首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Immunoreactivity for calretinin, a calcium-binding protein, was studied in neurones in the guinea-pig small intestine. 26±1% of myenteric neurones and 12±3% of submucous neurones were immunoreactive for calretinin. All calretinin-immunoreactive neurones were also immunoreactive for choline acetyltransferase and hence are likely to be cholinergic. In the myenteric plexus, two subtypes of Dogiel type-I calretinin-immunoreactive neurones could be distinguished from their projections and neurochemical coding. Some calretinin-immunoreactive myenteric neurones had short projections to the tertiary plexus, and hence are likely to be cholinergic motor neurones to the longitudinal muscle. Some of these cells were also immunoreactive for substance P. The remaining myenteric neurones, immunoreactive for calretinin, enkephalin, neurofilament protein triplet and substance P, are likely to be orad-projecting, cholinergic interneurones. Calretinin immunoreactivity was also found in cholinergic neurones in the submucosa, which project to the submucosal vasculature and mucosal glands, and which are likely to mediate vasodilation. Thus, calretinin immunoreactivity in the guinea-pig small intestine is confined to three functional classes of cholinergic neurones. It is possible, for the first time, to distinguish these classes of cells from other enteric neurones.  相似文献   

2.
The small intestine of the pig has been investigated for its topographical distribution of enteric neurons projecting to the cranial mesenteric ganglion, by using Fast Blue or Fluorogold as a retrogradely transported neuronal tracer. Contrary to the situation in small laboratory animals such as rat and guinea-pig, the intestinofugally projecting neurons in the porcine small intestine were not restricted to the myenteric plexus, but were observed in greater numbers in ganglia of the outer submucous plexus. The inner submucous plexus was devoid of labelled neurons. Retrogradely labelled neurons were mostly found, either singly or in small aggregates, in ganglia located within a narrow border on either side of the mesenteric attachment. For both nerve networks, their number increased from duodenum to ileum. All the retrogradely labelled neurons exhibited a multidendritic uniaxonal appearance. Some of them displayed type-III morphology and stained for serotonin. This study indicates that, in the pig, not only the myenteric plexus but also one submucous nerve network is involved in the afferent component of intestino-sympathico-intestinal reflex pathways. The finding that some of the morphologically defined type-III neurons participate in these reflexes is in accord with the earlier proposal that type-III neurons are supposed to fulfill an interneuronal role, whether intra- or extramurally.  相似文献   

3.
Since the stomach lacks a well-developed ganglionated submucous plexus, the somata of enteric neurones innervating the muscle or the mucosa have to be localised within the myenteric plexus. The aim of this study was to determine the projection pathways and the neurochemical coding of myenteric neurones innervating these different targets in the gastric fundus. Myenteric cell bodies projecting to the mucosa or the circular muscle were retrogradely labelled by mucosa or muscle application of the fluorescent tracer DiI and subsequently characterised by their immunoreactivity for choline acetyltransferase (ChAT), nitric oxide synthase (NOS), substance P (SP) and/or neuropeptide Y (NPY). On average 143±91 and 89±49 myenteric neurones were labelled from the mucosa and the circular muscle, respectively. DiI-labelled neurones were either ChAT- or NOS-positive. DiI-labelled ChAT-positive neurones were mainly ascending and outnumbered NOS-positive neurones, which were mainly descending (79.3±6.2% vs 20.7±6.2% for mucosa neurones; 69.3±11.1% vs 30.7±11.1% for muscle neurones). Three ChAT-positive subpopulations (ChAT/–, ChAT/SP, ChAT/NPY) and two NOS-positive subpopulations (NOS/–, NOS/NPY) were found. ChAT/SP neurones projected mainly to the circular muscle (36.1±11.9% of the cholinergic muscle neurones; mucosa projection: 8.0±2.1%), whereas ChAT/NPY neurones projected mainly to the mucosa (38.1±9.2% of the cholinergic mucosa neurones; muscle projection: 5.7±2.4%). NOS/– cells projected predominantly to the muscle. This study demonstrates polarised pathways in the myenteric plexus consisting of ascending ChAT and descending NOS cells that innervate the circular muscle and the mucosa of the gastric fundus. The ChAT/SP neurones might function as circular muscle motor neurones, whereas ChAT/NPY neurones might represent secretomotor neurones.  相似文献   

