首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many marine invertebrates, a latitudinal cline in egg size is considered an adaptive response to a decrease in temperature, and enhances the energetic fitness of their larvae at hatching. However, the amount of energy carried over from the egg to the larval stage depends on the metabolic efficiency of egg development. In the present study, eggs of the brachyuran crab Cancer setosus were sampled for their dry mass (DM), carbon (C), nitrogen (N), and fatty acid (FA) content throughout development from blastula stage until hatching of zoea 1-larvae at Antofagasta (23°S) and Puerto Montt 41°S (Chile) under different temperature treatments (12, 16 and 19 °C). Hatching zoea 1 larvae contained 60 ± 3% of the initial blastula egg C content, regardless of site or temperature. However, the ontogenetic decrease in egg C content was to a significantly higher extend based on the utilization of energy-rich FA at 12 °C (− 1.16 µg/egg) compared to the 19 °C treatments in Antofagasta and Puerto Montt (− 0.63 to − 0.73 µg FA per egg). At 19 °C egg-metabolism was based to a substantial extend on protein, which allowed for the saving of energy-richer lipids. We conclude that the production of larger eggs with high FA content appears to be adaptive not only to fuel the larval development, but is also a response to the prolonged egg developmental times at lower temperatures.  相似文献   

2.
We incubated eggs of the Chinese ratsnake Zaocys dhumnades at four constant temperatures (24, 27, 30 and 30 °C) to examine the effects of incubation temperature on hatching success and hatchling phenotypes. Incubation length increased nonlinearly as temperature decreased, with the mean incubation length being 76.7 d at 24 °C, 57.4 d at 27 °C, 47.3 d at 30 °C, and 44.1 d at 33 °C. Hatching successes were lower at the two extreme temperatures (69% at 24 °C, and 44% at 33 °C) than at the other two moderate temperatures (96% at 27 °C, and 93% at 30 °C). Incubation temperature affected nearly all hatchling traits examined in this study. Incubation of Z. dhumnades eggs at 33 °C resulted in production of smaller hatchlings that characteristically had less-developed carcasses but contained more unutilized yolks. Hatchlings from eggs incubated at 27 and 30 °C did not differ in any examined traits. Taking the rate of embryonic development, hatching success and hatchling phenotypes into account, we conclude that the temperature range optimal for incubation of Z. dhumnades eggs is narrower than the range of 24−33 °C but should be wider than the range of 27−30 °C.  相似文献   

3.
The combined effects of temperature and salinity on larval development and attachment of Balanus trigonus Darwin (Cirripedia, Balanidae) was examined under controlled laboratory conditions. Whilst larval survivorship was not affected (>70%), the duration of larval development was significantly affected by temperature and salinity. The effect of temperature was comparatively stronger than that of salinity. The majority of nauplius II larvae metamorphosed into cypris stage after 4-5 and 10-11 days at 28 °C (22-34‰) and 18 °C (22-34‰), respectively. Temperature, salinity and the duration of assay had a significant effect on cypris attachment with significant interaction among these main effects. Maximum (>80% in 6 days) and minimum percent attachment (0% in 6 days) on polystyrene surfaces were observed at 24 °C (34‰) and 18 °C (22‰), respectively. At high temperature (28 °C) and low salinity (22-26‰), larvae rapidly (4 days) developed into cyprids, but less than 33% attached. These results suggest that low larval attachment rates may lead to the low recruitment of B. trigonus in Hong Kong waters during summer when the water temperature is high (about 28 °C) and salinity is low (<26‰).  相似文献   

4.
The limpet, Nacella concinna, collected from the Antarctic Peninsula (67°S), was incubated at − 0.3 °C and 2.9 °C for 9 months to test if the previously reported absence of acclimation capacity in Antarctic marine ectotherms could be due to the extended time it takes for them to adjust their physiology to a new stable state. Acclimation was tested through acute measurements of upper lethal limit and a modified measure of tenacity, that tested muscle capacity by measuring the length of time that N. concinna were able to remain attached to the substratum at different temperatures. Both measures acclimated in response to incubation to the higher temperature. Lethal limits were elevated in N. concinna incubated at 2.9 °C (8.1 ± 0.3 °C) compared to those incubated at − 0.3 °C (6.9 ± 0.4 °C). 2.9 °C incubated N. concinna also had a maximum tenacity at 2.1 °C, a higher temperature than the maximum tenacity of those incubated at − 0.3 °C, which occurred at − 1.0 °C. This study is the first to show that the Antarctic limpet can acclimate its physiology, but that it requires a greater period of time for acclimation to occur than previous studies have allowed for.  相似文献   

