate instar did not undergo precocious pupation or larval–larval molt but fell into prepupal arrest. This result demonstrated that Kr-h1 is indeed involved in the repression of metamorphosis but that Kr-h1 alone is incapable of implementing normal larval molt. Moreover, the expression profiles and hormonal responses of early ecdysone-inducible genes (E74, E75, and Broad) in transgenic silkworms suggested that Kr-h1 is not involved in the JH-dependent modulation of these genes, which is associated with the control of metamorphosis. 相似文献
20.
TATAJAMSHENR 《Cell research》1998,8(4):259-272
The thyroid hormones L-thyroxine and triiodo-Lthyronine have profound effects on postenbryonic development of most vertebrates.Analysis of their action in mammals is vitiated by the exposure of the developing foetus to a number of maternal factors which do not allow one to specifically define the role of thyroid hormone (TH) or that of other hormones and factors that modulate its action.Amphibian metamorphosis is obligatorily dependent on TH which can initiate all the diverse physiological manifestations of this postembryonic developmental process(morphogenesis,cell death,re-structuring,etc.) in free-living embryos and larvas of most anurans.This article will first describe the salient features of metamorphosis and its control by TH and other hormones.Emphasis will be laid on the key role played by TH receptor (TR),in particular the phenomenon of TR gene autoinduction,in initiating the developmental action of TH.Finally,it will be argued that the findings on the control of amphibian metamorphosis enhance our understanding of the regulation of postembryonic development by TH in other vertebrate species. 相似文献