4.
To investigate extrinsic origins of calcitonin gene-related peptide immunoreactive (CGRP-IR) nerve fibres in the sheep ileum, the retrograde fluorescent tracer Fast Blue (FB) was injected into the ileum wall. Sections of thoraco-lumbar dorsal root ganglia (DRG) and distal (nodose) vagal ganglia showing FB-labelled neurons were processed for CGRP immunohistochemistry. The distribution of CGRP-IR in fibres and nerve cell bodies in the ileum was also studied. CGRP-IR enteric neurons were morphometrically analysed in myenteric (MP) and submucosal plexuses (SMP) of lambs (2–4 months). Sensory neurons retrogradely labelled with FB were scattered in T5-L4 DRG but most were located at the upper lumbar levels (L1-L3); only a minor component of the extrinsic afferent innervation of the ileum was derived from nodose ganglia. In the DRG, 57% of retrogradely labelled neurons were also CGRP-IR. In cryostat sections, a dense network of CGRP-IR fibres was observed in the lamina propria beneath the epithelium, around the lacteals and lymphatic follicles (Peyer's platches), and along and around enteric blood vessels. Rare CGRP-IR fibres were also present in both muscle layers. Dense pericellular baskets of CGRP-IR fibres were observed around CGRP-negative somata. The only CGRP-IR nerve cells were well-defined Dogiel type II neurons localised in the MP and in the external and internal components of the SMP. CGRP-IR neurons in the myenteric ganglia were significantly larger than those in the submucosal ganglia (mean profile areas: about 1,400 μm2 for myenteric neurons, 750 μm2 for submucosal neurons). About 6% of myenteric neurons and 25% of submucosal neurons were CGRP-IR Dogiel type II neurons. The percentages of CGRP-IR neurons that were also tachykinin-IR were about 9% (MP) and 42% (SMP), whereas no CGRP-IR neurons exhibited immunoreactivity for vasoactive intestinal peptide, nitric oxide synthase or tyrosine hydroxylase in either plexus. Thus, CGRP immunoreactivity occurs in the enteric nervous system of the sheep ileum (as in human small intestine and MP of pig ileum) in only one morphologically defined type of neuron, Dogiel type II cells. These are probably intrinsic primary afferent neurons. This work was supported by grants from the Ricerca Fondamentale Orientata (RFO) and Fondazione Del Monte di Bo e Ra.  相似文献   

5.
The goal of this report is to summarise the current knowledge on the projection pathways of enteric neurones innervating the muscle and mucosa in different regions of the gut. Combination of neuronal tracing, immunohistochemical and electrophysiological methods has allowed researchers to gain insight into the enteric hardwiring of specific target tissue in the gut. A polarised innervation pattern of the circular muscle was demonstrated for the stomach fundus/corpus and the ileum with descending pathways being primarily nitrergic while ascending pathways were primarily cholinergic. This characteristic hardwiring is thought to set in part the functional basis for peristalsis. A similar polarised innervation pathway was found for the enteric innervation of the mucosa in the stomach and large intestine but not in the small intestine. In both the stomach (myenteric neurones) and in the proximal and distal colon (submucosal neurones), ascending pathways to the mucosa are primarily cholinergic while descending pathways are primarily non-cholinergic. In the colon, results suggest that activation of both pathways induces a cross potentiation of cholinergic and vasoactive intestinal polypeptidergic mediated secretion. Furthermore, a large population of myenteric neurone s projecting to the mucosa in the small and large intestine are probably intrinsic primary afferent neurones sensitive to mechanical as well as chemical stimuli.  相似文献   