5.
The effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea were examined in the laboratory. The irradiance at the light compensation point (I0) was 14.40 μmol m− 2 s− 1 and the irradiance at growth saturation (Is) was 114 μmol m− 2 s− 1. We exposed A. sanguinea to 48 combinations of temperature (5-30 °C) and salinity (5-40) under saturating irradiance; it exhibited its maximum growth rate of 1.13 divisions/day at a combination of 25 °C and salinity of 20. A. sanguinea was able to grow at temperatures from 10 to 30 °C and salinities from 10 to 40. This study revealed that A. sanguinea was a eurythermal and euryhaline organism; in Japan it should have formed blooms in early summer, when salinity was relatively low. In addition, it was noteworthy that A. sanguinea had markedly cold-durability, retaining the motile form of vegetative cells for more than 50 days at 5 °C and at salinities of 25-30.  相似文献   

6.
Bioremediation of anthropogenic organic pollutants in cold climates is often limited by lower microbial or enzyme activity induced by low temperature. The present study addressed this issue through the degradation of ??-hexachlorocyclohexane (??-HCH) by three Sphingobium strains (S. indicum B90A, S. japonicum UT26 and S. francense Sp+) under low temperature (4 °C). After 5 days incubation at 4 °C, 79.7% and 43.8% of 5 and 25 mg L−1 of ??-HCH added were degraded, respectively by the inoculation of 1.75 × 107 cells mL−1 of S. indicum B90A. An increase in inoculum concentration to 1.72 × 108 cells mL−1 significantly increased the degradation to 98.1 ± 1.7% of 5 mg L−1 within 24 h. Further, S. indicum B90A and S. japonicum UT26 can rapidly degrade ??-HCH at 4 °C, while the degradation capability of S. francense Sp+ is relatively low. At 4 °C, ??-HCH is transformed to extremely low amounts of 1,2,4-trichlorobenzene (1,2,4-TCB) and 2,5-dichlorophenol (2,5-DCP) by S. indicum B90A, but most of ??-HCH were transformed to 2,5-Dichloro-2,5-cyclohexadiene-1,4-diol (2,5-DDOL) by S. japonicum UT26. These results revealed that haloalkane dehalogenases in some Sphingobium species are very active at temperature as low as 4 °C and S. indicum B90A might be a good candidate for developing novel bioremediation techniques for cold regions to decontaminate ??-HCH from soils/waters.  相似文献   

7.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

8.
To examine the synergism of high temperature and sulfide on two dominant tropical seagrass species, a large-scale mesocosm experiment was conducted in which sulfide accumulation rates (SAR) were increased by adding labile carbon (glucose) to intact seagrass sediment cores across a range of temperatures. During the initial 10 d of the 38 d experiment, porewater SAR in cores increased 2- to 3-fold from 44 and 136 μmol L− 1 d− 1 at 28-29 °C to 80 and 308 μmol L− 1 d− 1 at 34-35 °C in Halodule wrightii and Thalassia testudinum cores, respectively. Labile C additions to the sediment resulted in SAR of 443 and 601 μmol L− 1 d− 1 at 28-29 °C and 758 to 1,557 μmol L− 1 d− 1 at 34-35 °C in H. wrightii and T. testudinum cores, respectively. Both T. testudinum and H. wrightii were highly thermal tolerant, demonstrating their tropical affinities and potential to adapt to high temperatures. While plants survived the 38 d temperature treatments, there was a clear thermal threshold above 33 °C where T. testudinum growth declined and leaf quantum efficiencies (Fv/Fm) fell below 0.7. At this threshold temperature, H. wrightii maintained shoot densities and leaf quantum efficiencies. Although H. wrightii showed a greater tolerance to high temperature, T. testudinum had a greater capacity to sustain biomass and short shoots under thermal stress with labile C enrichment, regardless of the fact that sulfide levels in the T. testudinum cores were 2 times higher than in the H. wrightii cores. Tropical seagrass tolerance to elevated temperatures, predicted in the future with global warming, should be considered in the context of the sediment-plant complex which incorporates the synergism of plant physiological responses and shifts in sulfur biogeochemistry leading to increased plant exposure to sulfides, a known toxin.  相似文献   

