首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benthic-pelagic coupling and the role of bottom-up versus top-down processes are recognized as having a major impact on the structure of marine communities. While the roles of bottom-up processes are better appreciated they are still viewed as principally affecting the outcome of top-down processes. Sponges on coral reefs are important members of the benthic community and provide a critically important functional linkage between water-column productivity and the benthos. As active suspension feeders sponges utilize the abundant autotrophic and heterotrophic picoplankton in the water column. As a result sponges across the Caribbean basin exhibit a consistent and significant pattern of greater biomass, tube extension rate, and species numbers with increasing depth. Likewise, the abundance of their food supply also increases along a depth gradient. Using experimental manipulations it has recently been reported that predation is the primary determinant of sponge community structure. Here we provide data showing that the size and growth of the sponge Callyspongia vaginalis are significantly affected by food availability. Sponges increased in size and tube extension rate with increasing depth down to 46 m, while simultaneously exposed to the full range of potential spongivores at all depths. Additionally, we point out important flaws in the experimental design used to demonstrate the role of predation and suggest that a resolution of this important question will require well-controlled, multi-factorial experiments to examine the independent and interactive effects of predation and food abundance on the ecology of sponges.  相似文献   

2.
Strong top-down control by consumers has been demonstrated in rocky intertidal communities around the world. In contrast, the role of bottom-up effects (nutrients and productivity), known to have important influences in terrestrial and particularly freshwater ecosystems, is poorly known in marine hard-bottom communities. Recent studies in South Africa, New England, Oregon and New Zealand suggest that bottom-up processes can have important effects on rocky intertidal community structure. A significant aspect of all of these studies was the incorporation of processes varying on larger spatial scales than previously considered (10’s to 1000’s of km). In all four regions, variation in oceanographic factors (currents, upwelling, nutrients, rates of particle flux) was associated with different magnitudes of algal and/or phytoplankton abundance, availability of particulate food, and rates of recruitment. These processes led to differences in prey abundance and growth, secondary production, consumer growth, and consumer impact on prey resources. Oceanographic conditions therefore may vary on scales that generate ecologically significant variability in populations at the bottom of the food chain, and through upward-flowing food chain effects, lead to variation in top-down trophic effects. I conclude that top-down and bottom-up processes can be important joint determinants of community structure in rocky intertidal habitats, and predict that such effects will occur generally wherever oceanographic ‘discontinuities’ lie adjacent to rocky coastlines. I further argue that increased attention by researchers and of funding agencies to such benthic–pelagic coupling would dramatically enhance our understanding of the dynamics of marine ecosystems.  相似文献   

3.
Coral reefs are under considerable pressure from global stressors such as elevated sea surface temperature and ocean acidification, as well as local factors including eutrophication and poor water quality. Marine sponges are diverse, abundant and ecologically important components of coral reefs in both coastal and offshore environments. Due to their exceptionally high filtration rates, sponges also form a crucial coupling point between benthic and pelagic habitats. Sponges harbor extensive microbial communities, with many microbial phylotypes found exclusively in sponges and thought to contribute to the health and survival of their hosts. Manipulative experiments were undertaken to ascertain the impact of elevated nutrients and seawater temperature on health and microbial community dynamics in the Great Barrier Reef sponge Rhopaloeides odorabile. R. odorabile exposed to elevated nutrient levels including 10 µmol/L total nitrogen at 31°C appeared visually similar to those maintained under ambient seawater conditions after 7 days. The symbiotic microbial community, analyzed by 16S rRNA gene pyrotag sequencing, was highly conserved for the duration of the experiment at both phylum and operational taxonomic unit (OTU) (97% sequence similarity) levels with 19 bacterial phyla and 1743 OTUs identified across all samples. Additionally, elevated nutrients and temperatures did not alter the archaeal associations in R. odorabile, with sequencing of 16S rRNA gene libraries revealing similar Thaumarchaeota diversity and denaturing gradient gel electrophoresis (DGGE) revealing consistent amoA gene patterns, across all experimental treatments. A conserved eukaryotic community was also identified across all nutrient and temperature treatments by DGGE. The highly stable microbial associations indicate that R. odorabile symbionts are capable of withstanding short-term exposure to elevated nutrient concentrations and sub-lethal temperatures.  相似文献   