6.
Recent functional evidence suggests that intermediate conductance calcium-activated potassium channels (IK channels) occur in neurons in the small intestine and in mucosal epithelial cells in the colon. This study was undertaken to investigate whether IK channel immunoreactivity occurs at these and at other sites in the gastrointestinal tract of the rat. IK channel immunoreactivity was found in nerve cell bodies throughout the gastrointestinal tract, from the esophagus to the rectum. It was revealed in the initial segments of the axons, but not in axon terminals. The majority of immunoreactive neurons had Dogiel type II morphology and in the myenteric plexus of the ileum all immunoreactive neurons were of this shape. Intrinsic primary afferent neurons in the rat small intestine are Dogiel type II neurons that are immunoreactive for calretinin, and it was found that almost all the IK channel immunoreactive neurons were also calretinin immunoreactive. IK channel immunoreactivity also occurred in calretinin-immunoreactive, Dogiel type II neurons in the caecum. Epithelial cells of the mucosal lining were immunoreactive in the esophagus, stomach, small and large intestines. In the intestines, the immunoreactivity occurred in transporting enterocytes, but not in mucous cells. Immunoreactivity was at both the apical and basolateral surfaces. A small proportion of mucosal endocrine cells was immunoreactive in the duodenum, ileum and caecum, but not in the stomach, proximal colon, distal colon or rectum. There was immunoreactivity of vascular endothelial cells. It is concluded that IK channels are located on cell bodies and proximal parts of axons of intrinsic primary afferent neurons, where, from functional studies, they would be predicted to lower neuronal excitability when opened in response to calcium entry. In the mucosa of the small and large intestine, IK channels are probably involved in control of potassium exchange, and in the esophageal and gastric mucosa they are possibly involved in control of cell volume in response to osmotic challenge.  相似文献   

7.
Summary The localisation of monoamine oxidase (MAO) was examined in lamina preparations of the myenteric plexus of guinea-pig stomach, small intestine and proximal colon and in the submucous plexus of the small intestine. MAO is associated with most neurones in these parts of the enteric plexuses. In the myenteric plexus of the small intestine, cells corresponding to Dogiel's type II were prominent whereas type I cells appeared less reactive for MAO. However, both type I and type II cells of the proximal colon were heavily stained. In the stomach and in the submucous plexus of the small intestine, most positive cells were type II. There were many small positively stained cells throughout the myenteric plexus. Interstitial cells were lightly stained. The intensity of stain in many enteric neurones was similar to that of cells of the sympathetic ganglia.This work was supported by grants from the Australian Research Grants Council Commitee and the National Health and Medical Research Council. We thank Prof. G. Burnstock for his continued support.  相似文献   

8.
The motility patterns of the reticulorumen evoke mainly mixing of the ingesta. So far unknown, intrinsic neural circuits of the enteric nervous system are involved in the control of these motility patterns. The aim of the study was to characterize neurochemically sheep ruminal myenteric neurones, in particular the neural pathways innervating the ruminal muscle layers. Cell bodies within the myenteric plexus projecting to the longitudinal or circular muscle layer were retrogradely labelled by direct application of the fluorescent tracer 1,1'-didodecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (DiI) onto the circular or longitudinal muscle. The neurochemical code of myenteric neurones was identified by their immunoreactivity for choline acetyltransferase (ChAT), nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP). According to their neurochemical code, ruminal myenteric neurones were divided into three populations: ChAT/SP (68% of all myenteric neurones), NOS/VIP (26% of all myenteric neurones) and ChAT/- (5% of all myenteric neurones). Application of DiI onto the circular or longitudinal muscle revealed on average 64 or 44 labelled cell bodies in the myenteric plexus, respectively. DiI-labelled neurones expressed the code ChAT/SP or NOS/VIP. In the pathways to circular or longitudinal muscle, ChAT/SP-positive neurones outnumbered NOS/VIP-immunoreactive neurones by 5:1 and 2:1. Pathways to the circular or longitudinal muscle did not exhibit any pronounced polarized innervation patterns. This study demonstrated specific projections of myenteric neurones to the ruminal muscle. Neurones expressing the code ChAT/SP might function as excitatory muscle motor neurones, whereas NOS/VIP neurones are likely to act as inhibitory muscle motor neurones.  相似文献   

9.
Although autonomic gastrointestinal reflex movements, which occur in all mammalian species, have been described almost a century ago, little was known on the mechanisms underlying this behaviour. Recently, however, intrinsic primary afferent neurones, functioning as the first relay in the reflex arches embedded in the intestinal wall, have been identified in the guinea pig ileum. In guinea pig, such neurones display a Dogiel type II morphology and behave electrophysiologically as slow AHP neurones. In other gastrointestinal regions, in both guinea pig and rat, Dogiel type II cells are also encountered, but the strong correlation with slow AHP neuronal features seems less strict. In large mammals, a correlation of the cellular morphology with intracellular el ectrophysiological recordings has only been obtained in the pig small intestine. Surprisingly, in these experiments aberrant electrophysiological behaviour of Dogiel type II neurones is even more striking since the majority of these cells display electrophysiological features considered typical of S neurones. Furthermore, in those rare cases in which a slow afterhyperpolarization (AHP) could be recorded in porcine Dogiel type II cells, its amplitudes were negligible. This has led us to the conclusion that the differences in electrophysiological behaviour of neurones with comparable morphology in different species are most probably due to the modulating influence of the neurotransmitter substances present. This seems to be the most likely hypothesis in view of the considerable differences in neurotransmitter content of neurones with comparable functions throughout the species.  相似文献   

