首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Incorporation of tritiated thymidine into acid-precipitable material was used to measure the rate of DNA synthesis in secondary cultures of human diploid fibroblasts. Confluent cultures of human diploid fibroblasts, which are synchronized in the G1 phase due to contact inhibition, were released from growth inhibition either by the addition of fresh medium to the cultures or by trypsinization and replating at nonconfluent densities. Either treatment resulted in a synchronous wave of DNA synthesis beginning 10–15 h after treatment and peaking at 20–25 h. In confluent cultures stimulated by fresh medium, either the addition of 0.25 mM N6, O2-dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP) to the medium in the interval 4–8 h after stimulation or the replacement of the fresh medium in that same 4 h interval with the depleted medium present on the cells for the 2 day period before stimulation delayed the synchronous onset of DNA synthesis in the cultures by about 4 h. In nonconfluent cultures freshly seeded from trypsinized confluent cultures, this same depleted medium obtained after a 2 day incubation of fresh medium on confluent cultures is shown to support the progress of the cells into S phase; however, the addition of 0.25 mM db-cAMP to the medium 3½ h after replating still partially prevented the initiation of DNA synthesis in the cultures. The results are discussed in terms of the role of serum and cAMP in the control of cell growth in fibroblast cultures.  相似文献   

2.
The time sequence of nuclear pore frequency changes was determined for phytohemagglutinin (PHA)-stimulated human lymphocytes and for HeLa S-3 cells during the cell cycle. The number of nuclear pores/nucleus was calculated from the experimentally determined values of nuclear pores/µ2 and the nuclear surface. In the lymphocyte system the number of pores/nucleus approximately doubles during the 48 hr after PHA stimulation. The increase in pore frequency is biphasic and the first increase seems to be related to an increase in the rate of protein synthesis. The second increase in pores/nucleus appears to be correlated with the onset of DNA synthesis. In the HeLa cell system, we could also observe a biphasic change in pore formation. Nuclear pores are formed at the highest rate during the first hour after mitosis. A second increase in the rate of pore formation corresponds in time with an increase in the rate of nuclear acidic protein synthesis shortly before S phase. The total number of nuclear pores in HeLa cells doubles from ~2000 in G1 to ~4000 at the end of the cell cycle. The doubling of the nuclear volume and the number of nuclear pores might be correlated to the doubling of DNA content. Another correspondence with the nuclear pore number in S phase is found in the number of simultaneously replicating replication sites. This number may be fortuitous but leads to the rather speculative possibility that the nuclear pore might be the site of initiation and/or replication of DNA as well as the site of nucleocytoplasmic exchange. That is, the nuclear pore complex may have multiple functions.  相似文献   

3.
α-Amanitin acts in vitro and in vivo as a selective inhibitor of nucleoplasmic RNA polymerases. Treatment of mice with low doses of α-amanitin causes the following changes in the synthesis, maturation and nucleocytoplasmic transfer of liver RNA species. 1. The synthesis of the nuclear precursor of mRNA is strongly inhibited and all electrophoretic components are randomly affected. The labelling of cytoplasmic mRNA is blocked. These effects may be correlated with the rapid and lasting inhibition of nucleoplasmic RNA polymerase. 2. The synthesis and maturation of the nuclear precursor of rRNA is inhibited within 30min. (a) The initial effect is a strong (about 80%) inhibition of the early steps of 45S precursor rRNA maturation. (b) The synthesis of 45S precursor rRNA is also inhibited and the effect increases from about 30% at 30min to more than 70% at 150min. (c) The labelling of nuclear and cytoplasmic 28S and 18S rRNA is almost completely blocked. The labelling of nuclear 5S rRNA is inhibited by about 50%, but that of cytoplasmic 5S rRNA is blocked. (d) The action of α-amanitin on the synthesis of precursor rRNA cannot be correlated with the slight gradual decrease of nucleolar RNA polymerase activity (only 10–20% inhibition at 150min). (e) The inhibition of precursor rRNA maturation and synthesis precedes the ultrastructural lesions of the nucleolus detected by standard electron microscopy. 3. The synthesis of nuclear 4.6S precursor of tRNA is not affected by α-amanitin. However, the labelling of nuclear and cytoplasmic tRNA is decreased by about 50%, which indicates an inhibition of precursor tRNA maturation. The results of this study suggest that the synthesis and maturation of the precursor of rRNA and the maturation of the precursor of tRNA are under the control of nucleoplasmic gene products. The regulator molecules may be either RNA or proteins with exceedingly fast turnover.  相似文献   