4.
Top-down and bottom-up controls are hypothesized to regulate population structures in many ecosystems. However, few studies have had the opportunity to analyze both processes in the natural environment, especially on large carnivores like the cougar (Puma concolor). Previously, studies show that cougar diet in the Sierra Nanchititla Natural Reserve (SNNR), central Mexico, is mainly armadillo, coati, and white-tailed deer. We assess whether top-down and/or bottom-up control regulate this endangered food web: (a) we predicted that seasonal per capita changes in abundance (pca) of cougar will be positively affected by the abundance of their main prey; (b) primary productivity in SNNR will affect the pca of prey species, driving bottom-up control; and (c) armadillo, coati, and white-tailed deer pca will be affected by the abundance of cougar, generating top-down control. Using 15 camera traps for 6 years in the SNNR, we calculated a relative abundance index (RAI) and pca for cougar and each of the focal prey, and we used the normalized difference vegetation index (NDVI) as a proxy of primary productivity. We constructed multiple regression models and selected the best linear models based on ranking the AICc values. Our analysis suggests that P. concolor pca is best explained by bottom-up control and intraspecific feedback. White-tailed deer and armadillo pca were both significantly affected by cougar abundance, indicating top-down control for these prey species, but NDVI was not retained in any of the models selected for prey pca. Our results indicate that both bottom-up and top-down control are involved in regulating this endangered food web in the SNNR, Mexico.  相似文献   

5.
Sponges (Porifera), in general, are pumping water through their bodies. This water contains planktonic eukaryotic and procaryotic organisms as well as particulate and dissolved organic matter as potential food source. We analyzed the eukaryotic unicellular plankton fraction from water surrounding sponges of the species Aplysina aerophoba, Nardo 1886, from sponge tissue, as well as from water expelled from those sponges. We found sponges without any remnants of plankton in their tissue, as well as specimens which incorporated high numbers of remnants of organisms after planktonic “blooms”. In laboratory experiments, sponges were not showing any uptake of plankton from their surrounding water. Sponges are generally considered as inner filter feeders. However, our results indicate that eukaryotic unicellular plankton organisms are not the main food resource of the common sponge A. aerophoba. This raises the question if filter feeding is actually the main characteristic of the poriferan lifestyle.  相似文献   

6.
Artificial light at night has a wide range of biological effects on both plants and animals. Here, we review mechanisms by which artificial light at night may restructure ecological communities by modifying the interactions between species. Such mechanisms may be top-down (predator, parasite or grazer controlled), bottom-up (resource-controlled) or involve non-trophic processes, such as pollination, seed dispersal or competition. We present results from an experiment investigating both top-down and bottom-up effects of artificial light at night on the population density of pea aphids Acyrthosiphon pisum in a diverse artificial grassland community in the presence and absence of predators and under low-level light of different spectral composition. We found no evidence for top-down control of A. pisum in this system, but did find evidence for bottom-up effects mediated through the impact of light on flower head density in a leguminous food plant. These results suggest that physiological effects of light on a plant species within a diverse plant community can have detectable demographic effects on a specialist herbivore.  相似文献   

7.
The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 ± 1.1 specimens m−2 (approximately 230 gWW m−2 of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 ± 0.7 specimens m−2, approximately 315 gWW m−2 of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m−2). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic–pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 ± 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter.  相似文献   

8.
We report the first discovery of coralline sponges from Pleistocene reef limestones of Vanuatu. Sponges of the genus Acanthochaetetes were identified from two reef terraces of Middle and Late Pleistocene age. As these sponges document cryptic habitats in modern coral reefs, they may be index fossils of cryptic habitats in the Pleistocene as well, thereby providing clues on growth conditions in fossil reefs. The small size of the discovered specimens may be attributed to the transient nature of their cryptic habitats, either due to reef growth or the occurrence of an unusual event.  相似文献   

9.

Background

Enhanced nutrient loading and depletion of consumer populations interact to alter the structure of aquatic plant communities. Nonetheless, variation between adjacent habitats in the relative strength of bottom-up (i.e. nutrients) versus top-down (i.e. grazing) forces as determinants of community structure across broad spatial scales remains unexplored. We experimentally assessed the importance of grazing pressure and nutrient availability on the development of macroalgal assemblages and the maintenance of unoccupied space in habitats differing in physical conditions (i.e. intertidal versus subtidal), across regions of contrasting productivity (oligotrophic coasts of South Australia versus the more productive coasts of Eastern Australia).

