首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The homologues of human disease genes are expected to contribute to better understanding of physiological and pathogenic processes. We made use of the present availability of vertebrate genomic sequences, and we have conducted the most comprehensive comparative genomic analysis of the prion protein gene PRNP and its homologues, shadow of prion protein gene SPRN and doppel gene PRND, and prion testis-specific gene PRNT so far.

Results

While the SPRN and PRNP homologues are present in all vertebrates, PRND is known in tetrapods, and PRNT is present in primates. PRNT could be viewed as a TE-associated gene. Using human as the base sequence for genomic sequence comparisons (VISTA), we annotated numerous potential cis-elements. The conserved regions in SPRNs harbour the potential Sp1 sites in promoters (mammals, birds), C-rich intron splicing enhancers and PTB intron splicing silencers in introns (mammals, birds), and hsa-miR-34a sites in 3'-UTRs (eutherians). We showed the conserved PRNP upstream regions, which may be potential enhancers or silencers (primates, dog). In the PRNP 3'-UTRs, there are conserved cytoplasmic polyadenylation element sites (mammals, birds). The PRND core promoters include highly conserved CCAAT, CArG and TATA boxes (mammals). We deduced 42 new protein primary structures, and performed the first phylogenetic analysis of all vertebrate prion genes. Using the protein alignment which included 122 sequences, we constructed the neighbour-joining tree which showed four major clusters, including shadoos, shadoo2s and prion protein-likes (cluster 1), fish prion proteins (cluster 2), tetrapode prion proteins (cluster 3) and doppels (cluster 4). We showed that the entire prion protein conformationally plastic region is well conserved between eutherian prion proteins and shadoos (18–25% identity and 28–34% similarity), and there could be a potential structural compatibility between shadoos and the left-handed parallel beta-helical fold.

Conclusion

It is likely that the conserved genomic elements identified in this analysis represent bona fide cis-elements. However, this idea needs to be confirmed by functional assays in transgenic systems.  相似文献   

2.
Two conformational isomers of recombinant hamster prion protein (residues 90-232) have been probed by reaction with two tyrosine nitration reagents, peroxynitrite and tetranitromethane. Two conserved tyrosine residues (tyrosines 149 and 150) are not labeled by either reagent in the normal cellular form of the prion protein. These residues become reactive after the protein has been converted to the beta-oligomeric isoform, which is used as a model of the fibrillar form that causes disease. After conversion, a decrease in reactivity is noted for two other conserved residues, tyrosine 225 and tyrosine 226, whereas little to no effect was observed for other tyrosines. Thus, tyrosine nitration has identified two specific regions of the normal prion protein isoform that undergo a change in chemical environment upon conversion to a structure that is enriched in beta-sheet.  相似文献   

3.
cDNA cloning of turtle prion protein   总被引:14,自引:0,他引:14  
Cloning of the cDNA coding for the 270-residue turtle prion protein is reported. It represents the most remote example thus far described. The entire coding region is comprised in a single exon, while a large intron interrupts the 5' UTR. The common structural features of the known prion proteins are all conserved in turtle PrP, whose identity degree to mammalian and avian proteins is about 40 and 58%, respectively. The most intriguing feature, unique to the turtle prion, is the presence of an EF-hand Ca(2+) binding motif in the C-terminal half of the protein.  相似文献   

4.
The three-dimensional structure of PrP110-136, a peptide encompassing the conserved hydrophobic region of the human prion protein, has been determined at high resolution in dodecylphosphocholine micelles by NMR. The results support the conclusion that the (Ctm)PrP, a transmembrane form of the prion protein, adopts a different conformation than the reported structures of the normal prion protein determined in solution. Paramagnetic relaxation enhancement studies with gadolinium-diethylenetriaminepentaacetic acid indicated that the conserved hydrophobic region peptide is not inserted symmetrically in the micelle, thus suggesting the presence of a guanidium-phosphate ion pair involving the side chain of the terminal arginine and the detergent headgroup. Titration of dodecylphosphocholine into a solution of PrP110-136 revealed the presence of a surface-bound species. In addition, paramagnetic probes located the surface-bound peptide somewhere below the micelle-water interface when using the inserted helix as a positional reference. This localization of the unknown population would allow a similar ion pair interaction.  相似文献   