4.
The nuclear pore complex (NPC) mediates communication between the cytoplasm and nucleus in eukaryotic cells. Active transport of large polypeptides as well as passive diffusion of smaller (≈10 kD) macromolecules through the NPC can be inhibited by depletion of intracellular Ca2+ stores. However, the physiological relevance of this process for the regulation of nucleocytoplasmic trafficking is not yet clear. We expressed green fluorescent protein (GFP)–tagged glucocorticoid receptor (GR) and mitogen-activated protein (MAP) kinase–activated protein kinase 2 (MK2) to study the effect of Ca2+ store depletion on active transport in HM1 cells, a human embryonic kidney cell line stably transfected with the muscarinic M1 receptor. Dexamethasone-induced nuclear import of GR-GFP and anisomycin-induced nuclear export of GFP-MK2 was monitored by confocal microscopy. We found that store depletion by carbachol, thapsigargin or ionomycin had no effect on GR-GFP import, whereas pretreatment with 1,2-bis-(o-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid–acetoxymethyl ester (BAPTA-AM) attenuated import significantly. Export of GFP-MK2 was not influenced by any pretreatment. Moreover, carbachol stimulated GFP-MK2 translocation to the cytoplasm in the absence of anisomycin. These results demonstrate that Ca2+ store depletion in intact HM1 cells is not directly linked to the inhibition of active protein transport through the NPC. The inhibition of GR-GFP import but not GFP-MK2 export by BAPTA-AM presumably involves a depletion-independent mechanism that interferes with components of the nuclear import pathway.  相似文献   

5.
The effect of selective inhibition of mitochondrial protein synthesis by chloramphenicol at 40 or 200 µg/ml on the formation of mitochondria in HeLa cells was investigated. HeLa cells, under the conditions used in the present work, grow at a decreasing rate for at least four cell generations in the presence of 40 µg/ml chloramphenicol, and for two generations in the presence of 200 µg/ml chloramphenicol. The progressive cell growth inhibition which begins after 2 days of exposure of the cells to 40 µg/ml chloramphenicol is immediately or gradually reversible, upon removal of the drug, for periods up to at least 8 days of treatment, though there is a progressive loss of cloning efficiency. In cells which have been treated for 6–7 days with 40 or 200 µg/ml of chloramphenicol, mitochondrial protein synthesis occurs at a normal or near-normal rate 1 h after removal of the drug. Mitochondria increase normally in number and show a normal size and amount of cristae in the presence of either concentration of drug. However, in 4–5% of the mitochondrial profiles the cristae appear to be arranged in unusual, circular, looped or whorled configuration.  相似文献   

6.
1. When isolated kidneys from fed rats were perfused with glutamine the rate of ammonia release at pH7.4 (110–360μmol/h per g dry wt.) was one to two times that of glutamine removal. Glucose formation from 5mm-glutamine was 16μmol/h per g. If kidneys were perfused with glutamine at pH7.1 (10–13mm-sodium bicarbonate) there was no increase in glutamine removal or in the formation of ammonia or glucose. 2. When isolated kidneys from fed rats were perfused with glutamate at pH7.4, glucose formation was 59μmol/h per g, glutamine formation was 182μmol/h per g and ammonia release was negligible. At pH7.1 glutamine synthesis was inhibited and formation of ammonia and glucose were increased. 3. In perfused kidneys from acidotic rats, which had received 1.5% (w/v) NH4Cl to drink for 7–10 days, gluconeogenesis from glutamine was enhanced (101μmol/h per g). Glutamine removal and ammonia formation were also increased, compared with the rates in perfused kidney from normal rats. The extra glutamine consumed was equivalent to the extra glucose formed. 4. When the kidney from the 7–10-day-acidotic rat was perfused with glutamate gluconeogenesis was increased (113μmol/h per g). Synthesis of glutamine was decreased, and ammonia release was approximately equal to the rate of glutamate removal. 5. The time-course of these metabolic alterations was investigated after the rapid induction of acidosis by infusion of 0.25m-HCl into the right side of the heart. The increase in gluconeogenesis from glutamine developed gradually over several hours. When kidneys from 6h-acidotic rats were perfused with glutamate, formation of glucose and glutamine were both rapid. 6. In acidotic rat kidneys perfused with glutamine, tissue concentrations of glutamate and glucose 6-phosphate were increased compared with those in control perfused kidneys from non-acidotic rats. 7. The results are discussed in terms of control of the renal metabolism of glutamine. In particular, it is suggested that in acidotic rats glucose formation is the major fate of the carbon of the extra glutamine utilized by the kidney, and that inhibition of glutamine synthetase could contribute to the increase in intracellular ammonia concentration in the kidney.  相似文献   

