首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the effect of whole-ecosystem manipulations of predator removal and nutrient enrichment on saltmarsh macroinfauna in the Plum Island Estuary, Massachusetts. Nitrate and phosphate loading rates were increased 10× above background levels in experimental creeks, and we significantly reduced (by 60%) the abundance of the killifish, Fundulus heteroclitus, a key predator in this system. Two creek pairs were manipulated; Creek Pair 1 for three growing seasons and Creek Pair 2 for one. Infaunal responses were examined in four habitats along the inundation gradient: mudflat, creek wall, Spartina alterniflora, and S. patens habitats. Although benthic microalgae increased synergistically in our treatments, we detected no long-term, population-level numerical response by any taxon. Similarly, no long-term species diversity or community responses were observed. However, nutrient enrichment increased the population biomass of the polychaete Manayunkia aestuarina in the creek wall habitat and the oligochaete Cernosvitoviella immota in the S. alterniflora habitat. No numerical or biomass responses of infauna were detected in predator removal treatments although indirect effects associated with killifish reduction may have contributed to an ephemeral interaction between nutrient addition and predator reduction in S. patens habitat. Our data suggest that population and community responses between benthic microalgae and macroinfauna are not tightly coupled even though some species benefit from increased benthic algae biomass by achieving larger body size.  相似文献   

2.
The effect of chronic nutrient enrichment on benthic meiofauna was examined in a whole-ecosystem experiment conducted in salt marshes in the Plum Island watershed of northeastern Massachusetts, USA. We compared abundances of total meiofauna, nematodes, copepods, ostracods, and annelids including Manayunkia aestuarina, in fertilized (where N and P was increased 15× in incoming tidal water throughout each growing season for 6 years) and reference marsh creeks to test for bottom-up responses. Although some responses to nutrient enrichment were evident, results did not match our expectations of strong increases in abundance. Variation in abundance between nutrient-enriched and reference creeks was detected in all three subhabitats but responses were inconsistent and variable over time, suggesting that natural variability was greater than variation induced by fertilization. Our results showed an overall weak negative correlation between meiofauna abundance and benthic microalgae (BMA) biomass partly because the BMA response to nutrient enrichment was relatively small and perhaps limited by grazing macrofauna and nekton. Our results suggest a better mechanistic understanding of the relationship between BMA and meiofaunal abundance is needed to fully understand how nutrient enrichment affects meiofauna.  相似文献   

3.
Benthic microalgal communities are important components of estuarine food webs and make substantial contributions to coastal materials cycling. Nitrogen is generally the limiting factor for marine primary production; however other factors can limit benthic primary producers because of their access to the additional nutrients found in sediment porewater. Field and laboratory experiments were conducted to test the hypothesis that water column nitrogen supply affects estuarine sandflat benthic microalgal community structure and function. Our field and mesocosm experiments assessed changes at both the population and functional group levels. Simulated water column nitrogen additions increased maximum community photosynthesis in most cases (Pbmax from photosynthesis vs. irradiance curves). Additional changes that resulted from nitrogen additions were decreases in porewater phosphate, increases in porewater ammonium, shifts in community composition from N2 fixing cyanobacteria toward diatoms, and detectable, though not statistically significant increases in biomass (as chlorophyll a). Results from field and laboratory experiments were quite similar, suggesting that laboratory experiments support accurate predictions of the response of intertidal benthic microalgae to changes in water column nutrient conditions.  相似文献   

4.
The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10?days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass.  相似文献   