5.
Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction.  相似文献   

6.
Point mutations in the human prion protein gene, leading to amino acid substitutions in the human prion protein contribute to conversion of PrPC to PrPSc and amyloid formation, resulting in prion diseases such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler-Scheinker disease (GSS), and fatal familial insomnia. We have investigated impressions of prevalent mutations including Q217R, D202N, F198S, on the human prion protein and compared the mutant models with wild types. Structural analyses of models were performed with molecular modeling and molecular dynamics simulation methods. According to our results, frequently occurred mutations are observed in conserved and fully conserved sequences of human prion protein and the most fluctuation values occur in the Helix 1 around residues 144-152 and C-terminal end of the Helix 2. Our analysis of results obtained from MD simulation clearly shows that this long-range effect plays an important role in the conformational fluctuations in mutant structures of human prion protein. Results obtained from molecular modeling such as creation or elimination of some hydrogen bonds, increase or decrease of the accessible surface area and molecular surface, loss or accumulation of negative or positive charges on specific positions, and altering the polarity and pKa values, show that amino acid point mutations, though not urgently change the stability of PrP, might have some local impacts on the protein interactions which are required for oligomerization into fibrillar species.  相似文献   

7.
[URE3] is a prion (infectious protein) of the Saccharomyces cerevisiae Ure2p, a regulator of nitrogen catabolism. We show that wild S. paradoxus can be infected with a [URE3] prion, supporting the use of S. cerevisiae as a prion test bed. We find that the Ure2p of Candida albicans and C. glabrata also regulate nitrogen catabolism. Conservation of amino acid sequence within the prion domain of Ure2p has been proposed as evidence that the [URE3] prion helps its host. We show that the C. albicans Ure2p, which does not conserve this sequence, can nonetheless form a [URE3] prion in S. cerevisiae, but the C. glabrata Ure2p, which does have the conserved sequence, cannot form [URE3] as judged by its performance in S. cerevisiae. These results suggest that the sequence is not conserved to preserve prion forming ability.  相似文献   

8.
Sequence variation in transcription factor IIIA   总被引:5,自引:2,他引:3       下载免费PDF全文
  相似文献   

9.
Monoclonal antibodies (Mab) to the prion protein (PrP) have been critical to the neuropathological characterisation of PrP-related diseases in human and animals. Although PrP is highly evolutionary conserved, there is some sequence divergence among species. We have analysed the F89/160.1.5 Mab raised against the bovine prion protein for immunoreactivity with the human prion protein. The antibody recognised the IHFG epitope of the prion protein. An analysis of the Swiss Prot database confirmed conservation of the epitope in humans. Further immunohistochemical (IHC) analysis showed a highly sensitive (final concentration 55 ng/ml) and specific antibody for prion detection in humans. The observed immunoreactivity of the prion protein did not differ from that observed after staining with the well-known 3F4 (Senetek) monoclonal antibody.  相似文献   

10.
The cDNA and protein structures of Xenopus metaxin 3, along with those of Xenopus metaxins 1 and 2, have been characterized. A protein of 309 amino acid residues is encoded by X. laevis metaxin 3 (XMTX3) cDNA. In comparison, the cDNA of X. laevis metaxin 1 (XMTX1) specifies a protein of 320 residues, while the metaxin 2 cDNAs of X. laevis (XMTX2) and X. tropicalis (SMTX2) both specify proteins of 274 amino acids. Aligning the amino acid sequences of XMTX3 and XMTX1 showed 39% identities; 22% identities were found for XMTX3 and XMTX2. However, 55% amino acid identities were revealed in aligning the XMTX3 and zebrafish metaxin 3 sequences. The construction of a phylogenetic tree gave further evidence for the existence of three distinct groups of metaxin genes and their common ancestry. Two conserved protein domains are present in each of the Xenopus metaxins: a glutathione S-transferase (GST) domain and a thioredoxin-like domain. The protein secondary structure predicted for the Xenopus metaxins is dominated by regions of alpha helix which alternate with regions that are neither alpha helix nor beta strand.  相似文献   

11.
The propensity of proteins to form beta-sheet-rich amyloid fibrils is related to a variety of biological phenomena, including a number of human neurodegenerative diseases and prions. A subset of amyloidogenic proteins forms amyloid fibrils through glutamine/asparagine (Q/N)-rich domains, such as pathogenic polyglutamine (poly(Q)) proteins involved in neurodegenerative disease, as well as yeast prions. In the former, the propensity of an expanded poly(Q) tract to abnormally fold confers toxicity on the respective protein, leading to neuronal dysfunction. In the latter, Q/N-rich prion domains mediate protein aggregation important for epigenetic regulation. Here, we investigated the relationship between the pathogenic ataxin-3 protein of the human disease spinocerebellar ataxia type 3 (SCA3) and the yeast prion Sup35, using Drosophila as a model system. We found that the capacity of the Sup35 prion domain to mediate protein aggregation is conserved in Drosophila. Although select yeast prions enhance poly(Q) toxicity in yeast, the Sup35N prion domain suppressed poly(Q) toxicity in the fly. Suppression required the oligopeptide repeat of the Sup35N prion domain, which is critical for prion properties in yeast. These results suggest a trans effect of prion domains on pathogenic poly(Q) disease proteins in a multicellular environment and raise the possibility that Drosophila may allow studies of prion mechanisms.  相似文献   