7.
We have monitored fusion between cell pairs consisting of a single human immunodeficiency virus–1 (HIV-1) envelope glycoprotein–expressing cell and a CD4+ target cell, which had been labeled with both a fluorescent lipid in the membrane and a fluorescent solute in the cytosol. We developed a new three-color assay to keep track of the cell into which fluorescent lipids and/or solutes are redistributed. Lipid and solute redistribution occur as a result of opening a lipid-permissive fusion pore and a solute-permissive fusion pore (FPS), respectively. A synthetic peptide (DP178) corresponding to residues 643–678 of the HIV-1LAI gp120-gp41 sequence (Wild, C.T., D.C. Shugars, T.K. Greenwell, C.B. McDanal, and T.J. Matthews. 1994. Proc. Natl. Acad. Sci. USA. 91:12676–12680) completely inhibited FPS at 50 ng/ml, whereas at that concentration there was 20–30% fusion activity measured by the lipid redistribution. The differences detected in lipid mixing versus contents mixing are maintained up to 6 h of coculture of gp120-41–expressing cells with target cells, indicating that DP178 can “clamp” the fusion complex in the lipid mixing intermediate for very long time periods. A peptide from the NH2-terminal of gp41, DP107, inhibited HIV-1LAI gp120-gp41–mediated cell fusion at higher concentrations, but with no differences between lipid and aqueous dye redistribution at the different inhibitor concentrations. The inhibition of solute redistribution by DP178 was complete when the peptide was added to the fusion reaction mixture during the first 15 min of coculture. We have analyzed the inhibition data in terms of a fusion pore dilation model that incorporates the recently determined high resolution structure of the gp41 core.  相似文献   

8.
Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71–110, 158–167, 180–203, and 264–286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71–110 and HlyAΔ264–286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158–167 and HlyAΔ180–203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71–110 and HlyAΔ264–286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71–110, and HlyAΔ264–286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures.  相似文献   

9.
Exposure of human peripheral blood monocytes to free arachidonic acid (AA) results in the rapid induction of lipid droplet (LD) formation by these cells. This effect appears specific for AA in that it is not mimicked by other fatty acids, whether saturated or unsaturated. LDs are formed by two different routes: (i) the direct entry of AA into triacylglycerol and (ii) activation of intracellular signaling, leading to increased triacylglycerol and cholesteryl ester formation utilizing fatty acids coming from the de novo biosynthetic route. Both routes can be dissociated by the arachidonyl-CoA synthetase inhibitor triacsin C, which prevents the former but not the latter. LD formation by AA-induced signaling predominates, accounting for 60–70% of total LD formation, and can be completely inhibited by selective inhibition of the group IVA cytosolic phospholipase A2α (cPLA2α), pointing out this enzyme as a key regulator of AA-induced signaling. LD formation in AA-treated monocytes can also be blocked by the combined inhibition of the mitogen-activated protein kinase family members p38 and JNK, which correlates with inhibition of cPLA2α activation by phosphorylation. Collectively, these results suggest that concomitant activation of p38 and JNK by AA cooperate to activate cPLA2α, which is in turn required for LD formation possibly by facilitating biogenesis of this organelle, not by regulating neutral lipid synthesis.  相似文献   