5.
The effects of herbivores and their interactions with nutrient availability on primary production and plant community composition in grassland systems is expected to vary with herbivore type. We examined the effects of invertebrate and small vertebrate herbivores and their interactions with nutrient availability on grassland plant community composition and aboveground biomass in a tallgrass prairie ecosystem. The abundance of forbs relative to grasses increased with invertebrate herbivore removals. This increase in forb abundance led to a shift in community composition, where invertebrate removals resulted in greater plant species evenness as well as a divergence in composition among plots. In contrast, vertebrate herbivore removals did not affect plant community composition or aboveground biomass. Nutrient additions alone resulted in a decrease in plant species richness and an increase in the abundance of the dominant grass, but the dominant grass species did not greatly increase in abundance when nutrient additions were combined with invertebrate removals. Rather, several subdominant forbs came to dominate the plant community. Additionally, the combined nutrient addition and invertebrate herbivore removal treatment increased forb biomass, suggesting that invertebrate herbivores suppress the responses of forb species to chronic nutrient additions. Overall, the release of forbs from invertebrate herbivore pressure may result in large shifts in species composition, with consequences for aboveground biomass and forage quality due to altered grass:forb ratios in grassland systems.  相似文献   

6.
We evaluated how changes in nutrient supply altered the composition of epiphytic and benthic microalgal communities in a Thalassia testudinum (turtle grass) bed in Florida Bay. We established study plots at four sites in the bay and added nitrogen (N) and phosphorus (P) to the sediments in a factorial design. After 18, 24, and 30 months of fertilization we measured the pigment concentrations in the epiphytic and benthic microalgal assemblages using high performance liquid chromatography. Overall, the epiphytic assemblage was P-limited in the eastern portion of the bay, but each phototrophic group displayed unique spatial and temporal responses to N and P addition. Epiphytic chlorophyll a, an indicator of total microalgal load, and epiphytic fucoxanthin, an indicator of diatoms, increased in response to P addition at one eastern bay site, decreased at another eastern bay site, and were not affected by P or N addition at two western bay sites. Epiphytic zeaxanthin, an indicator of the cyanobacterial/coralline red algae complex, and epiphytic chlorophyll b, an indicator of green algae, generally increased in response to P addition at both eastern bay sites but did not respond to P or N addition in the western bay. Benthic chlorophyll a, chlorophyll b, fucoxanthin, and zeaxanthin showed complex responses to N and P addition in the eastern bay, suggesting that the benthic assemblage is limited by both N and P. Benthic assemblages in the western bay were variable over time and displayed few responses to N or P addition. The contrasting nutrient limitation patterns between the epiphytic and benthic communities in the eastern bay suggest that altering nutrient input to the bay, as might occur during Everglades restoration, can shift microalgal community structure, which may subsequently alter food web support for upper trophic levels.  相似文献   

7.
Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies the response to macroalgal detrital enrichment of sediment biogeochemical properties, microphytobenthos and macrofauna assemblages. A field manipulative experiment was done on an intertidal sandflat (Oosterschelde estuary, The Netherlands). Lugworms were deliberately excluded from 1× m sediment plots and different amounts of detrital Ulva (0, 200 or 600 g Wet Weight) were added twice. Sediment biogeochemistry changes were evaluated through benthic respiration, sediment organic carbon content and porewater inorganic carbon as well as detrital macroalgae remaining in the sediment one month after enrichment. Microalgal biomass and macrofauna composition were measured at the same time. Macroalgal carbon mineralization and transfer to the benthic consumers were also investigated during decomposition at low enrichment level (200 g WW). The interaction between lugworm exclusion and detrital enrichment did not modify sediment organic carbon or benthic respiration. Weak but significant changes were instead found for porewater inorganic carbon and microalgal biomass. Lugworm exclusion caused an increase of porewater carbon and a decrease of microalgal biomass, while detrital enrichment drove these values back to values typical of lugworm-dominated sediments. Lugworm exclusion also decreased the amount of macroalgae remaining into the sediment and accelerated detrital carbon mineralization and CO2 release to the water column. Eventually, the interaction between lugworm exclusion and detrital enrichment affected macrofauna abundance and diversity, which collapsed at high level of enrichment only when the lugworms were present. This study reveals that in nature the role of this ecosystem engineer may be variable and sometimes have no or even negative effects on stability, conversely to what it should be expected based on current research knowledge.  相似文献   