10.
We have identified the enteric neuron types expressing immunoreactivity for the calcium-binding protein calbindin D28k (CALB) in cryostat sections and whole-mount preparations of myenteric (MP) and submucosal (SMP) plexuses of sheep ileum. We wished to determine whether CALB-IR in the sheep enteric nervous system was expressed in Dogiel type II cells, as in guinea-pig and rat ileum, and could therefore be used as a marker for intrinsic primary afferent neurons. The neurochemical coding of CALB-containing myenteric and submucosal neurons in ileum of unweaned lamb and mature sheep and its co-localisation with various neural markers was studied immunohistochemically. An antiserum against neuronal nuclear protein (NeuN) failed to detect the entire neuronal population; it was expressed only in 48% of neuron-specific enolase (NSE)-immunoreactive (NSE-IR) neurons. Human neuronal protein appeared to occur in the large majority or all neurons. Almost all CALB-IR neurons were: (1) radially multidendritic; (2) eccentric multidendritic; (3) Dogiel type II. CALB-IR occurred in 20–25% of myenteric and 65–75% of submucosal neurons in lamb and mature sheep, with higher values in mature sheep. Nearly all CALB-IR neurons were common choline acetyltransferase (cChAT)-IR, whereas only about 20% of cChAT-IR somata were CALB-IR. In lamb and mature sheep, 90% of MP CALB-IR neurons were peripheral choline acetyltransferase (pChAT)-IR. In lamb SMP, 80±13% of CALB-IR cells were also pChAT-IR, whereas all those in mature SMP were pChAT-IR. Fewer myenteric CALB-IR neurons exhibited tachykinin (TK) in mature sheep (49%) than in lamb (88%). This was also the case for submucosal ganglia (mature sheep, 63%; lamb, 89%). In lamb MP, 77±7% of CALB-IR cells were NeuN-positive. In mature sheep, 73±10% of CALB-IR somata were NeuN-IR, but NeuN failed to stain SMP neurons. In the MP of suckling and mature sheep, Dogiel type II CALB-IR neurons were calcitonin gene-related peptide (CGRP)-IR. In the SMP at both stages, Dogiel type II CALB-IR somata (about 50% of CALB-IR neurons) were also CGRP-IR. Only small proportions of CALB-IR neurons showed immunoreactivity for calretinin or nitric oxide synthase (NOS), although large populations of CALB and NOS neurons occurred in the ganglia. Thus, CALB is a marker of most Dogiel type II neurons in the sheep but is not confined to Dogiel II neurons. CGRP is a more selective marker of Dogiel type II neurons, being only found in this neuron type.This work was supported by a grant from the Ministero dellIstruzione, dellUniversità e della Ricerca (MIUR)  相似文献   

11.
Neuroanatomical, electrophysiological and immunohistochemical techniques were used to describe correlations between soma morphology and electrophysiological properties in two groups of guinea-pig enteric neurones posing particular challenges. Lucifer Yellow-staining of 542 myenteric plexus neurones of duodenum revealed a great diversity of neuronal morphology. The distribution was: Dogiel Type I 27%, Dogiel Type II 54%, Stach Type IV 9%; 10% were unclassified. Correlations were sought in 59 of these cells between morphology and electrophysiological properties but no particular association was recognised. Dynorphin A(1-8)-like immunoreactivity (Dyn A(1-8)-IR) was found in up to 90% of identified submucous neurones of guinea-pig ileum. Of 62 S-neurones, 41 showed 'weak' and 19 had 'intense' Dyn A (1-8)-IR. There was no evidence of Dyn A(1-8)-IR in 2 S-neurones, nor in 8/8 AH-neurones. As for 11/16 vasoactive intestinal peptide- (VIP-) IR neurones, there was a strong correlation between the presence of 'weak' Dyn A(1-8)-IR and the occurrence of inhibitory (IPSPs) and slow excitatory synaptic potentials (EPSPs) (13/16 cells tested), which were never observed in neurones with 'intense' Dyn A(1-8)-IR (16/16) or neuropeptide Y (NPY)-IR (8/8). Similarly, 7/7 neurones with 'weak' Dyn A(1-8)-IR, but not those (7/7) with 'intense' Dyn A(1-8)-IR, hyperpolarised or showed a conductance change to noradrenaline. It was concluded that dynorphin A(1-8)-like-IR was contained in two populations of submucous neurone that are anatomically, immunohistochemically, electrophysiologically and pharmacologically distinct and closely related to those containing VIP and NPY. Furthermore, as in the myenteric plexus throughout the small intestine, opioid peptides are not expressed in Dogiel Type II cells.  相似文献   