10.
The effect of growth of Tetrahymena pyriformis in ethidium bromide (EthBr) on the structure and synthesis of mitochondrial DNA (mtDNA) has been investigated. During the first 5 h of growth in EthBr, mtDNA synthesis is inhibited 95% or more. After 10–15 h, this block is partially released and large numbers of replicating molecules accumulate, indicating that inhibition by EthBr primarily affects the rate of chain growth and not the initiation of new rounds of replication. The accumulated molecules sediment more rapidly than normal Tetrahymena mtDNA and do not contain enough single-strand regions to distinguish them from normal Tetrahymena mtDNA when banded in buoyant CsCl or NaI gradients. Electron microscopy shows that the predominant species in this rapidly sedimenting DNA is a linear molecule containing one symmetrical double-stranded replication loop of varying size located at its center. No degradation of mtDNA from cells grown in EthBr was detected in alkaline velocity gradients.  相似文献   

11.
The relationship between nuclear and plastid DNA synthesis in cultured tobacco cells was measured by following3H-thymidine incorporation into total cellular DNA in the absence or presence of specific inhibitors. Plastid DNA synthesis was determined by hybridization of total radiolabeled cellular DNA to cloned chloroplast DNA. Cycloheximide, an inhibitor of nuclear encoded cytoplasmic protein synthesis, caused a rapid and severe inhibition of nuclear DNA synthesis and a delayed inhibition of plastid DNA synthesis. By contrast, chloramphenicol which only inhibits plastid and mitochondrial protein production, shows little inhibition of either nuclear or plastid DNA synthesis even after 24 h of exposure to the cells. The inhibition of nuclear DNA synthesis by aphidicolin, which specifically blocks the nuclear DNA polymeraseα, has no significant effect on plastid DNA formation. Conversely, the restraint of plastid DNA synthesis exerted by low levels of ethidium bromide has no effect on nuclear DNA synthesis. These results show that the synthesis of plastid and nuclear DNA are not coupled to one another. However, both genomes require the formation of cytoplasmic proteins for their replication, though our data suggest that different proteins regulate the biosynthesis of nuclear and plastid DNA.  相似文献   

12.
Small angle x-ray diffraction revealed a strong influence of the N-terminal influenza hemagglutinin fusion peptide on the formation of nonlamellar lipid phases. Comparative measurements were made on a series of three peptides, a 20-residue wild-type X-31 influenza virus fusion peptide, GLFGAIAGFIENGWEGMIDG, and its two point-mutant, fusion-incompetent peptides G1E and G13L, in mixtures with hydrated phospholipids, either dipalmitoleoylphosphatidylethanolamine (DPoPE), or monomethylated dioleoyl phosphatidylethanolamine (DOPE-Me), at lipid/peptide molar ratios of 200:1 and 50:1. All three peptides suppressed the HII phase and shifted the Lα–HII transition to higher temperatures, simultaneously promoting formation of inverted bicontinuous cubic phases, QII, which becomes inserted between the Lα and HII phases on the temperature scale. Peptide-induced QII had strongly reduced lattice constants in comparison to the QII phases that form in pure lipids. QII formation was favored at the expense of both Lα and HII phases. The wild-type fusion peptide, WT-20, was distinguished from G1E and G13L by the markedly greater magnitude of its effect. WT-20 disordered the Lα phase and completely abolished the HII phase in DOPE-Me/WT-20 50:1 dispersions, converted the QII phase type from Im3m to Pn3m and reduced the unit cell size from ∼38 nm for the Im3m phase of DOPE-Me dispersions to ∼15 nm for the Pn3m phase in DOPE-Me/WT-20 peptide mixtures. The strong reduction of the cubic phase lattice parameter suggests that the fusion-promoting WT-20 peptide may function by favoring bilayer states of more negative Gaussian curvature and promoting fusion along pathways involving Pn3m phase-like fusion pore intermediates rather than pathways involving HII phase-like intermediates.  相似文献   