12.
Abstract

Point mutations in the human prion protein gene, leading to amino acid substitutions in the human prion protein contribute to conversion of PrPC to PrPSc and amyloid formation, resulting in prion diseases such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler-Scheinker disease (GSS), and fatal familial insomnia. We have investigated impressions of prevalent mutations including Q217R, D202N, F198S, on the human prion protein and compared the mutant models with wild types. Structural analyses of models were performed with molecular modeling and molecular dynamics simulation methods. According to our results, frequently occurred mutations are observed in conserved and fully conserved sequences of human prion protein and the most fluctuation values occur in the Helix 1 around residues 144–152 and C-terminal end of the Helix 2. Our analysis of results obtained from MD simulation clearly shows that this long-range effect plays an important role in the conformational fluctuations in mutant structures of human prion protein. Results obtained from molecular modeling such as creation or elimination of some hydrogen bonds, increase or decrease of the accessible surface area and molecular surface, loss or accumulation of negative or positive charges on specific positions, and altering the polarity and pKa values, show that amino acid point mutations, though not urgently change the stability of PrP, might have some local impacts on the protein interactions which are required for oligomerization into fibrillar species.  相似文献   

13.
The normal cellular prion protein (PrP(C)) is a glycoprotein with two highly conserved potential N-linked glycosylation sites. All prion diseases, whether inherited, infectious or sporadic, are believed to share the same pathogenic mechanism that is based on the conversion of the normal cellular prion protein (PrP(C)) to the pathogenic scrapie prion protein (PrP(Sc)). However, the clinical and histopathological presentations of prion diseases are heterogeneous, depending not only on the strains of PrP(Sc) but also on the mechanism of diseases, such as age-related sporadic vs. infectious prion diseases. Accumulated evidence suggests that N-linked glycans on PrP(C) are important in disease phenotype. A better understanding of the nature of the N-linked glycans on PrP(C) during the normal aging process may provide new insights into the roles that N-linked glycans play in the pathogenesis of prion diseases. By using a panel of 19 lectins in an antibody-lectin enzyme-linked immunosorbent assay (ELISA), we found that the lectin binding profiles of PrP(C) alter significantly during aging. There is an increasing prevalence of complex oligosaccharides on the aging PrP(C), which are features of PrP(Sc). Taken together, this study suggests a link between the glycosylation patterns on PrP(C) during aging and PrP(Sc).  相似文献   

14.
Yeast prions are self-propagating protein conformations that transmit heritable phenotypes in an epigenetic manner. The recently identified yeast prion [SWI(+)] is an alternative conformation of Swi1, a component of the evolutionarily conserved SWI/SNF chromatin-remodeling complex. Formation of the [SWI(+)] prion results in a partial loss-of-function phenotype for Swi1. The amino-terminal region of Swi1 is dispensable for its normal function but is required for [SWI(+)] formation and propagation; however, the precise prion domain (PrD) of Swi1 has not been elucidated. Here, we define the minimal Swi1 PrD as the first 37 amino acids of the protein. This region is extremely asparagine rich but, unexpectedly, contains no glutamine residues. This unusually small prion domain is sufficient for aggregation, propagation, and transmission of the [SWI(+)] prion. Because of its unusual size and composition, the Swi1 prion domain defined here has important implications for describing and identifying novel prions.  相似文献   

15.
By cross-hybridization with a cDNA probe for the Xenopus laevis ribosomal protein L1 we have been able to isolate the homologous genes from a Saccharomyces cerevisiae genomic library. We have shown that these genes code for a ribosomal protein which was previously named L2. In yeast, like in X. laevis, these genes are present in two copies per haploid genome and, unlike the vertebrate counterpart, they do not contain introns. Amino acid comparison of the X. laevis L1 and S. cerevisiae L2 proteins has shown the presence of a highly conserved protein domain embedded in very divergent sequences. Although these sequences are very poorly homologous, they confer an overall secondary structure and folding highly conserved in the two species.  相似文献   