12.
Calretinin (CALR) is often used as an immunohistochemical marker for the histopathological diagnosis of human intestinal neuropathies. However, little is known about its distribution pattern with respect to specific human enteric neuron types. Prior studies revealed CALR in both myenteric and submucosal neurons, most of which colabel with choline acetyl transferase (ChAT). Here, we specified the chemical code of CALR-positive neurons in small and large intestinal wholemounts in a series of 28 patients. Besides other markers, we evaluated the labeling pattern of CALR in combination with vasoactive intestinal peptide (VIP). In colonic submucosa, CALR and VIP were almost completely colocalized in about three-quarters of all submucosal neurons. In the small intestinal submucosa, both the colocalization rate of CALR and VIP as well as the proportion of these neurons were lower (about one-third). In the myenteric plexus of both small intestine and colon, CALR amounted to 11 and 10 %, respectively, whereas VIP to 5 and 4 % of the whole neuron population, respectively. Colocalization of both markers was found in only 2 and 3 % of myenteric neurons, respectively. In section specimens, nerve fibers coreactive for CALR and VIP were found in the mucosa but not in the muscle coat. Summarizing the present and earlier results, CALR was found in at least one submucosal and two myenteric neuron populations. Submucosal CALR+/VIP+/ChAT± neurons innervate mucosal structures. Furthermore, CALR immunoreactivity in the myenteric plexus was observed in morphological type II (supposed primary afferent) and spiny type I (supposed inter- or motor-) neurons.  相似文献   

13.
Furness  J. B.  Keast  J. R.  Pompolo  S.  Bornstein  J. C.  Costa  M.  Emson  P. C.  Lawson  D. E. M. 《Cell and tissue research》1988,252(1):79-87
Summary Immunoreactivity for vitamin D-dependent calcium-binding protein (CaBP) has been localized in nerve cell bodies and nerve fibres in the gastrointestinal tracts of guinea-pig, rat and man. CaBP immunoreactivity was found in a high proportion of nerve cell bodies of the myenteric plexus, particularly in the small intestine. It was also found in submucous neurons of the small and large intestines. Immunoreactive nerve fibres were numerous in the myenteric ganglia, and were also common in the submucous ganglia and in the intestinal mucosa. Immunoreactive fibres were rare in the circular and longitudinal muscle coats. In the myenteric ganglia of the guinea-pig small intestine the immunoreactivity is restricted to one class of nerve cell bodies, type-II neurons of Dogiel, which display calcium action potentials in their cell bodies. These neurons were also immunoreactive with antibodies to spot 35 protein, a calcium-binding protein from the cerebellum. From the distribution of their terminals and the electrophysiological properties of these neurons it is suggested they might be sensory neurons, or perhaps interneurons. The discovery of CaBP in restricted sub-groups of enteric neurons may provide an important key for the analysis of their functions.  相似文献   