Methodology/Principal findings

In Eastern Australia, grazers were effective in maintaining space free of macroalgae in both intertidal and subtidal habitats, irrespective of nutrient levels. Conversely, in South Australia, grazers could not prevent colonization of space by turf-forming macroalgae in subtidal habitats regardless of nutrients levels, yet in intertidal habitats removal of grazers reduced unoccupied space when nutrients were elevated.

Conclusions/Significance

Assessing the effects of eutrophication in coastal waters requires balancing our understanding between local consumer pressure and background oceanographic conditions that affect productivity. This broader-based understanding may assist in reconciling disproportionately large local-scale variation, a characteristic of ecology, with regional scale processes that are often of greater relevance to policy making and tractability to management.  相似文献   

10.
Cold-water coral reefs (CWRs) in the northeast Atlantic harbor diverse sponge communities. Knowledge of deep-sea sponge ecology is limited and this leaves us with a fragmented understanding of the ecological roles that sponges play in CWR ecosystems. We present the first study of faunal biodiversity associated with the massive demosponge Spongosorites coralliophaga (Stephens, 1915) that typically colonizes coral debris fields of CWRs. Our study focused on the sessile fauna inhabiting sponges mixed with coral rubble at two contrasting settings in the northeast Atlantic: the shallow inshore (120–190 m water depth) Mingulay Reef Complex (MRC) and the deep offshore (500–1200 m) Logachev Mound (LM) coral province. MRC is dominated by the scleractinian Lophelia pertusa, while LM is dominated by L. pertusa and Madrepora oculata. Nine sponge–coral rubble associations were collected from MRC and four from LM. Measurements of abundance, species richness, diversity, evenness, dry biomass, and composition of sessile fauna on sponge and coral rubble microhabitats were undertaken. Differences in community composition between the two regions were mainly a response to changes in fauna with depth. Fauna composition was also different between sponge and coral rubble within each region. Infauna constituted a minor component of the sponge-associated fauna in MRC but had a higher contribution in LM. Sponge and coral rubble sessile fauna in both regions was mainly composed of cnidarians and molluscs, similarly to some previous studies. Sponges’ outer surfaces at MRC were colonized by a species-rich community with high abundance and biomass suggesting that S. coralliophaga at MRC acts as a settlement surface for various organisms but such a role is not the case at LM. This difference in the role of S. coralliophaga as a biological structure is probably related to differences in fauna composition with depth, bottom current speed, and the quantity/quality of food supplied to the benthos.  相似文献   

11.
Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns.  相似文献   

12.
《Ecological monographs》2011,82(1):85-100
There is a demand for mechanistic studies to explore underlying drivers behind observed patterns of biodiversity in urban areas. We describe a two-year field experiment in which we manipulated bottom-up (resource availability) and top-down (bird predation) forces on arthropod communities associated with a native plant, Encelia farinosa, across three land-use types—urban, desert remnant, and outlying natural desert—in the Phoenix metropolitan area, Arizona, USA. We monitored the trophic structure, richness, and similarity of the arthropod communities on these manipulated plants over a two-year period. We predicted that (1) increased water resources increase plant productivity, (2) increased productivity increases arthropod abundances, and (3) in the urban habitat, top-down forces are greater than in other habitats and limit arthropod abundances. We also predicted that urban remnant habitats are more similar to urban habitats in terms of arthropod richness and composition. Strong interannual differences due to an unusual cold and dry winter in the first year suppressed plant growth in all but urban habitats, and arthropod abundances in all habitats were severely reduced. In the following year, arthropod abundances in desert and remnant habitats were higher than in urban habitats. Water had positive effects on plant growth and arthropod abundance, but these water effects emerged through complex interactions with habitat type and the presence/absence of cages used to reduce bird predation. Plants grew larger in urban habitats, and phenology also differed between urban and desert habitats. The results from caging suggest that bird predation may not be as important in cities as previously thought, and that arthropods may retard plant growth. As expected, desert communities are strongly bottom-up regulated, but contrary to predictions, we did not find evidence for strong top-down control in the city. Remnant habitats were intermediate between desert and urban habitats in terms of diversity, richness, evenness, arthropod composition and phenology, with urban habitats generally lowest in terms of diversity, richness, and evenness. Our study shows that control of biodiversity is strongly altered in urban areas, influenced by subtle shifts in top-down and bottom-up controls that are often superseded by climatic variations and habitat type.  相似文献   