8.
Armitage AR  Fong P 《Oecologia》2004,139(4):560-567
We evaluated the effects of nutrient addition on interactions between the benthic microalgal community and a dominant herbivorous gastropod, Cerithidea californica (California horn snail), on tidal flats in Mugu Lagoon, southern California, USA. We crossed snail and nutrient (N and P) addition treatments in enclosures on two tidal flats varying from 71 to 92% sand content in a temporally replicated experiment (summer 2000, fall 2000, spring 2001). Diatom biomass increased slightly (~30%) in response to nutrient treatments but was not affected by snails. Blooms of cyanobacteria (up to 200%) and purple sulfur bacteria (up to 400%) occurred in response to nutrient enrichment, particularly in the sandier site, but only cyanobacterial biomass decreased in response to snail grazing. Snail mortality was 2–5 times higher in response to nutrient addition, especially in the sandier site, corresponding to a relative increase in cyanobacterial biomass. Nutrient-related snail mortality occurred only in the spring and summer, when the snails were most actively feeding on the microalgal community. Inactive snails in the fall showed no response to nutrient-induced cyanobacterial growths. This study demonstrated strongly negative upward cascading effects of nutrient enrichment through the food chain. The strength of this upward cascade was closely linked to sediment type and microalgal community composition.  相似文献   

9.
In estuaries, phytoplankton are exposed to rapidly changing conditions that may have profound effects on community structure and function. In these experiments, we evaluated the growth, productivity, and compositional responses of natural phytoplankton communities exposed to limiting nutrient additions and incubation conditions typical of estuarine habitats. Mesocosm bioassays were used to measure the short-term (2-day) growth rate, primary productivity, and group-specific biomass responses of the phytoplankton community in the Neuse River Estuary, North Carolina. A three-factor (mixing, sediment addition, and nutrient addition) experimental design was applied using 55-L mesocosm tanks. Growth rates were determined using the 14C photopigment radiolabeling method, and the abundance of algal groups was based on quantification of chemosystematic photopigments by HPLC. For Neuse River Estuary phytoplankton communities, stratified (nonmixed), turbid, and low-nitrate conditions favored increases in cryptomonad biomass. Mixed, turbid, high-nitrate conditions were favorable for increased primary productivity and chlorophytes, diatoms, and cyanobacteria. The highest community growth rates occurred under calm, high-nitrate conditions. This approach provided an assessment of the community-level phytoplankton responses and insights into the mechanisms driving blooms and bloom species in estuarine waters. The ability to rapidly alter growth rates to capitalize on conditions conducive for growth may play an important role in the timing, extent, and species involved with blooms in estuarine waters. Adaptive growth rate responses of individual species, as well as the community as a whole, further illustrate the sensitivity of estuarine ecosystems to excessive N inputs.  相似文献   

10.
Nutrient loading and climate change affect coastal ecosystems worldwide. Unravelling the combined effects of these pressures on benthic macrofauna is essential for understanding the future functioning of coastal ecosystems, as it is an important component linking the benthic and pelagic realms. In this study, we extended an existing model of benthic macrofauna coupled with a physical–biogeochemical model of the Baltic Sea to study the combined effects of changing nutrient loads and climate on biomass and metabolism of benthic macrofauna historically and in scenarios for the future. Based on a statistical comparison with a large validation dataset of measured biomasses, the model showed good or reasonable performance across the different basins and depth strata in the model area. In scenarios with decreasing nutrient loads according to the Baltic Sea Action Plan but also with continued recent loads (mean loads 2012–2014), overall macrofaunal biomass and carbon processing were projected to decrease significantly by the end of the century despite improved oxygen conditions at the seafloor. Climate change led to intensified pelagic recycling of primary production and reduced export of particulate organic carbon to the seafloor with negative effects on macrofaunal biomass. In the high nutrient load scenario, representing the highest recorded historical loads, climate change counteracted the effects of increased productivity leading to a hyperbolic response: biomass and carbon processing increased up to mid‐21st century but then decreased, giving almost no net change by the end of the 21st century compared to present. The study shows that benthic responses to environmental change are nonlinear and partly decoupled from pelagic responses and indicates that benthic–pelagic coupling might be weaker in a warmer and less eutrophic sea.  相似文献   