14.
Projections and chemistry of Dogiel type II neurons in the mouse colon   总被引:1,自引:0,他引:1  
The physiological properties, shapes, projections and neurochemistries of Dogiel type II neurons have been thoroughly investigated in the guinea-pig intestine in which these neurons have been identified as intrinsic primary afferent neurons. Dogiel type II neurons in the myenteric ganglia of mice have similar physiological properties to those in guinea-pigs but whether other features of the neurons are similar is unknown. We have used intracellular dye-filling, retrograde tracing, immunohistochemistry and nerve lesions to determine salient features of Dogiel type II neurons of the mouse colon. Dye-filling showed that the neurons provide profuse terminal networks in the myenteric ganglia and also have axons that project towards the mucosa. Retrograde tracing and lesion studies showed that these axons provide direct innervation to the mucosa. High proportions of the neurons had immunoreactivity for calretinin, calbindin, choline acetyltransferase, the purine P2X2 receptor and calcitonin gene-related peptide (CGRP). CGRP was the most selective marker of the neurons. Following surgery to remove an area of myenteric plexus, the CGRP-immunoreactive nerve fibres in the mucosa degenerated. Thus, Dogiel type II neurons in mice have similar shapes and projections but some differences in chemistry from those in guinea-pigs. The close similarities between the two species in the shapes, projections and electrophysiology of these neurons suggest that they serve the same functions in both species.These studies were funded by the National Health and Medical Research Council (Australia)  相似文献   

15.
This study aimed to reveal if NeuN, a neuronal nuclei (NeuN) antibody, is a selective marker of intrinsic primary afferent neurons (IPANs) in the guinea-pig gastrointestinal tract as previously hypothesised. The NeuN immunoreactivity was found in the enteric nervous system with exception of the esophagus. Two groups of NeuN-expressing neurons were observed: neurons with immunostained nuclei and cytoplasm (NeuNNC) and neurons only expressing immunoreactivity in their nuclei (NeuNN). The NeuNN-immunoreactive neurons were found in the myenteric plexus of the stomach and the colon. In the stomach, none of the NeuNN-expressing neurons, of which 55±3% co-expressed calbindin, had a Dogiel type I or II morphology. The NeuNN-positive neurons of the colon, which did not express calbindin, did not resemble a Dogiel type II morphology either, but were small-sized neurons. The NeuNNC-immunoreactive neurons were observed in both the small and large intestine. These neurons were smooth-contoured and bigger-sized, resembling a Dogiel type II morphology. Some of these neurons co-expressed calbindin. The present data reveal the existence of two populations of Dogiel type II neurons, exhibiting NeuNNC+ /calbindin+ or NeuNNC+/calbindin immunoreactivity, in the intestine. Assuming that all IPANs exhibit a Dogiel type II morphology, we conclude that the cytoplasmic expression of NeuN is an exclusive feature of IPANs.  相似文献   

16.
Previous studies have identified the chemistries, shapes, projections and electrophysiological characteristics of several populations of neurons in the distal colon of the guinea-pig but it is unknown how these characteristics correlate to define the classes of neurons present. We have used double-label immunohistochemical techniques to identify neurochemically distinct subgroups of enteric neurons in this region. On the basis of colocalisation of neurochemical markers and knowledge gained from previous studies of neural projections, 17 classes of neurons were identified. The myenteric plexus contained the cell bodies of 13 distinct types of neurons. Four classes of descending interneurons and three classes of ascending interneurons were identified, together with inhibitory and excitatory motor neurons to both the circular and longitudinal muscle layers. Dogiel type II neurons, which are presumed to be intrinsic primary afferent neurons, were located in myenteric and submucosal ganglia; they were all immunoreactive for choline acetyltransferase and often calbindin and tachykinins. Three classes of secretomotor neurons with cell bodies in submucosal ganglia were defined. Two of these classes were immunoreactive for choline acetyltransferase and the other class was immunoreactive for both vasoactive intestinal peptide and nitric oxide synthase. Some of the secretomotor neurons probably also have a vasomotor function. The neural subtypes defined in the present study are similar in many respects to those found in the small intestine, although differences are evident, especially in populations of interneurons. These differences presumably reflect the differing physiological roles of the two intestinal regions.  相似文献   

17.
The distribution of intrinsic enteric neurons and extrinsic autonomic and sensory neurons in the large intestine of the toad, Bufo marinus, was examined using immunohistochemistry and glyoxylic acid-induced fluoresecence. Three populations of extrinsic nerves were found: unipolar neurons with morphology and location typical of parasympathetic postganglionic neurons containing immunoreactivity to galanin, somatostatin and 5-hydroxytryptamine were present in longitudinally running nerve trunks in the posterior large intestine and projected to the muscle layers and myenteric plexus throughout the large intestine. Sympathetic adrenergic fibres supplied a dense innervation to the circular muscle layer, myenteric plexus and blood vessels. Axons containing colocalized calcitonin gene-related peptide immunoractivity and substance P immunoreactivity distributed to all layers of the large intestine and are thought to be axons of primary afferent neurons. Five populations of enteric neurons were found. These contained immunoreactivity to vasoactive intestinal peptide, which distributed to all layers of the large intestine; galanin/vasoactive intestinal peptide, which projected to the submucosa and mucosa; calcitonin gene-related peptide/vasoactive intestinal peptide, which supplied the circular muscle, submucosa and mucosa; galanin, which projected to the submucosa and mucosa; and enkephalin, which supplied the circular muscle layer.  相似文献   