9.
The southern king crab, Lithodes santolla Molina, is distributed in cold-temperate and subantarctic waters ranging from the southeastern Pacific island of Chiloé (Chile) and the deep Atlantic waters off Uruguay, south to the Beagle Channel (Tierra del Fuego, Argentina/Chile). Recent investigations have shown that its complete larval development from hatching to metamorphosis, comprising three zoeal stages and a megalopa, is fully lecithotrophic, i.e. independent of food. In the present study, larvae were individually reared in the laboratory at seven constant temperatures ranging from 1 to 18 °C, and rates of survival and development through successive larval and early juvenile stages were monitored throughout a period of 1 year. The highest temperature (18 °C) caused complete mortality within 1 week; only a single individual moulted under this condition, 2 days after hatching, to the second zoeal stage, while all other larvae died later in the zoea I stage. At the coldest condition (1 °C), 71% of the larvae reached the zoea III stage, but none of these moulted successfully to a megalopa. A temperature of 3 °C allowed for some survival to the megalopa stage (17-33% in larvae obtained from two different females), but only a single individual passed successfully, 129 days after hatching, through metamorphosis to the first juvenile crab instar. At all other experimental conditions (6, 9, 12 and 15 °C), survival through metamorphosis varied among temperatures and two hatches from 29% to 90% without showing a consistent trend. The time of nonfeeding development from hatching to metamorphosis lasted, on average, from 19 days at 15 °C to 65 days at 6 °C. The relationship between the time of development through individual larval or juvenile stages (D) and temperature (T) was described as a power function (D=aTb, or log[D]=log[a]blog[T]). The same model was also used to describe the temperature dependence of cumulative periods of development from hatching to later larval or juvenile stages. One year after hatching, the 7th (6 °C) to 9th (15 °C) crab instar was reached. Under natural temperature conditions in the region of origin of our material (Beagle Channel, Argentina), L. santolla should reach metamorphosis in October-December, i.e. ca. 2 months after hatching (taking place in winter and early spring). Within 1 year from hatching, the crabs should grow approximately to juvenile instars VII-VIII. Our results indicate that the early life-history stages of L. santolla tolerate moderate cold stress as well as planktonic food-limitation in winter, implying that this species is well adapted to subantarctic environments with low temperatures and a short seasonal plankton production.  相似文献   

10.
Effects of food availability on the larval survival and development of Crepidula onyx were studied in four experiments by feeding the larvae with different concentrations of the chrysophyte Isochrysis galbana and by starving the larvae for different periods of time. Food concentration had a clear impact on the survival, growth and development time of C. onyx veligers. Larval development occurred only at 104 cells ml−1 and higher algal concentrations. No shell increment was detected in the veligers cultured for 12 days at 102 cells ml−1I. galbana or the blank control. At 103 cells ml−1, there was only a slight increase in shell length over 12 days. At 104 cells ml−1, about 40% of the larvae became competent in 18 days. At 105 and 106 cells ml−1, more than 90% of the larvae reached competence in 7 days. Initial starvation negatively affected the larval development, but the sensitivity differed among parameters measured on day 5: lower survivorship was detected only for larvae that had suffered 3 days or longer initial starvation, whereas one-day initial starvation caused shorter shells and lower percentage of competent larvae. Three days of continuous feeding was required for 50% of the larvae to reach competence. After feeding for 3 days, most larvae could become competent to metamorphose even under starvation. The time of starvation was also critical: larvae that suffered 1-day food deprivation in the first 2 days of larval release had shorter shells and lowered percent competent larvae than those that suffered the same length of food deprivation in later stages of development. Our study thus indicates that both food concentration and short-term starvation have detrimental effects on the larval development of this species, and that once the larva has consumed certain amount of food, starvation may induce metamorphosis.  相似文献   