11.
Galveston Bay, Texas, is a large shallow estuary with a watershed that includes 60% of the major industrial facilities of Texas. However, the system exhibits low to moderate (2-20 μg l−1) microalgal biomass with sporadic phytoplankton blooms. Both nitrogen (N) and phosphate (P) limitation of phytoplankton growth have been proposed for the estuary. However, shifts between N and P limitation of algae growth may occur due to annual fluctuations in nutrient concentrations. The primary goal of this work was to determine the primary limiting nutrient for phytoplankton in Galveston Bay. Nutrient addition bioassays were used to assess short-term (1-2 days) phytoplankton responses (both biomass and community composition) to potentially limiting nutrients. The experimental bioassays were conducted over an annual cycle using natural water collected from the center to lower part of the estuary. Total phytoplankton biomass increased in the nitrate (10 μM) additions in 11 of the 13 bioassays, but no significant increases were detected in the phosphate (3 μM)-only additions. Bioassay results suggest that the phytoplankton community was usually not phosphate limited. All major groups increased in biomass following nitrate additions but diatoms increased in biomass at a faster rate than other groups, shifting the community composition toward higher relative abundance of diatoms. The results of this study suggest that pulsed N input events preferentially favor increases in diatom biomass in this estuary. The broader implications of this study are that N pulsing events, primarily due to river discharge, play an important role in structuring the phytoplankton community in the Galveston Bay estuary.  相似文献   

12.
13.
We examined the importance of temporal variability in top–down and bottom–up effects on the accumulation of stream periphyton, which are complex associations of autotrophic and heterotrophic microorganisms. Periphyton contributes to primary production and nutrient cycling and serves as a food resource for herbivores (grazers). Periphyton growth is often limited by the availability of nitrogen and phosphorus, and biomass can be controlled by grazers. In this study we experimentally manipulated nutrients and grazers simultaneously to determine the relative contribution of bottom–up and top–down controls on periphyton over time. We used nutrient diffusing substrates to regulate nutrient concentrations and an underwater electric field to exclude grazing insects in three sequential 16–17 day experiments from August to October in montane Colorado, USA. We measured algal biomass, periphyton organic mass, and algal community composition in each experiment and determined densities of streambed insect species, including grazers. Phosphorus was the primary limiting nutrient for algal biomass, but it did not influence periphyton organic mass across all experiments. Effects of nutrient additions on algal biomass and community composition decreased between August and October. Grazed substrates supported reduced periphyton biomass only in the first experiment, corresponding to high benthic abundances of a dominant mayfly grazer (Rhithrogena spp.). Grazed substrates in the first experiment also showed altered algal community composition with reduced diatom relative abundances, presumably in response to selective grazing. We showed that top–down grazing effects were strongest in late summer when grazers were abundant. The effects of phosphorus additions on algal biomass likely decreased over time because temperature became more limiting to growth than nutrients, and because reduced current velocity decreased nutrient uptake rates. These results suggest that investigators should proceed with caution when extending findings based on short‐term experiments. Furthermore, these results support the need for additional seasonal‐scale field research in stream ecology.  相似文献   