13.
The nuclear pore complex (NPC) is the exclusive gateway for traffic control across the nuclear envelope. Although smaller cargoes (less than 5–9 nm in size) can freely diffuse through the NPC, the passage of larger cargoes is restricted to those accompanied by nuclear transport receptors (NTRs). This selective barrier nature of the NPC is putatively associated with the intrinsically disordered, phenylalanine-glycine repeat-domains containing nucleoporins, termed FG-Nups. The precise mechanism underlying how FG-Nups carry out such an exquisite task at high throughputs has, however, remained elusive and the subject of various hypotheses. From the thermodynamics perspective, free energy analysis can be a way to determine cargo’s transportability because the traffic through the NPC must be in the direction of reducing the free energy. In this study, we developed a computational model to evaluate the free energy composed of the conformational entropy of FG-Nups and the energetic gain associated with binding interactions between FG-Nups and NTRs and investigated whether these physical features can be the basis of NPC’s selectivity. Our results showed that the reduction in conformational entropy by inserting a cargo into the NPC increased the free energy by an amount substantially greater than the thermal energy (≫kBT), whereas the free energy change was negligible (<kBT) for small cargoes (less than ~6 nm in size), indicating the size-dependent selectivity emerges from the entropic effect. Our models suggested that the entropy-induced selectivity of the NPC depends sensitively upon the physical parameters such as the flexibility and the length of FG-Nups. On the other hand, the energetic gain via binding interactions effectively counteracted the entropic reduction, increasing the size limit of transportable cargoes up to the nuclear pore size. We further investigated the geometric effect of the binding spot spatial distribution and found that the clustered binding spot distribution decreased the free energy more efficiently as compared to the scattered distribution.  相似文献   

14.
Resveratrol, a naturally occurring phytoalexin, has reported cardioprotective, anti-inflammatory, chemopreventative and antidiabetic properties. Several studies indicate the multiple effects of resveratrol on cellular function are due to its inhibition of class 1A phosphoinositide 3-kinase (PI3K) mediated signaling pathways, but it also activates AMP-activated protein kinase (AMPK). As sodium transport in the kidney via the Epithelial Sodium Channel (ENaC) is highly sensitive to changes in phosphoinositide signaling in the membrane and AMPK, we employed resveratrol to probe the relative effects of phosphatidylinositol species in the plasma membrane and AMPK activity and their impact on ENaC activity in mouse cortical collecting duct (mpkCCDc14) cells. Here we demonstrate that resveratrol acutely reduces amiloride-sensitive current in mpkCCDc14 cells. The time course and dose dependency of this inhibition paralleled depletion of the PI(3,4,5)P3 reporter (AKT-PH) in live-cell microscopy, indicating the early inhibition is likely mediated by resveratrol''s known effects on PI3K activity. Additionally, resveratrol induces a late inhibitory effect (4–24 hours) that appears to be mediated via AMPK activation. Resveratrol treatment induces significant AMPK activation compared with vehicle controls after 4 h, which persists through 16 h. Knockdown of AMPK or treatment with the AMPK inhibitor Compound C reduced the late phase of current reduction but had no effect on the early inhibitory activity of resveratrol. Collectively, these data demonstrate that resveratrol inhibits ENaC activity by a dual effect: an early reduction in activity seen within 5 minutes related to depletion of membrane PIP3, and a sustained late (4–24 h) effect secondary to activation of AMPK.  相似文献   

15.
The effect of prostaglandin E2 (PGE2) on fibroblast proliferation was examined. The presence of PGE2 for 24 h inhibited the growth of quiescent cells stimulated with serum, platelet-derived growth factor and macrophage-derived factors. Maximal inhibition of nuclear labeling with [3H]thymidine occurred at concentrations greater than 10−7 M. The inhibitory effect of PGE2 was less potent in exponentially growing cells and was not the result of conversion of PGE2 to PGA2 during incubation in growth medium. The G1 phase was determined to be 12–14 h in untreated cultures. The extent of growth inhibition by PGE2 was similar with addition of PGE2 at 0, 3, 6, or 9 h following restimulation of quiescent cell cultures. Approximately 25% of the cells that enter S phase are refractory to PGE2-induced growth inhibition. Short-term exposure to PGE2 (5 min and 30 min) caused substantial growth inhibition. The serum-induced proliferation was also inhibited by the cAMP analogue, dibutyrl cAMP. Our results suggest that PGE2 affects a distinct subpopulation of cells. Restimulation of quiescent cells treated with PGE2 for 24 h, indicated that release from PGE2 exposure is associated with prolongation of the G1 phase of the cell cycle.  相似文献   