11.
Curculio sikkimensis undergoes prolonged larval diapause that is terminated by chilling and warming cycles. To examine the effects of warming temperatures and their duration on diapause termination, we exposed diapause larvae that had not been reactivated after chilling at 5 °C to 20 or 25 °C and chilled them again before incubation at 20 °C. With increasing warming duration at 20 °C, diapause termination after chilling increased and shorter chilling durations became effective. In contrast, few or no larvae warmed at 25 °C terminated diapause after chilling, irrespective of the warming duration. To investigate the effect of warming temperature on diapause intensity, larvae with diapause weakened by initial incubation at 20 °C after the first chilling were subsequently incubated at 15, 20, or 25 °C, then chilled at 5 °C before incubation at 20 °C. Diapause termination increased significantly after the larvae were treated at 15 or 20 °C but decreased significantly after they were treated at 25 °C. The intensification of prolonged diapause at 25 °C was reversed when the larvae were transferred to 20 °C. Diapause intensity in C. sikkimensis therefore decreases at 20 °C, increases at 25 °C, and can be reversed by alternately exposing diapause larvae to 20 and 25 °C. In C. sikkimensis, prolonged diapause does not always proceed in one direction, and its intensity fluctuates in response to ambient temperature conditions.  相似文献   

12.
The ontogenetic changes of MAAs in the soft coral Heteroxenia fuscescens was studied in relation to their symbiotic state (azooxanthellate vs. zooxanthellate) under different temperature conditions in the Gulf of Eilat, northern Red Sea. The HPLC chromatograms for extracts of the planulae, azoo- and zooxanthellate primary polyps of H. fuscescens from all dates of collection yielded a single peak at 320 nm that has been identified as the compound palythine. Concentration of palythine in planulae at 23 °C was 7.57 ± 1 nmol mg− 1 protein and at 28 °C reached 17.29 ± 1 nmol × mg− 1 protein. Concentration of palythine in azooxanthellate primary polyps was 16.4 ± 3 nmol × mg− 1 protein and 28.37 ± 2.8 nmol × mg− 1 protein at 23 °C and 28 °C respectively. The palythine concentration for zooxanthellate primary polyps at 23 °C was 13 ± 3 nmol × mg− 1 protein and at 28 °C 32.7 ± 2 nmol mg− 1 protein. Palythine concentrations were significantly higher at 28 °C in the different animal groups and correlated linearly with the ambient collection temperature. This study shows for the first time that UVR and temperature act synergistically and affect the MAA levels of early life-history stages of soft corals.  相似文献   

13.
Metabolic rates of larval and juvenile krill, Euphausia superba, were measured on board ship during three winter cruises west of the Antarctic Peninsula (June-July 1987, June 1993, and June 1994), and also under different temperature regimes and feeding conditions during long-term maintenance in the laboratory (Palmer Station, winter 1993). A mean oxygen consumption and nitrogen excretion ratio of 31.1 measured on board ship at ambient ocean temperatures suggested that larval and juvenile krill from ice-covered waters were primarily herbivorous. Results from both shipboard and laboratory experiments demonstrated that oxygen consumption increased with temperature, but that larvae subjected to acute temperature increases exhibited higher rates. Experiments conducted at near ambient water temperatures for winter were also conducted to test the effect of habitat on the energy requirements of larval and juvenile krill. A comparison of the field and laboratory studies conducted at −1.5 to −1.8 °C showed that larvae from ice-covered waters and fed larvae in the laboratory had oxygen consumption rates significantly higher than those of larvae collected from open, i.e. ice-free, water and those starved in the laboratory. Results of the comparison lend support to the concept that in winter, larval and juvenile krill are better fed in ice-covered waters than in open water, and to the hypothesis that ice biota in the pack ice are an important food resource in winter for larval and juvenile krill.  相似文献   

14.
The carboxylesterase, a 34 kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 85 °C and 8.0, respectively. The enzyme showed remarkable thermostability: 41% of its activity remained after 5 days of incubation at 80 °C. In addition, the purified enzyme exhibited stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity towards various PNP esters and short acyl chain triacylglycerols such as tributyrin (C4:0). Among the PNP esters tested, the best substrate was PNP-caprylate (C8) with Km and kcat values of 71 μM and 14,700 s−1, respectively. The carboxylesterase gene consisted of 915 bp corresponding to 305 amino acid residues. We demonstrated that active recombinant S. solfataricus carboxylesterase could be expressed in Escherichia coli. The enzyme was identified as a serine esterase belonging to mammalian hormone-sensitive lipases (HSL) family and contained a catalytic triad composed of serine, histidine, and aspartic acid in the active site.  相似文献   