14.
Zonation of intertidal macrobenthos in the estuaries of Schelde and Ems   总被引:5,自引:0,他引:5  
Based on data, collected in 1980–1990, the intertidal benthic macrofauna of the Schelde and Ems estuaries was compared. The spatial occurrence of the benthic macrofauna along the salinity gradient, including the freshwater tidal area was emphasized. Both estuaries appeared to have a very similar species composition, especially at genus level. The higher number of species observed in the Schelde estuary was probably due to a greater habitat diversity. In both estuaries species diversity decreased with distance upstream. The total density did not vary along the estuarine gradient, whereas biomass is highest in the polyhaline zone.In both estuaries distinct intertidal benthic communities were observed along the salinity gradient: a marine community in the polyhaline zone, a brackish community in the mesohaline zone, and a third community in the oligohaline and freshwater tidal zones of the estuary. These three communities were very similar between both estuaries. Their main characteristics were discussed together with the occurrence and distribution of the dominant species.For the Schelde estuary and to a lesser extent also for the Ems estuary, there was evidence that anthropogenic stress had a negative effect on the intertidal macrobenthic communities of the oligohaline/freshwater tidal zone. Only Oligochaeta were dominating, whereas the very euryhaline and/or true limnetic species were missing. In the mesohaline zone, the Schelde estuary was dominated by large numbers of short-living, opportunistic species, whereas in the Ems estuary relatively more stable macrobenthic communities were observed. A comparison with some other European estuaries showed in general similar trends as those observed for the Schelde and Ems estuaries.  相似文献   

15.
Diatoms are important primary producers in shallow water environments. Few studies have assessed the importance of biological interactions in structuring these communities. In the present study, benthic diatom community structure in relation to manipulated food webs was assessed using in situ mesocosms, whereby predator‐free environments and environments comprising two different fish species were assessed. Zooplankton abundance, settled algal biomass and the diatom community were monitored over a 12‐day period across each of the three trophic scenarios. Differences among treatments over time were observed in zooplankton abundances, particularly copepods. Similarly, the benthic diatom community structure changed significantly over time across the three trophic treatments. However, no differences in total algal biomass were found among treatments. This was likely the result of non‐diatom phytoplankton contributions. We propose that the benthic diatom community structure within the mesocosms was influenced by trophic cascades and potentially through direct consumption by the fish. The study highlights that not only are organisms at the base of the food web affected by predators at the top of the food web, but that predator identity is potentially an important consideration for predator–prey interaction outcomes with consequences for multiple trophic levels.  相似文献   

16.
A simple bottom–up hypothesis predicts that plant responses to nutrient addition should determine the response of consumers: more productive and less diverse plant communities, the usual result of long‐term nutrient addition, should support greater consumer abundances and biomass and less consumer diversity. We tested this hypothesis for the response of an aboveground arthropod community to an uncommonly long‐term (24‐year) nutrient addition experiment in moist acidic tundra in arctic Alaska. This experiment altered plant community composition, decreased plant diversity and increased plant production and biomass as a deciduous shrub, Betula nana, became dominant. Consistent with strong effects on the plant community, nutrient addition altered arthropod community composition, primarily through changes to herbivore taxa in the canopy‐dwelling arthropod assemblage and detritivore taxa in the ground assemblage. Surprisingly, however, the loss of more than half of plant species was accompanied by negligible changes to diversity (rarefied richness) of arthropod taxa (which were primarily identified to family). Similarly, although long‐term nutrient addition in this system roughly doubles plant production and biomass, arthropod abundance was either unchanged or decreased by nutrient addition, and total arthropod biomass was unaffected. Our findings differ markedly from the handful of terrestrial studies that have found bottom‐up diversity cascades and productivity responses by consumers to nutrient addition. This is probably because unlike grasslands and salt marshes (where such studies have historically been conducted), this arctic tundra community becomes less palatable, rather than more so, after many years of nutrient addition due to increased dominance of B. nana. Additionally, by displacing insulating mosses and increasing the cover of shrubs that cool and shade the canopy microenvironment, fertilization may displace arthropods keenly attuned to microclimate. These results indicate that terrestrial arthropod assemblages may be more constrained by producer traits (i.e. palatability, structure) than they are by total primary production or producer diversity.  相似文献   