16.
Saccharomyces cerevisiae prion [PSI ] is a self-propagating isoform of the eukaryotic release factor eRF3 (Sup35p). Sup35p consists of the evolutionary conserved release factor domain (Sup35C) and two evolutionary variable regions - Sup35N, which serves as a prion-forming domain in S. cerevisiae, and Sup35M. Here, we demonstrate that the prion form of Sup35p is not observed among industrial and natural strains of yeast. Moreover, the prion ([PSI + ]) state of the endogenous S. cerevisiae Sup35p cannot be transmitted to the next generations via heterologous Sup35p or Sup35NM, originating from the distantly related yeast species Pichia methanolica. This suggests the existence of a 'species barrier' in yeast prion conversion. However, the chimeric Sup35p, containing the Sup35NM region of Pichia, can be turned into a prion in S. cerevisiae by overproduction of the identical Pichia Sup35NM. Therefore, the prion-forming potential of Sup35NM is conserved in evolution. In the heterologous system, overproduction of Pichia Sup35p or Sup35NM induced formation of the prion form of S. cerevisiae Sup35p, albeit less efficiently than overproduction of the endogenous Sup35p. This implies that prion induction by protein overproduction does not require strict correspondence of the 'inducer' and 'inducee' sequences, and can overcome the 'species barrier'.  相似文献   

17.
We cloned homologs of the human Xeroderma Pigmentosum Group A complementing (XPAC) gene from chicken, Xenopus laevis and Drosophila melanogaster. A comparison of the amino acid sequences of these homologs with that of the human XPAC protein revealed that in the NH2-terminal domain there are only two conserved regions, one of which is presumed to function as the nuclear localization signal, whereas the COOH-terminal domain is highly conserved, the frequency of identical amino acids in all four XPAC proteins being 50%, and the four cysteine residues predicted to form a zinc-finger motif, and three other cysteine residues are all conserved. These results strongly suggest that the COOH-terminal domain containing a zinc-finger motif plays an important role in the function of these proteins.  相似文献   

18.
PrPC directly interacts with proteins involved in signaling pathways   总被引:14,自引:0,他引:14  
The cellular prion protein (PrP(C)) is a conserved glycoprotein predominantly expressed in neuronal cells. Its purpose in living cells is still enigmatic. To elucidate on its cellular function, we performed a yeast two-hybrid screen for interactors. We used murine PrP(C) (amino acids 23-231) as bait to search a mouse brain cDNA expression library. Several interaction partners were identified. Three of them with a high homology to known sequences were further characterized. These candidates were the neuronal phosphoprotein synapsin Ib, the adaptor protein Grb2, and the still uncharacterized prion interactor Pint1. The in vivo interaction of the three proteins with PrP(C) was confirmed by co-immunoprecipitation assays with recombinant and authentic proteins in mammalian cells. The binding regions were mapped using truncated PrP constructs. As both synapsin Ib and Grb2 are implicated in neuronal signaling processes, our findings further strengthen the putative role of the prion protein in signal transduction.  相似文献   

19.
Infectious, self-propagating protein aggregates (prions) as well as structurally related amyloid fibrils have traditionally been associated with neurodegenerative diseases in mammals. However, recent work in fungi indicates that prions are not simply aberrations of protein folding, but are in fact widespread, conserved, and in certain cases, apparently beneficial. Analysis of prion behavior in yeast has led to insights into the mechanisms of prion appearance and propagation as well as the effect of prions on cellular physiology and perhaps evolution. The prion-forming proteins of Saccharomyces cerevisiae are members of a larger class of Gln/Asn-rich proteins that is abundantly represented in the genomes of higher eukaryotes, raising the prospect of genetically programmed prion-like behavior in other organisms.  相似文献   

20.
《朊病毒》2013,7(3):184-189
A variety of signaling pathways, in particular with roles in cell fate and host defense, operate by a prion-like mechanism consisting in the formation of open-ended oligomeric signaling complexes termed signalosomes. This mechanism emerges as a novel paradigm in signal transduction. Among the proteins forming such signaling complexes are the Nod-like receptors (NLR), involved in innate immunity. It now appears that the [Het-s] fungal prion derives from such a cell-fate defining signaling system controlled by a fungal NLR. What was once considered as an isolated oddity turns out to be related to a conserved and widespread signaling mechanism. Herein, we recall the relation of the [Het-s] prion to the signal transduction pathway controlled by the NWD2 Nod-like receptor, leading to activation of the HET-S pore-forming cell death execution protein. We explicit an evolutionary scenario in which formation of the [Het-s] prion is the result of an exaptation process or how a loss-of-function mutation in a pore-forming cell death execution protein (HET-S) has given birth to a functional prion ([Het-s]).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号