15.
The chrysanthemum longicorn beetle, Phytoecia rufiventris, overwinters in the adult stage and reproduces in spring. Larvae of this beetle develop during summer inside a host stem or root. In the present study, photoperiodic control of larval development and its adaptive significance were examined in this beetle using an artificial diet. Larvae showed a short-day photoperiodic response at 25 °C with a critical day length of around 14 h; larvae reared under short-day conditions pupated, whereas those reared under long-day conditions entered summer diapause with some supernumerary molts and did not pupate. A similar response was found at 30 °C, but with a shorter critical day length. Below the critical day length, a shorter day length corresponded to a shorter larval period. Larvae transferred from long-day conditions to various photoperiods showed a similar quantitative response. Field rearing of larvae starting at various times of year showed that pupation occurs within a relatively short period in early autumn. Field rearing of pupae and adults at various times indicated that only pupation in early autumn results in a high survival rate until winter. Earlier or later pupation led to a low survival rate due to death before overwintering in the adult and pupal stages, respectively. Thus, in P. rufiventris, timing of pupation regulated by the quantitative short-day photoperiodic response is vital for survival. Relatively lower developmental threshold in the pupal stage supports this hypothesis.  相似文献   

16.
Ovigerous females of Cancer setosus are present year-round throughout most of its wide range along the Peruvian/Chilean Pacific coast (2°S-46°S). However, their number of egg-masses produced per year remains speculative and as such has neither been considered in latitudinal comparisons of reproduction, nor for its fisheries management. In order to reveal the effect of temperature on egg-mass production and egg-development, female C. setosus were held in through-flow aquaria under natural seasonal temperature conditions (16-23 °C) in Antofagasta (23°S), Northern Chile (05/2005-03/2006; 10 months), and at three constant temperatures (12, 16, 19 °C) in Puerto Montt (41°S), Central Southern Chile (09/2006-02/2007; 5 months). Female crabs uniformly produced up to 3 viable egg-masses within 4 1/2 months in Antofagasta and in Puerto Montt (at 19 °C). The second egg-mass was observed 62.5 days (± 7.6; N = 7) after the oviposition of the first clutch and a third egg-mass followed 73.5 days (± 12.5; N = 11) later in Antofagasta (at 16-23 °C). Comparably, a second oviposition took place 64.4 days (± 9.8, N = 5) after the first clutch and a third, 67.0 days (± 2.8, N = 2), thereafter, at 19 °C in Puerto Montt. At the two lower temperatures (16 and 12 °C) in Puerto Montt a second egg-mass was extruded after 82.8 days (± 28.9; N = 4) and 137 days (N = 1), respectively. The duration of egg-development from oviposition until larval hatching decreased from 65 days at 12.5 °C to 22.7 days at the observed upper temperature threshold of 22 °C. Based on the derived relationship between temperature and the duration of egg-development (y = 239.3175e− 0.107x; N = 21, r2 = 0.83) and data on monthly percentages of ovigerous females from field studies, the annual number of egg-masses of C. setosus was calculated. This analysis revealed an annual output of about one egg-mass close to the species northern and southern distributional limits in Casma (9°S) and Ancud (43°S), respectively, while at Coquimbo (29°S) about two and in Concepción (36°S) more than 3 egg-masses are produced per year.  相似文献   

17.
Facultative diapause, a strategy that allows insects to initiate additional generations when conditions are favorable or to enter diapause when they are not, has a profound effect on the ecology and evolution of species. Most previous studies have concentrated on the role of photoperiod and temperature in inducing facultative diapause in insects. In contrast, here we studied pupal diapause mediated by larval host plants in the cotton bollworm Helicoverpa armigera, and confirmed that pupal weight is a critical factor. Two groups of third instar H. armigera larvae, kept at 25 °C with L:D = 8:16 and 20 °C with photoperiod of L:D = 8:16, respectively, were fed on six host plants and on artificial diet (as a control) to determine how larval host plants affect diapause incidence and related traits (such as pupal weight and developmental duration). The data showed larval host plants affected diapause incidence significantly and the effects could be masked by low temperature. Further analysis showed that pupal size, not the length of the sensitive stage, affected the decision to enter diapause. In a further experiment, third-instar to final-stage larvae deprived of artificial diet for 2 days demonstrated a direct relationship between pupal weight and diapause incidence. These results suggest that larval host plants, by affecting pupal size, may influence diapause occurrence in H. armigera. This has important adaptive significance for both over-wintering survival and the possibility for completing an additional generation.  相似文献   