13.
Species abundance in local communities is determined by bottom-up and top-down processes, which can act directly and indirectly on the focal species. Studies examining these effects simultaneously are rare. Here we explore the direct top-down and direct and indirect bottom-up forces regulating the abundance and predation success of an intermediate predator, the web-building spider Argiope bruennichi (Araneae: Araneidae). We manipulated plant diversity (2, 6, 12 or 20 sown species) in 9 wildflower strips in a region of intensive farmland. To identify the major factors regulating the distribution and abundance of A. bruennichi, we quantified three characteristics of vegetation (species diversity, composition and vegetation structure) as well as the spider's prey community and natural enemies. The distribution and abundance of A. bruennichi was regulated by combined bottom-up and top-down processes as well as by direct and indirect interactions between trophic levels. Four main factors were identified: (1) the strong direct effect of vegetation structure, (2) the positive effect of plant species diversity, which affected spider abundance directly and indirectly through increased densities and size of flower-visiting prey species, (3) the positive or negative direct effects of different plant species, and (4) the strongly negative direct effect of predacious hornets. The advantage of taking a global approach to understand the regulation of species abundance is highlighted first by the quantification of the relative importance of factors, with a surprisingly strong effect of hornet predators, and second by the discovery of a direct effect of plant diversity, which raises intriguing questions about habitat selection by this spider.  相似文献   

14.
Bacterial communities of marine sponges are believed to be an important partner for host survival but remain poorly studied. Sponges show difference in richness and abundance of microbial population inhabiting them. Three marine sponges belonging to the species of Pione vastifica, Siphonochalina siphonella and Suberea mollis were collected from Red sea in Jeddah and were investigated using high throughput sequencing. Highly diverse communities containing 105 OTUs were identified in S. mollis host. Only 61 and 43 OTUs were found in P. vastifica and S. siphonella respectively. We identified 10 different bacterial phyla and 31 genera using 27,356 sequences. Most of the OTUs belong to phylum Proteobacteria (29%–99%) comprising of Gammaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria where later two were only detected in HMA sponge, S. mollis. A number of 16S rRNA sequences (25%) were not identified to phylum level and may be novel taxa. Richness of bacterial community and Shannon, Simpson diversity revealed that sponge S. mollis harbors high diversity compared to other two LMA sponges. Dominance of Proteobacteria in sponges may indicate an ecological significance of this phylum in the Red sea sponges. These differences in bacterial composition may be due to difference in location site or host responses to environmental conditions. To the best of our knowledge, the microbial communities of these sponges have never been studied before and this is first attempt to unravel bacterial diversity using PCR-based 454-pyrosequencing method.  相似文献   

15.
Hoekman D 《Oecologia》2011,165(4):1073-1082
The relative importance of resources (bottom-up forces) and natural enemies (top-down forces) for regulating food web dynamics has been debated, and both forces have been found to be critical for determining food web structure. How the relative importance of top-down and bottom-up forces varies between sites with different abiotic conditions is not well understood. Using the pitcher plant inquiline community as a model system, I examine how the relative importance of top-down and bottom-up effects differs between two disparate sites. Resources (ant carcasses) and top predators (mosquito larvae) were manipulated in two identical 4 × 4 factorial press experiments, conducted at two geographically distant sites (Michigan and Florida) within the range of the purple pitcher plant, Sarracenia purpurea, and the aquatic community that resides in its leaves. Overall, top predators reduced the density of prey populations while additional resources bolstered them, and the relative importance of top-down and bottom-up forces varied between sites and for different trophic levels. Specifically, top-down effects on protozoa were stronger in Florida than in Michigan, while the opposite pattern was found for rotifers. These findings experimentally demonstrate that the strength of predator–prey interactions, even those involving the same species, vary across space. While only two sites are compared in this study, I hypothesize that site differences in temperature, which influences metabolic rate, may be responsible for variation in consumer–resource interactions. These findings warrant further investigation into the specific factors that modify the relative importance of top-down and bottom-up effects.  相似文献   

16.
Sponges (Porifera) are aquatic, sessile filter feeders. As such they are permanently exposed to bacteria in the seawater. Molecular data recovered from sponges by PCR shows a high diversity in bacterial DNA. Hence, sponges are considered to live in close association with a diverse and abundant bacterial community. To recover the spatial distribution of bacteria in sponges we retrieved histological sections of Aplysina aerophoba fixed in situ. By combining signals from fluorescence in situ hybridization (FISH), light microscopy and scanning electron microscopy we revealed a detailed histological picture of the spatial organization of the sponge microbial association within the sponges. Our histological results confirm a high abundance of cyanobacteria inside A. aerophoba while other living bacteria are almost absent. This detailed insight into sponge microbiology could only be achieved by the combination of careful sample preparation and different microscopical and histological methods. It also shows the need to confirm molecular datasets in situ and with a high spatial resolution.  相似文献   