16.
17.
1. DNA synthesis in Echinus esculentus eggs kept at 10°C takes place just after fusion, 0.75–1.5h after fertilization, and at telophase at about 2.67–3.33h after fertilization. 2. An increase in the thiol/thiol+disulphide ratio in acid extracts from washed nuclear fractions of the eggs is found at fusion, at early stages of mitosis and at telophase. When DNA is being synthesized, the relative amount of thiol in the extracts increases. 3. There are at least five thiol-containing histones in the acid extract together with a diffusible thiol peptide containing methyl-lysine and 3-methylhistidine and a thiol-containing acidic protein.  相似文献   

18.
The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO–/–). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO–/– mice. The levels of urinary protein observed in the 5-LO–/– mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO–/– mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO–/– mice. However, 5-LO–/– mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload.  相似文献   

19.
The pathogenesis of Alzheimer’s disease (AD) is associated with the aggregation of amyloid-β (Aβ) peptides into toxic aggregates with β-sheet character. In a previous computational study, we showed that pristine single-walled carbon nanotubes (SWCNTs) can inhibit the formation of β-sheet-rich oligomers in the central hydrophobic core fragment of Aβ (Aβ16–22). However, the poor solubility of SWCNTs in water hinders their use in biomedical applications and nanomedicine. Here, we investigate the influence of hydroxylated SWCNT, a water-soluble SWCNT derivative, on the aggregation of Aβ16–22 peptides using all-atom explicit-water replica exchange molecular dynamics simulations. Our results show that hydroxylated SWCNTs can significantly inhibit β-sheet formation and shift the conformations of Aβ16–22 oligomers from ordered β-sheet-rich structures toward disordered coil aggregates. Detailed analyses of the SWCNT-Aβ interaction reveal that the inhibition of β-sheet formation by hydroxylated SWCNTs mainly results from strong electrostatic interactions between the hydroxyl groups of SWCNTs and the positively charged residue K16 of Aβ16–22 and hydrophobic and aromatic stacking interactions between SWCNTs and F19 and F20. In addition, our atomic force microscopy and thioflavin T fluorescence experiments confirm the inhibitory effect of both pristine and hydroxylated SWCNTs on Aβ16–22 fibrillization, in support of our previous and present replica exchange molecular dynamics simulation results. These results demonstrate that hydroxylated SWCNTs efficiently inhibit the aggregation of Aβ16–22; in addition, they offer molecular insight into the inhibition mechanism, thus providing new clues for the design of therapeutic drugs against amyloidosis.  相似文献   

20.
Mosquitoes are vectors of major diseases such as dengue fever and malaria. Mass drug administration of endectocides to humans and livestock is a promising complementary approach to current insecticide-based vector control measures. The aim of this study was to establish an insect model for pharmacokinetic and drug-drug interaction studies to develop sustainable endectocides for vector control. Female Aedes aegypti mosquitoes were fed with human blood containing either ivermectin alone or ivermectin in combination with ketoconazole, rifampicin, ritonavir, or piperonyl butoxide. Drug concentrations were quantified by LC-MS/MS at selected time points post-feeding. Primary pharmacokinetic parameters and extent of drug-drug interactions were calculated by pharmacometric modelling. Lastly, the drug effect of the treatments was examined. The mosquitoes could be dosed with a high precision (%CV: ≤13.4%) over a range of 0.01–1 μg/ml ivermectin without showing saturation (R2: 0.99). The kinetics of ivermectin were characterised by an initial lag phase of 18.5 h (CI90%: 17.0–19.8 h) followed by a slow zero-order elimination rate of 5.5 pg/h (CI90%: 5.1–5.9 pg/h). By contrast, ketoconazole, ritonavir, and piperonyl butoxide were immediately excreted following first order elimination, whereas rifampicin accumulated over days in the mosquitoes. Ritonavir increased the lag phase of ivermectin by 11.4 h (CI90%: 8.7–14.2 h) resulting in an increased exposure (+29%) and an enhanced mosquitocidal effect. In summary, this study shows that the pharmacokinetics of drugs can be investigated and modulated in an Ae. aegypti animal model. This may help in the development of novel vector-control interventions and further our understanding of toxicology in arthropods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号