18.
Early life history patterns were studied in the dominant euphausiids from the northern Gulf of Alaska (GOA) in 2001-2004. Gravid females of Thysanoessa inermis were observed in April and May. Brood size varied from 10 to 1021 eggs with an average of 138 ± 19 (95% CI) eggs female− 1. Most gravid females started to release eggs within the first 2 days of incubation. The average number of eggs released per female was similar in incubation Day 1 and 2, but significantly smaller on Day 3 and 4. About 25% of the females were continuously releasing eggs over 3 days rather than producing a single distinctive brood. In contrast, gravid females of Euphausia pacifica were observed from early July through October. Most gravid females released eggs on the first day of observation, while only 2% of females produced eggs repeatedly. Brood size varied from 20 to 246 eggs with an average of 102 ± 12 (95% CI) eggs female− 1. The relationship between E. pacifica brood size and ambient chlorophyll-a concentration was sigmoidal (r2 = 0.73), with food saturated brood size of 144 ± 14(SE, P < 0.001) eggs, and half-saturation occurring at 0.46 ± 0.02(SE, P < 0.001) mg chlorophyll-a m− 3. The average interbrood interval of E. pacifica reared at 12 °C and satiated food conditions in the laboratory was ∼ 8 days, suggesting their potential individual fecundity in the GOA was 1148-1530 eggs per spawning season. Hatching and early development (from egg to furcilia stage) was studied under 5 °C, 8 °C and 12 °C. Hatching was nearly synchronous and lasted 3-6 h, depending on incubation temperature. Development times from egg to the first furcilia stage ranged between 20 and 33 days for T. inermis, and 15 and 45 days for E. pacifica at 12 °C and 5 °C, respectively.  相似文献   

19.
The large edible spider crab Maja brachydactyla Balss, 1922, an overexploited coastal fishery resource in Galicia (NW Spain), is considered as a potential aquaculture candidate. Patterns of its larval growth were studied under controlled laboratory conditions (constant 18 ± 1 °C; 36‰ salinity; photoperiod ca. 12:12 h; lipid-enriched Artemia metanauplii provided as food). From hatching through complete larval development and metamorphosis to the first juvenile crab instar, changes in carapace size, dry weight (DW), ash content, elemental composition (carbon, hydrogen, nitrogen; CHN), and proximate biochemical composition (total proteins, lipids, carbohydrates; Pr, L, Ch) were measured in successive stages (zoea I, II, megalopa, crab I). Body size may be described as a linear function of the number of molting cycles, whereas the amounts of DW, CHN, Pr, L, and Ch per individual increased exponentially (3 to 9 fold). The highest growth rates were observed in L, C and H, the lowest in DW, Pr and N. As a consequence of these patterns, the C:N mass ratio as well as the fractions of L, C and H (in % of DW) increased significantly, while those of Pr and N decreased from 26% to 16% of DW. Throughout development, however, Pr remained the principal biochemical component of total DW. Positive correlations between biochemical and CHN data allow for estimates of Pr from N and of L from C values per individual. The patterns of larval growth observed in M. brachydactyla are, in general, similar to those previously described for other brachyuran crabs with a planktotrophic mode of larval development.  相似文献   

20.
Most studies on behavioural contributions to dispersal and recruitment during early life history stages of fishes have focused on coral reef species. For cold ocean environments, high variation in seasonal temperature and development times suggest that parallel studies on active behaviour are needed for cold-water species. Thus, we examined the critical swimming speed (Ucrit) of marine fish larvae from 2 contrasting species: Gadus morhua (Atlantic cod) and Myoxocephalus scorpius (shorthorn sculpin), a pelagic and bottom spawner respectively. Within-species comparisons showed that sculpin reared at 6 °C had lower initial Ucrit values, but a faster Ucrit increase through development compared with 3 °C conspecifics, ultimately resulting in faster critical swimming speeds at metamorphosis (10.5 vs. 9.1 cm·s− 1). In contrast, although cod larvae reared at 10 °C were faster swimmers at first feeding than 6 °C fish, temperature differences were absent after the first week. These results show that temperature influences the trajectory of larval critical swimming speed development, but that the relationship is species-specific. Although 6 °C sculpin and cod of similar length had equivalent Ucrit values, the smaller size of cod at hatch (5.3 vs. 10.8 mm for sculpin) resulted in much lower age-specific Ucrit values for cod. These data have significant implications for how swimming activity of the two species might affect dispersal, particularly in the first few weeks post-hatch. Overall, our data suggest that temperature during larval development influences the swimming capacity of cold-water marine fishes, and has important ramifications for biophysical models of dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号