17.
The aim of this study is to analyze the community structure, ecology and distribution of deep Weddell Sea sponge faunas. Analysis was performed on the basis of sponges sampled during ANDEEP I–III and SYSTCO I expeditions (2002–2008) by RV Polarstern. The material obtained comprises about 800 sponge specimens, representing 129 species, within these are 95 species of demosponges (including 15 new to science), 25 hexactinellid species (7 new) and 9 calcarean species (5 new). Sponges were sampled at 51 stations in depths between 500 and 5,500 m. At most stations, sponge densities were very low, and many species are represented by one or two specimens only. Community structure by Bray–Curtis similarity was analyzed as well as depth range and spatial distribution of the most common species. Zoogeographic affinities of sampled faunas are analyzed. Three associations of sponges are found in the deep Weddell Sea: (1) The Polymastia/Tentorium community, (including Rossella associations) distributed on the lower shelf and continental slope. (2) The Bathydorus community, distributed on the continental slope and upper abyssal. (3) The Caulophacus community, associated with Cladorhizidae, is characteristic for the abyssal plains. The associations follow each other successively both bathymetrically and geographically, from shallow to deep, from shelf and ridge structures into the open abyssal. A distinct faunistic boundary between shelf and deep sea is not present. In general, the sponge fauna of the deep Weddell Sea is regionally restricted and shows stronger affinities only to the sponge fauna of the subantarctic islands.  相似文献   

18.
Abstract. Sponges can serve as hosts to invertebrate assemblages that live and reproduce within them. Sponges also constitute a major part of the benthic epifaunal community on the continental shelf of the southeastern United States; however, little is known about these sponges and the assemblages they harbor. In this study, the associated fauna from a variety of sponges and one species of tunicate collected by submersible from the continental shelf and slope of the southeastern United States at depths in the range 18–875 m were examined. Seventeen sponges, comprising eight species (Ircinia campana, Topsentia sp., Geodia sp., Characella sp., Erylus sp., Apylsina archeri, Cliona sp., and Pheronema carpenteri), and three tunicate colonies (Didemnidae) were fully dissected and all associated organisms were identified and counted. Additionally, the sponges Pheronema annae (951 m) and P. carpenteri (770 m) represent new records for the region. The diversity (H′) and density of associates varied considerably among hosts; the densities of associates ranged 0.4–11,684 per 1 L of host volume. Polychaete worms were the most common organisms found, with one species, Haplosyllis spongicola, being especially abundant in I. campana, Topsentia sp., and Cliona sp. The amphipods Ericthonius punctatus and Leucothoe cf. spinicarpa, as well as decapods such as snapping shrimp (Synalpheus sp.) and crabs (e.g., Pilumnus floridana, Micropanope urinator), were also common. The number of symbiont taxa did not significantly increase as the sponge size increased. However, weak positive trends were found between the diversity of associates and increasing canal diameter. Sponges and tunicates were judged to represent legitimate ecological communities harboring a complete food web as well as gravid and juvenile individuals.  相似文献   

19.
20.
Jeremy W. Fox 《Oikos》2007,116(2):189-200
Prey diversity is thought to mediate the strength of top-down and bottom-up effects, but few experiments directly test this hypothesis. I assembled food webs of bacteria and bacterivorous protist prey in laboratory microcosms with all combinations of five productivity levels, two top predator treatments (present or absent), and three prey compositions. Depauperate food chains contained one of two edible prey species, while more diverse food webs contained both edible prey species plus two additional less-edible/inedible prey. Equilibrium theory predicts that prey diversity should weaken the top-down and bottom-up effects on trophic level biomasses, due to density compensation among prey species. Top-down effects should increase with productivity in food chains, but decrease with productivity in food webs. Results revealed highly dynamic top-down effects, the strength of which varied more over time than among treatments. Further, top-down effects did not merely vary in absolute strength over time, but also in relative strength across different prey compositions and productivity levels. It might be expected that equilibrium models would qualitatively reproduce time-averaged results. However, time-averaged data largely failed to support equilibrium predictions. This failure may reflect strong temporal variability in treatment effects combined with nonlinear density dependence of species' per-capita growth rates. Strong temporal variability in the strength of top-down effects has not previously been demonstrated, but likely is common in nature as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号