17.
Sediment quality of North Carolina estuaries was evaluated using synoptic data on sediment chemistry, toxicity, and macroinfaunal community structure from 175 subtidal stations sampled during the summers of 1994–1997. The study area included Currituck, Albemarle, and Pamlico Sounds; estuarine portions of major rivers (e.g., Chowan, Roanoke, Tar-Pamlico, Neuse, New, Cape Fear); and numerous smaller tributaries and coastal embayments between the Virginia and South Carolina borders. A probabilistic sampling design permitted statistical estimation of the spatial extent of degraded versus non-degraded condition across these estuaries. Over half (54 ± 7%) of the surveyed area had high sediment quality characterized by healthy benthic assemblages and low levels of sediment contamination and toxicity. The remaining 46% showed evidence of significant stress in one or more of the above sediment-quality-triad components. While this is a sizable area, portions of it (27 ± 6%) were represented by sites with no connection between presence of stressors and adverse biological responses. Only 19% of the total area showed evidence of an impaired benthos coupled to significant pollution exposure (high sediment contamination, toxicity, or both). Impaired benthic condition was more closely linked to sediment contamination than to low dissolved oxygen (based on instantaneous oxygen measurements). The most pervasive contaminants were the metals arsenic, mercury, chromium, and nickel; the pesticides lindane, dieldrin, DDT, and DDT derivatives; and total PCBs. Degraded condition in all three components of the sediment quality triad co-occurred in <10% of the study area, suggesting that strong contaminant-induced effects on the benthos are limited to a small (yet ecologically significant) percentage of total estuarine area. The spatial extent of sediment contamination and toxicity was much less in these estuaries in comparison to other U.S. coastal regions where similar studies have been performed.  相似文献   

18.
The effects of nutrient additions on aquatic systems have been frequently studied. Typically, these studies report an increase in algal biomass and a decrease in species diversity in response to nutrient increases. However, it is not clear why comparable aquatic communities respond differently to nutrient additions of similar magnitudes. We tested the effects of the rate and amount of nutrient load on community structure in 760 l mesocosms; treatments manipulated the total amount of nutrients that entered an aquatic system (small versus large load) and the temporal pattern in which these nutrients entered the system (annually, monthly, or weekly). We found that the effects of the loading rate of nutrients were at least as important as the total amount of the nutrients for several response variables. Although these effects were manifested in several ways, the response to the different rates was most prominent within groups of the primary producers, which showed large shifts in composition and abundance. Handling editor: L. M. Bini  相似文献   

19.
The quantitative development and uptake of radio-labelled phytodetritus in benthic macro- and meiofauna was studied in a 5-month experiment in two mesocosms, one of which received a single large nutrient (N and P) addition, while the other served as control. In reponse to the 12-fold increase in phytoplankton biomass noted after 2 weeks and the resulting enhanced accumulation of fresh phytodetritus, the abundance and biomass of the polychaetes Mediomastus ambiseta and Polydora ligni and the mud anemone Cerianthiopsis americanus increased significantly in the enriched tank. The abundances of P. ligni and M. ambiseta increased 37-fold and 12-fold, respectively, within the first two months of the experiment. No other macrofaunal or meiofaunal taxa showed any consistent positive quantitative response to the increased input of phytodetritus. In the control tank no considerable change in the benthic community structure was noted. The measurements of radio-label uptake within the benthic fauna showed that the quantitatively most successful species utilized fresh phytodetritus highly. However, a high degree of utilization of fresh detritus was also shown by taxa that did not respond quantitatively within the 5 month of the experiment, and almost all taxa showed a preference for fresh detritus over older organic material. Within the benthic meiofauna, kinorhynchs and especially foraminiferans showed a remarkably low preference for fresh detritus. A budget calculation comparing the total amounts of labelled organic carbon bound in animal tissue and in the sediment indicated that at any time at least 75% of this carbon was available for assimilation by deposit feeders. These results suggest that factors other than the availability of food, such as competition for space by a few opportunistic macrofauna species, limited the response of other species within this benthic community to the increased input of phytodetritus.  相似文献   

20.
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m–2), and productive (up to 110 mg O2 m–2 h–1) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92–995 mg chl a m–2) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.Communicated by Environmental Editor, B.C. Hatcher  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号