18.
Calcitonin-gene-related-peptide (CGRP)-like immunoreactivity was localized in nerve fibres, neuronal somata and in mucosal endocrine cells of the human small intestine. Immunoreactive enteric neurons were more numerous in the submucous plexuses than in the myenteric plexus. Morphologically, they predominantly had the appearance of type II neurons. The majority of the CGRP-like immunoreactive nerve fibres ran within the ganglionic nerve plexuses. Only a small proportion could be observed in the lamina propria, the lamina muscularis mucosae, or the circular and longitudinal outer smooth muscle layer. These findings suggest that within the wall of the human small intestine neuronal CGRP of either extrinsic or intrinsic origin exerts its effect chiefly on other enteric neurons, and might be indirectly involved in the regulatory functions of the human small intestine.  相似文献   

19.
Furness  J. B.  Costa  M.  Emson  P. C.  Håkanson  R.  Moghimzadeh  E.  Sundler  F.  Taylor  I. L.  Chance  R. E. 《Cell and tissue research》1983,234(1):71-92
Pancreatic polypeptide-like immunoreactivity (PPLI) has been localized in nerves of the guinea-pig stomach and intestine with the use of antibodies raised against avian, bovine and human pancreatic polypeptide (PP), the C-terminal hexapeptide of mammalian PP, and against the related peptide, NPY. Each of the antibodies revealed the same population of neurones. Reactive cell bodies were found in both myenteric (5% of all neurones) and submucous ganglia (26% of all neurones) of the small intestine, and varicose processes were observed in the myenteric plexus, circular muscle, mucosa and around arterioles. The nerves were unaffected by bilateral subdiaphragmatic truncal vagotomy, but the staining of the periarterial nerves disappeared after treatment of animals with reserpine or 6-hydroxydopamine and was also absent after mesenteric nerves had been cut and allowed to degenerate. Vascular nerves showing immunoreactivity for dopamine beta-hydroxylase and PPLI had the same distribution. It is concluded that PPLI is located in periarterial noradrenergic nerves. However, other noradrenergic nerves in the intestine do not show PPLI, and PPLI also occurs in nerves that are not noradrenergic. Analysis of changes in the distribution of terminals after microsurgical lesions of pathways in the small intestine showed that processes of myenteric PP-nerve cells provide terminals in the underlying circular muscle and in myenteric ganglia up to about 2 mm more anal. Submucous PP-cell bodies provide terminals to the mucosa.  相似文献   

20.
The distribution of catecholamines in the small and large intestine of flying foxes (Pteropus spp.) was investigated using glyoxylic-acid-induced fluorescence and immunohistochemical staining of tyrosine hydroxylase and dopamine--hydroxylase. Dense networks of varicose axons stained by each of these methods supplied blood vessels, the mucosa and both submucous and myenteric ganglia, but were scarce in the circular and longitudinal muscle. The majority (>90%) of submucous neuronal perikarya contained both enzymes and most of these also exhibited catecholamine fluorescence. Somata of similar staining characteristics were less common in the myenteric plexus, where single cells were found in only the minority of ganglia. All of the stained submucosal somata and mucosal axons contained vasoactive intestinal peptide, whereas catecholamine-containing axons that supplied the ganglia, external muscle and blood vessels did not. It is concluded that (1) there is dense catecholamine innervation of most tissues in the flyingfox intestine, similar to many other mammals, (2) mucosal axons originate from enteric catecholamine neurons, not found in other mammals, and (3) axons supplying the blood vessels and enteric ganglia are probably of sympathetic origin and can be distinguished from the intrinsic catecholamine-containing axons by their lack of vasoactive intestinal peptide. The roles and interactions of these two types of catecholamine innervation in the control of secretion and motility remain to be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号